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Abstract 
 
     We are interested in sequential hardware equivalence 
(or alignability equivalence) verification of synchronous 
sequential circuits [Pix92]. To cope with large industrial 
designs, the circuits must be divided into smaller 
subcircuits and verified separately. Furthermore, in order 
to succeed in verifying the subcircuits, design constraints 
must be added to the subcircuits. These constraints mimic 
“essential” behavior of the subcircuit environment. In this 
work, we extend the classical alignability theory in the 
presence of design constraints, and prove a 
compositionality result allowing inferring alignability of 
the circuits from alignability of the subcircuits. As a result, 
we build a divide and conquer framework for alignability 
verification.  This framework is successfully used on Intel 
designs. 

 
 
1. Introduction 
 
We are interested in sequential hardware equivalence 
verification of circuits, also called alignability verification, 
introduced by Pixley [Pix92].  A very similar concept was 
studied in the ATPG context of fault detection by Pomeranz 
and Reddy [PR96]. We want to compare two gate level 
versions of a full chip design: the gate level models can be 
originated from RTL description, or extracted from a 
schematic net list.  
 
Because formal equivalence verification tools normally do 
not scale to full chip verification, the gate level models are 
usually split into smaller subcircuits, and corresponding 
subcircuits are then verified. A question thus arises, 
whether alignability of subcircuits implies the alignability 
of the full chip models, and under what conditions. In other 
words, we want to answer the question: under what 
conditions is the alignability verification compositional? 
 
The compositionality question is central to any concept of 
sequential equivalence, as one wants to know whether 
substituting a piece of a circuit by an equivalent (in some 
sense) piece yields an equivalent (in the same sense) 
circuit. Singhal et al. [SPAB01] pointed out that 
alignability is not compositional, and this observation led 
them actually to abandon alignability and to define a more 

restricted and complex concept of equivalence – (delay) 
safe replaceability, which is compositional: replacing, in a 
design D, a piece C with its (delay) safe replacement C1 
results in a design D1 which is (delay) safe replacement of 
D. The idea of safe replaceability is that two equivalent 
circuits behave similarly under any environment.  
 
Safe replaceability is safe to use (when it can be used!).  
However, we will see below (Section 3.1) that safe 
replaceability is not sufficient in the context of divide and 
conquer framework that we use in order to verify large 
circuits in small pieces. This is because, in our verification 
framework, we add properties to the subcircuits in order to 
constrain their behavior. The constraints mimic the 
“essential” behavior of the environment. We call these 
constraints verification properties, because they are 
introduced simply for the purpose of verification – in order 
to eliminate spurious counter-examples arising during 
verification of subcircuits (i.e., verification of subcircuits 
without the environment). Note that the criticism of 
alignability equivalence concept in [SPAB01] is based on 
the fact that alignable circuits do not behave in the same 
manner in an arbitrary environment. But in our approach, it 
is enough for corresponding subcircuits in the two circuits 
to behave same under the imposed constraints. Therefore, 
the criticism of alignability equivalence concept in 
[SPAB01] becomes vacuous for our verification 
framework.    
 
Huang et al. [HCC01] point out that safe replaceability 
“…is more stringent (than alignability), and thus allows 
less flexibility for logic optimization. Furthermore, 
checking safe replaceability is difficult because every state 
of the transformed circuit needs to be examined. If the 
BDD representation can be constructed, this may be 
feasible. But for circuits beyond the capability of BDDs, 
this definition cannot be checked efficiently.” Therefore 
[HCC01] introduced 3-valued safe replaceability which is 
still stronger than alignability (for initializable circuits) but 
is easier to check, and furthermore it has excellent 
compositionality properties: (1) If in a large circuit every 
subcircuit is replaced by one of its respective 3-valued safe 
replacements, then the resulting circuit is 3-valued safe 
replacement of the original one; (2) Any initializing 
sequence of a circuit C initializes any of its 3-valued safe 
replacement circuits; and (3)  Any 3-valued safe 
replacement of an initializable circuit C is alignable with C. 



 

Still, just like safe replaceability, 3-valued safe 
replaceability is restrictive in our divide and conquer 
verification framework, because of the same reason (see 
Section 3.1).  
 
In this work we will show that it is possible to recover the 
compositionality property of alignability under a certain 
reasonable condition, without resorting to a stronger 
concept of equivalence. The matter is complicated further 
by the fact that, under the presence of constraints, the entire 
alignability theory actually breaks down! Still, we show 
how to recover the alignability theory in the presence of 
verification properties, and we can derive alignability of 
full chip models from the alignability of the subcircuits 
under the assumption that the models are (weakly) 
synchronizable. 
 
The paper is organized as follows. In the next section, we 
introduce main concepts of the sequential equivalence 
theory. While abstraction based compositional model 
checking methods are widely studied [CGP99], to the best 
of our knowledge, treatment of verification properties has 
not been addressed in the literature in the context of 
sequential equivalence verification. Therefore in Section 3, 
we provide a lengthy informal (but still pretty precise and 
detailed) discussion of the problems arising in the 
alignability theory in the presence of constraints. The 
problems and a solution proposed in Section 3 are 
formalized in Section 4. In Section 5 we prove our 
compositionality results. Experimental data is provided in 
Section 6. We conclude in Section 7. 
 
 
2. Preliminaries 
 
In order to be able to give an intuitive but precise 
description of the problems that we are going to solve, we 
start by introducing the basic concepts of sequential 
equivalence theory used in this work. 
 
Definition [HS98]: A Finite State Machine (FSM) M is a 
6-tuple (S,Σ,Γ,δ,λ,S0)  where 
• S is a finite set of states (ranged over by s, s1, s2, …); 
• Σ is a finite input alphabet (ranged over by a, …); 
• Γ is a finite output alphabet (ranged over by e, …); 
• δ: S x Σ  S is a state transition function;  
• λ: S x Σ  Γ is an output function; 
• S0 ⊆ S is the set of initial (i.e., start) states. 
 
The FSMs that we will consider originate from 
synchronous gate-level sequential circuits, built from logic 
gates and state elements. For simplicity, we assume that the 
only state elements in the circuits are edge-triggered flip-
flops with global clock (without set/reset or enable pins), 
which we will call latches. Our theory extends to other 
kinds of state elements as well.  
 

Convention: In any FSM M = (S,Σ,Γ,δ,λ,S0) that we will 
consider, a state s∈  S is represented as a tuple (l1,…,le) of 
latch variables L={l1,…,le}. More precisely, a state is given 
as a Boolean assignment to latch variables. Similarly, an 
input a∈Σ is a tuple (i1,…,ih) of input variables I={i1,…,ih}, 
and is specified as a Boolean assignment to variables in I. 
And an output is a tuple of output variables O={o1,…,oj}. 
Further, S0 for us is the set of all power-up states, that is, 
S=S0 and we will omit mention of S0 altogether. Therefore 
we may write an FSM M as (S, L, Σ, I, Γ,O, δ, λ). Further, 
we assume that δ is a collection of next state functions 
(NSFs) δi for each latch li∈L, and likewise for λ. Finally, 
for any input variable i∈ I, Xk(i) denotes the value of input 
i at time k (while i = X0(i)  represents the value of the input 
i at time 0), and likewise for o∈O and l∈L. Note that the 
values Xk(l) are constrained with δ, and values Xk(o) are 
constrained with λ, while input values Xk(i) are not 
constrained in general.   
 
Notation: 
• Without loss of generality, we assume that every 

circuit has exactly one output. We consider circuits C, 
C1, C2, Cxnor with outputs o, o1, o2, and oxnor, 
respectively, where oxnor = o1 xnor o2 denotes the 
output of the product circuit Cxnor = C1× C2 (circuits C1 
and C2 are assumed to be compatible – to have the 
same set of inputs and outputs) [HS98].  

• π will denote a binary input vector sequence for C. 
Further, o(s,π) denotes the value of o after simulating 
C with π, where C was initially at state s; C(s,π) 
denotes the state into which π brings C from state s; 
and C(S',π)={C(s, π) | s ∈  S'; S' ⊆  States(C)}.  

• u denotes the undefined value; and⊥  denotes the 
undefined state of C, where all state elements have u 
values; C(⊥,π) denotes the state of C after its 3-valued 
simulation with π, when C is initially at state ⊥; and  
o(⊥,π) denotes the corresponding value of o – it can 
be 1, 0 or u  (see e.g. [HCC01]). 

 
Definition: 
• [CA89] An initializing sequence πi brings C from state 

⊥ to a state si whose state elements have binary values 
1 or 0 (which stand for True (T) and False (F), 
respectively). The state si is called an initial state. 

• [Koh78] A reset or synchronization sequence πr brings 
C from any binary state to a unique state sr, called a 
reset or synchronization state. 

• [Koh78] States s1∈States(C1) and s2∈ States(C2) are 
equivalent, written s1 ≃ s2, if ∀π: o1(s1, π) =o2(s2, π). 
State (s1,s2) is then an equivalent state of Cxnor . 

• [PR96] A weak synchronizing sequence (ws-sequence 
for short) of a circuit C is an input vector sequence that 
brings C from any binary state to a subset of equivalent 
states {s1,…,sm}, called ws-states of C. 

 



 

An initializing sequence for C is its synchronizing 
sequence, and a synchronizing sequence is a ws-sequence. 
The converse to any of these statements is not true.  
 
Definition [Pix92]: 
• A binary input sequence π is an aligning sequence for 

a (binary) state (s1,s2) of Cxnor if it brings Cxnor from 
state (s1,s2) to an equivalent state. 

• Circuits C1 and C2 are alignable, written C1≃alnC2, if 
every state of Cxnor has an aligning sequence 
(equivalently, there is a sequence, called universal 
aligning sequence, that aligns every state of Cxnor).  

 
Note that initialization and (weak) synchronization refer to 
(i.e., require) one circuit only, while alignability refers to 
two circuits. When the two circuits are the same, one 
speaks of self-alignability. In particular, an input vector 
sequence for C is a ws-sequence for C iff it is a universal 
aligning sequence for C×C.  
 
The alignability verification method reported in [Pix92] is 
BDD based [Bry86] – a BDD representing the  set of all 
equivalent states of two circuits C1 and C2 is built first, and 
then it is checked whether any state can be synchronized 
into one of these states (again by using BDDs). A SAT 
based [DLL62] method is proposed in [RH02, KRSH04], 
where the circuits C1 and C2 are first weakly synchronized 
and then the resulting ws-states s1 and s2 of C1 and C2 are 
checked for state-equivalence. Following this method, 
below we distinguish between weak-synchronization and 
state-equivalence checking stages of alignability 
verification.  This method is based on the following 
theorem: 
 
Alignment Theorem [Pix92, HCC01, RH02]: Circuits C1 
and C2 are alignable if and only if each circuit is weakly 
synchronizable and there is an equivalent pair s1 ≃ s2 of 
states in C1 and C2; the concatenation π1π2 of a ws-
sequence π1 of C1 and a ws-sequence π2 of C2 is a ws-
sequence for both C1 and C2, and is a universal aligning 
sequence for C1 and C2 (when the latter are alignable). 
 
 
3. Alignability equivalence and constraints 
 
As already mentioned in the introduction, in order to verify 
equivalence of large complex circuits, they are partitioned 
into smaller subcircuits. Development of sequential ATPG 
[HCC01] and SAT [BCC99] based verification methods 
made it possible to allow subcircuits with sequential logic – 
the subcircuits may contain internal latches. This however 
adds burden to equivalence verification check, not only in 
terms of complexity, but also in terms of semantic 
correctness. We explain the arising correctness issue on an 
example in Figure 1: 
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Suppose we want to split the circuits C1 (specification, or 
spec) and C2 (implementation, or imp) at latches l1 and l2. 
Call the subcircuits A, B, C and D, as shown on the figure. 
And assume B and D both represent the FSM in Figure 2 
(we do not show the output values on the FSM – we 
assume that they differ only at state (l3=0, l4=0) – the only 
state where outputs o1 and o2 on Figure 1 differ): 
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From the structure of subcircuits A and C, it is clear that, at 
any ws-state of C1 and C2, latches l1 and l2 have equal 
values. Furthermore, without the constraint l1 = l2 on the 
inputs of B and D, these subcircuits are synchronizable 
(e.g., input vector (l1 =1,l2 =1) synchronizes both B and D 
into state (l3=1,l4=1), vectors (1,0) and (0,1) synchronize B 
and D into state (0,1)), but B and D are not alignable 
(because the product B×D has a non-equivalent 
synchronization state ((0,0),(0,0)), and hence all its 
synchronization states are non-equivalent). On the other 
hand, C1 and C2 are synchronizable and alignable (any 
input sequence of length 2 or more aligns every state of 
C1×C2). That is, we must impose the constraint l1 = l2 on the 
inputs of B and D in order to be able to reduce alignability 
of C1 and C2 to alignability of the subcircuits. 
 
3.1. Limitations of safe replaceability concepts in a 
divide and conquer paradigm 
 
Recall that circuit C2 is a safe replacement of C1 if 
∀s2∈States(C2) and ∀π , there is s1∈States(C1) such that, 



 

from s1 and s2, C1 and C2 produce equal outputs along 
π [SPAB01]. And C2 is a 3-valued safe replacement of C1 if 
o1(⊥,π) = o2(⊥,π) when o1(⊥,π) is binary [HCC01].   
 
Any synchronizable FSM has an initializable state encoding 
[CA89]. The shown state encoding of the FSM in Figure 2 
is such that input (l1=0, l2=1) initializes B and D. Further, 
for weakly synchronizable circuits, safe replaceability 
implies alignability [SPAB01]. And for initializable 
circuits, 3-valued safe replaceability implies alignability 
[HCC01]. Thus D is not a safe replacement or a 3-valued 
safe replacement of B because B and D are not alignable. 
Thus we cannot use (3-valued) safe replaceability to reduce 
alignability verification C1 and C2 to alignability 
verification of their subcircuits.  
 
Actually, even if we are interested in safe replaceability 
equivalence or 3-valued safe replaceability, we cannot split 
the circuits at latches l1 and l2, if we want to verify them in 
a divide and conquer fashion: C2 is (3-valued) safe 
replacement of C1, say when Logic 1 = Logic 2 in B and D, 
while D is not (3-valued) safe replacement of B. (Actually, 
the same is true for the delay replaceability equivalence 
[SPAB01]). To prove that C2 is a safe replacement of C1, 
note that for any input sequence π, at time 0 the outputs o1 
and o2 are determined by values of latches l3 and l4 (o1 = l3 
xnor l4, o2 = l3 & l4); at time 1, the outputs are determined 
by values of l1 and l2, and for the later times 2,3,…, the 
outputs are determined by π. Thus for any state s2 of C2 we 
can easily find state s1 of C1 such that o1=o2 at times 0 and 
1. And for later times, o1=o2 follows from the fact that 
neither C1 nor C2 can be in the bad state (0,0). Finally, to 
prove C2 is a 3-valued safe replacement of C1, it is enough 
to note that o1 and o2 become binary at the same time (no 
matter what binary inputs are injected, starting from state 
⊥), and by a previous argument, o1=o2 at all initial states of 
C1 and C2. 
 
We conclude that these replaceability concepts do not 
permit convenient partitioning of circuits, and usage of 
verification properties is often inevitable (this is supported 
by experimental data in Section 6). Taking into account 
subcircuit constraints in a safe replaceability check is 
against the nature of safe-replaceability (it was invented to 
make an equivalence concept independent of the 
environment). And it is not clear how 3-valued safe 
replaceability can be generalized in the presence of 
constraints, and whether its compositionality properties will 
be preserved. In the next subsection, we generalize 
alignability theory in the presence of constraints. 
 
3.2. Methodology for handling properties in 
alignability equivalence  
 
We call a constraint like l1 = l2 (in our example in Figure 1) 
a verification property, since it must be imposed on B and 
D in order to “pass” alignability verification on these 

subcircuits. Note that there may be other properties on the 
designs that are not related to the decomposition – we call 
them correctness properties. The correctness properties can 
be added to the circuit if the designer wants to verify the 
design correctness. Some of the correctness properties may 
be used as verification properties. In this paper we are not 
interested in verification of correctness properties, so we 
ignore correctness properties that are not needed or used as 
verification properties. Thus we assume we only have 
verification properties in the spec and or imp circuits.  
 
Clearly, verification properties that will be used in proving 
alignability of the subcircuits must be verified as well – in 
the spirit of the assume-guarantee paradigm [Pnu85, 
CGP99]. Note that it is not correct to require their validity 
at all times or at all states: For example, the property l1 = l2 
is valid at all ws-states of the circuits C1 and C2 and of 
subcircuits A and C (and at all post-ws times), but it is not 
valid at some legal power-up states (of the circuits or the 
subcircuits).  
 
There are a number of possible intuitive semantics to 
verification properties (in the context of alignability 
verification), and here we give two of them that seemed 
most appealing to us: 
1. Verification properties must be valid at all post-ws 

times (after a ws-sequence has been injected into the 
circuit, bringing the subcircuits into ws-states). 
Accordingly, during alignability verification of a 
subcircuit pair, the relevant verification properties on 
the subcircuits must be imposed only after weak 
synchronization of the subcircuit: that is, only at state-
equivalence stage of alignability verification.  

2. Verification properties must be valid at all ws-states of 
the subcircuits (no relation with time at all). 
Accordingly, during alignability verification of a 
subcircuit pair, the relevant verification properties must 
be imposed at all ws-states of the subcircuit: this 
includes both weak synchronization and state-
equivalence stages of alignability verification.  

 
We will now demonstrate that the first approach to the 
semantics of verification properties is problematic. If we 
allow inputs violating the assumption l1 = l2 during weak 
synchronization of the subcircuits B and D, we can arrive to 
any of the three potential ws-states of the subcircuits; under 
a potential ws-state of say B we mean all ws-states of  B 
when there are no constraints imposed on it. After the weak 
synchronization ends, the FSM corresponding to B 
changes: for example, it is not possible to exit state (l3=1, 
l4=1) and arrive to the bad state (l3=0, l4=0) any longer 
because the constraint l1=l2 is “activated” at post-ws times. 
Thus if our ws-sequence brings the subcircuits B and D to 
state (l3=1,l4=1), the (state-equivalence part of the) 
alignability check will report “equal”; while if a ws-
sequence brings B and D to state (l3=0, l4=0), the 
alignability check will report “differ”! 



 

 
Recall from [PR96] that states s and s' in a circuit C are 
called strongly connected if there exist transitions from s to 
s' and from s' to s. Strong connectivity is an equivalence 
relation, and it splits the states of C into equivalence 
classes, called strongly connected components (SCCs). An 
SCC that is closed under state transition is called a terminal 
SCC [SPAB01]. The alignability theory is based on a fact 
that the set of all synchronization states forms a terminal 
SCC [PR96]. A similar statement is true, up to state-
equivalence, for ws-states as well – all terminal SCCs 
containing a ws-state are equivalent sets of states [PR96]. 
The problem with the alignability theory that we are facing 
in the presence of verification properties is that, under the 
first approach, the above strong connectivity property fails 
for sets of potential synchronization or ws-states,  as the 
underlying FSMs during and after the ws-stage are 
different.  
 
Note that with the second approach to the semantics of 
verification properties, at the potential ws-states of the 
subcircuits B and D, we must restrict to input vectors 
{l1=l2=0, l1=l2=1}, therefore the subcircuits can be weakly 
synchronized into only one of the three potential ws-states 
– the state (1,1). For example, sequence l1=l2=1 is a ws-
sequence for both B and D, bringing every state of each 
subcircuit into state (1,1). From this state, B and D will 
remain in equivalent states. Thus the alignability check will 
always report “equal”. 
 
While the second approach may seem to resolve the 
problem of the first one – the dependency of alignability 
verification outcome on a computed ws-state, it is not 
satisfactory for the following reason. A non-empty ws-
sequence of a subcircuit – well, at least a (positive) number 
of its first transitions – should be applicable to any state of 
the subcircuit. This is different from what is stated in the 
second approach: in our example, the second approach 
permits a transition according to input vector (l1=1, l2=0) 
from state (0,0) but disallows transitions from the 
remaining states (with the same input vector).   
 
To avoid this situation, we will impose verification 
properties on subcircuits at all states (and all times: 
including both the weak synchronization and the state-
equivalence stages of alignability verification). The 
intuition justifying imposing the verification properties at 
all states of a subcircuit is as follows: suppose we are 
injecting an input vector sequence into the circuits C1 and 
C2 in Figure 1. By the time when these input values reach 
subcircuits B and D, the subcircuits A and C are 
synchronized, and the property l1=l2 is valid. And till that 
time, the input values at B and D can be ignored because 
they are generated by random latch values in A and C.  
 
It is often convenient to impose needed constraints on 
internal latches rather than on inputs of the subcircuits. 

Since the verification properties replace environment 
behavior, without loss of generality we will assume that all 
latch properties have equivalent input properties. Therefore 
in the compositionality proofs in section 5, we restrict 
ourselves to input properties only. 
 
There is also another reason that may cause the “instability” 
of the FSM corresponding to a subcircuit: in the presence 
of sequential properties, some of the arcs in the FSM graph 
may “disappear” and “re-appear” at different time phases. 
A simple sequential property causing instability of an FSM 
is a property expressing that the next value of an input i 
coincides its negation.  
 
 
4. Conditional FSMs 
 
We now formalize our observations by introducing 
conditional FSMs, and show that under our property 
treatment methodology and some additional conditions, the 
conditional FSMs induced by verification properties remain 
FSMs, thus alignability theory is valid for them. 
 
Definition:  
• A (state transition) path of an FSM M = (S, Σ, Γ, δ, λ) 

is a sequence p: (s0,a0)  …  (sn-1,an-1)  sn, where 
for each 0<i<n+1: si = δ(si-1,ai-1). (When the length n = 
0, p coincides with s0.)  

• A conditional FSM  is a pair (M, Π), also written as a 
tuple (S, Σ, Γ, δ, λ, Π), where M=(S, Σ, Γ, δ, λ) is an 
FSM and Π is a subset of paths in M, called admissible 
paths of (M,Π),  

 
Equivalently, a conditional FSM (M, Π) can be defined as 
tuple (S, Σ, Γ, δ*, λ), where S, Σ, Γ and λ are as in an FSM, 
and  δ* is a total function δ*: Πx Σ  S, where Π is a 
subset of paths satisfying the following: 
• If p: (s0,a0)   …  sn ∈ Π and an∈Σ is such that δ* is 

defined on (p, an), then (s0,a0)   …  (sn, an)  
sn+1∈ Π, where sn+1 = δ*(p, an). 

 
Recall from the convention in Section 2 that an input a∈Σ 
is a tuple of circuit inputs I={i1,…,ih}, represented as an 
assignment of 0s and 1s to  i1,…,ih; and an input ak∈Σ at 
time k is represented as an assignment to the inputs at time 
k, which are denoted by  Xk(i1),…,Xk(ih). Similarly, a state 
s∈S at time 0 is represented as an assignment to latches 
L={l1,…,le}, and a state sk∈S at time k is represented by an 
assignment to variables Xk(l1),…, Xk(le).   
 
Definition: The assignment σ corresponding to path p: 
(s0,a0)  …  (sn-1,an-1)  sn in an FSM M=(S, L, Σ, I, Γ, 
O, δ, λ) is an assignment of 1 or 0 to variables Xk(im) and 
Xr(lq), such that σ(Xk(im)) is the value of input im∈I in ak 
and σ(Xr(lq)) is the value of latch lq∈L in sr (k=0,…,n-1; 
r=0,…,n).  



 

 
We need assignments to define whether a path satisfies a 
sequential property (defined below); the latter may refer to 
input and latch values at a number of time stages. For 
example, the transition (s,a) s' where s = (l1=0, l2=1), a is 
an input (vector) i1=1, and s' = (l1=1, l2=1), defines the 
assignment σ={l1=0, l2=1, i1=1, X(l1)=1, X(l2)=1}. This 
transition satisfies property l2=X(l2), for example. 
 
Definition: Let M =(S, L,Σ, I, Γ,O, δ, λ)  be an FSM.  
• A property P on M is a formula written using Boolean 

variables in I and L, the operator X, and Boolean 
connectives (& (and), + (or), ! (not), etc). 

• P is a combinational property if it does not contain 
occurrences of X; else it is sequential. P is an input 
property if it does not contains variables in L. 

• A path p: (s0,a0)  …  (sk-1,ak-1)  sk in M satisfies P 
if for any tail pj: (sj,aj)   …  sk of p and the 
corresponding assignment σpj of pj, the substitution 
instance σpj(P) of P is satisfyable. In this case we say 
that the path p is admissible for P in M, or simply, that 
path p is P-admissible in M. 

• A property P on M induces a conditional FSM 
MP=(S,ΣP,Γ,δ, λ, Π) as follows:  
• The set  of admissible paths Π of Mp coincides 

with the set of P-admissible paths of M.  
• ΣP ⊆ Σ is the set of all inputs in M that participate 

in at least one admissible path in MP. 
 
For example, the sequential property expressing that the 
next value of an input i is its negation, is written as X(i) = 
!i. To see whether a path p satisfies it, we need to check 
each sub-path of p of length 2, which is equivalent to 
checking validity of the property on each tail of p.  Note 
that the state sets of M and MP are the same – a property 
may rule out paths but not states, as an FSM can power up 
at any state of M. Power-up states may become “isolated” 
in MP because of the constraints on transitions. 
 
Definition: Let M =(S, Σ, Γ, δ, λ) be an FSM. An FSM 
M'=(S', Σ', Γ', δ', λ') is called a sub-FSM of M if S'⊆ 
S, Σ'⊆ Σ, Γ'⊆ Γ, and δ' and λ' are restrictions of δ and λ on 
S' × Σ'.   
 
Theorem: Let M=(S, Σ, Γ, δ, λ) be an FSM and let P be a 
(satisfyable) combinational input property on M. Then 
there is a sub-FSM M' of M whose set of all paths coincides 
with the set of admissible paths of the conditional FSM MP 
induced by M and P. 
Proof: Let Σ'⊆  Σ be the set of all inputs satisfying P. Let 
M'=(S, Σ', Γ, δ', λ') be a sub-FSM of M. Then (s,a')  s' in 
M' iff (s,a')  s' is P-admissible in MP. Thus the set of all 
paths of M' coincides with the set of P-admissible paths of 
MP (since for a combinational input property P, P-
admissibility of a path is determined by P-admissibility of 
its one-step transitions). 

 
Property Convention: We restrict ourselves to verification 
properties P on an FSM M such that the induced 
conditional FSM MP can be associated with a sub-FSM of 
M whose set of paths coincides with the admissible paths of 
MP. We call such properties stable. 

 
Stable properties exist by the above theorem. An example 
of a stable sequential property is i=X(i), on an input 
variable i∈I of a FSM M. Such a property causes “case 
splitting” on M, since i is either always 1 or always 0. 
 
 
5. Decomposition and Compositionality 
 
In this section, we establish our compositionality results. 
We start by defining our divide and conquer framework. 
Without loss of generality, we assume all subcircuits are 
sequential. 
 
Definition (stable decomposition): Assume a circuit C is 
given together with a set of cut-points (including the 
outputs), and a set VP of verification properties, such that C 
can be partitioned into subcircuits Ai as follows: 
1. For every cut-point there is exactly one subcircuit in C. 

And every subcircuit corresponds to one or more cut-
points, which are the outputs of that subcircuit. 

2. The subcircuits are non-overlapping, and expand 
maximally from the subcircuit outputs to the nearest 
cut points or primary inputs.  

3. There is at most one property Pi∈VP on the inputs of a 
subcircuit Ai. The variables in Pi may be primary 
inputs. Else all of them are output nodes of another 
subcircuit, Aj, called a supporting subcircuit for Ai.  

Then we call such a decomposition of C stable if every Pi is 
stable on (the FSM corresponding to) Ai; and Pi is valid at 
all ws-states of the relevant supporting subcircuit Aj, under 
the input constraint on Aj (if any).  
 
The concept of stable decomposition can be relaxed by 
allowing more than one supporting subcircuits for any 
subcircuit; by allowing overlaps between the subcircuits 
under certain conditions, etc. This is necessary for the 
applicability of the framework in the practice. 
 
Given a stable decomposition of a circuit C into subcircuits, 
by compositionality of synchronization we mean that 
synchronization of the subcircuits implies that of C; 
compositionality of weak synchronization and initialization 
are defined similarly.  
 
It is clear from discussions in [SPAB01] that weak 
synchronization, synchronization, and initialization are not 
compositional.  To demonstrate this, we build a non-
weakly-synchronizable circuit and partition it into two 
initializable subcircuits. A simple FSM with two disjoint 
SCCs and two outputs l1 and l2 is given on Figure 3. Its 



 

corresponding circuit is not weakly synchronizable but can 
be split into initializable subcircuits, as shown. 

l1

l2 (0,1)

(1,0)

(0,0)

(1,1)

l1 l2 l2 l1

The slices

Figure 3

 
When we speak about a decomposition of two circuits C1 
and C2 into subcircuits, we assume that for every cut point 
in C1 there is at least one corresponding, also called 
mapped, cut point in C2, and vice versa. 
 
Definition: Suppose we are given a stable decomposition 
of C1 and C2 into subcircuits.  
• By compositionality of alignability we mean that 

alignability of corresponding subcircuit pairs implies 
alignability of C1 and C2. 

• By weak compositionality of alignability we mean that 
alignability of corresponding subcircuit pairs implies 
that of C1 and C2 under the assumption that C1 and C2 
are weakly synchronizable. 

 
To see that alignability is not compositional [SPAB01], 
assume C1 = C2 and let they coincide with the circuit in 
Figure 3. Then the subcircuits corresponding to l1 and l2 in 
C1 and C2 are alignable, while the circuits are not: for 
example, states (0,1) of C1 and (1,1) of C2 are not alignable. 
Therefore, C1 and C2 are not alignable. 
 
Definition: States s1 and s2 of C1 and C2 are consistent with 
respect to a given stable decomposition of C1 and C2 if any 
corresponding subcircuit pair (A1,A2) in C1 and C2 is in an 
equivalent ws-state (s'1,s'2) (verification properties are used 
as constraints when computing the ws-states). 
 
We will show that, for a stable decomposition of C1 and C2, 
consistency is a transition invariant implying state 
equivalence, and that consistent states exist if the 
subcircuits are alignable (that is, the consistency relation is 
a non-empty bisimulation [Par81] on the states of C1 and 
C2). Note that under the stability and consistency 
assumptions, inputs received by any subcircuit satisfy the 
input property on that subcircuit, thus any subcircuit 
behaves as the sub-FSM induced by the subcircuit FSM and 
the property on it. Therefore, in the proofs below, we will 
use term “constrained subcircuit” to refer to the constrained 
behavior of the subcircuit. Note also that the alignability 
theory is sound for constrained subcircuits since they are 
(sub) FSMs, thanks to the property convention. 
 

Lemma 1: Assume we are given a stable decomposition of 
C1 and C2 such that the corresponding constrained 
subcircuits are alignable. Then the set of consistent states of 
C1 and C2 is non-empty and is closed under state transition. 
Proof: We build consistent states s1

* and s2
* as follows: 

Assign such values to the latches in C1 and C2 that all 
corresponding constrained subcircuits will be set into 
equivalent ws-states. This is possible by the assumption 
that subcircuits are non-overlapping, and corresponding 
constrained subcircuits in C1 and C2 are alignable. The 
properties on subcircuit outputs are valid by the stability 
assumption. Now let s1' and s2' be any consistent states of 
C1 and C2, and let a be an input vector.  Since 
corresponding subcircuits are in equivalent (ws-) states, 
their corresponding outputs have equal values (these 
outputs are mapped). Thus all subcircuits receive equal 
values at mapped inputs. Therefore, all corresponding 
subcircuits will remain in equivalent (ws-) states at the next 
time phase, and the properties on subcircuit outputs will 
remain valid. Thus, the states C1(s1',a) and  C2(s2',a) remain 
consistent. 
 
Lemma 2: Let s1 and s2 be states consistent with respect to 
a stable decomposition of C1 and C2. Then s1 ≃ s2.  
Proof: By Lemma 1, s'1 = C1(s1,π) and s'2= C(s1,π) are 
consistent for any π. And the outputs of corresponding 
subcircuits, and in particular the outputs of C1 and C2, have 
the same values in s'1 and s'2. Hence s1 ≃ s2.  
 
Theorem: Alignability is weakly compositional. 
Proof: Assume we are given a stable decomposition of C1 
and C2, and let corresponding constrained subcircuits be 
alignable. Let π be a ws-sequence for both C1 and C2. Let 
s1

* and s2
* be consistent states of C1 and C2, constructed as 

in the Lemma 1, and let s1=C1(s1
*,π) and s2= C(s1

*,π). By 
Lemma 1, s1 and s2 are consistent, and by Lemma 2, s1 ≃ s2.  
Hence, by the Alignment Theorem, C1≃alnC2. 
 
 
6. Experimental data 
 
We have verified a large number of Intel designs using this 
verification framework, which is implemented in our 
sequential equivalence verification tool – Seqver. Hundreds 
of bugs were found, ranged from missing invertors to 
wrong coding, before a reboot sequence was provided by 
the designers. The two tables below contain data on the size 
of 3 verified circuits, as well as average size of the 
subcircuits. In some cases, subcircuits have substantial 
overlap (including common latches).  The reported run 
times were measured on a 2.4GHz Linux machine with 
2GB memory. We use SAT-based algorithms similar to 
those reported in [RH02, KH03, KRSH04] in the 
alignability and 3-valued safe replaceability checks. We do 
not have a safe replaceability verification algorithm in 
Seqver, and cannot report corresponding experimental data. 



 

On design M3, 129 subcircuits (with 1981 verification 
pairs) needed verification properties to pass alignability 
verification of decomposed spec / imp circuits; only 101 
remaining pairs (which form two subcircuits) are 3-valued 
safe replaceable. On another spec / imp pair M2, 2 chunks 
(16 verification pairs) needed verification properties to 
prove alignability, and 2666 pairs could be verified without 
any properties (both using alignability and 3-valued safe 
replaceability notions). On yet another spec / imp pair M1, 
207 chunks (1318 verification pairs) needed verification 
properties, and 1046 remaining pairs can be verified 
without using properties.  All verification properties were 
found manually.  Often same verification properties were 
used for several subcircuits. 
 

Model Gates Latches Outs Inps Cpu(sec) 

M1 362604 12693 389 397 4700 

M2 423070 23913 349 302 5722 

M3 157110 22080 572 578 2478 
 
 

Model SubCkts  Avrg Inps  Avrg Gates Avrg Latches 

M1 524 650 11171 804 

M2 402 102 824 33 

M3 134 233 2874 187 
   
 
7. Conclusions 
 
We have developed a divide and conquer framework for 
verifying alignability equivalence of large circuits by 
dividing them into smaller subcircuits and verifying each 
subcircuit separately using properties (constraints) that 
abstract behavior of the subcircuit environment. And we 
have proven a suitable compositionality result allowing 
inferring alignability of the circuits from alignability of the 
constrained subcircuits. To enable this, we have extended 
the classical alignability theory in the presence of design 
constraints.  
 
Note that our compositionality result ensures that, under the 
condition that the specification and implementation circuits 
are weakly synchronizable, there is no need to worry about 
cyclic dependences in the assume-guarantee reasoning 
[Pnu85, CGP99] – it is enough we prove output properties 
on subcircuits by using their input properties. Note also that 
weak synchronization is a reasonable requirement from any 
reboot sequence, as otherwise the post-reboot behavior of 
the circuit will not be deterministic – it will depend on the 
specific (random) power-up state.  
 
 
Acknowledgements: We thank S. Goldenberg and A. Jas, 
who were the first to encounter the inconsistency of 

alignability verification in Seqver, in the presence of design 
constraints.  And we thank the referees for constructive 
feedback. 
 
References 
 
[BCC99] Biere, A., A. Cimatti, and E. Clarke, Symbolic model 
checking without BDDs, Tools and Algorithms for the 
Construction and Analysis of Systems, 1999. 
 
[Bry86] Bryant R.E., Graph-based algorithms for Boolean 
function manipulation, IEEE Trans. Computers, C-35(8), 1986. 
 
[CA89] Cheng K.-T. and D. Agrawal,  State assignment for 
initializable synthesis, ICCAD’89, 1989. 
 
[CGP99] Clarke E.M., O. Grumberg, D.A. Peled, Model 
Checking, MIT Press, 1999. 
 
 [DLL62] Davis, M., G. Logemann and D. Loveland, A machine 
program for theorem-proving, Communications of ACM 5(7), 
1962.  
 
[HS98] Hachtel G.D. and F. Somenzi, Logic Synthesis and 
Verification Algorithms, Kluwer Academic Publishers, 1998. 
 
[HCC01] Huang, S.-Y., K.-T., Cheng, and K.-C. Chen, Verifying 
sequential equivalence using ATPG techniques, ACM Trans. on 
Design Automation of Electronic Systems,  2001. 
 
[KRSH04] Kaiss, D., A. Rosenmann, M. Skaba and Z. Hanna, A 
formal method and apparatus for an automatic synchronization of 
finite state machines for sequential verification of chip design, US 
Patent application, 2004. 
 
[KH03] Khasidashvili, Z., Z. Hanna, SAT-Based methods for 
sequential hardware equivalence verification without 
synchronization, BMC’03, ENTCS 89 (4), 2003. 
 
[Koh78]  Kohavi, Z., Switching and Finite Automata Theory, 
McGraw-Hill, 1978. 
 
[Par81] Park, D. Concurrency and automata on infinite sequences, 
5th GI-Conference on Theoretical Computer Science, Springer 
LNCS, vol. 104, 1981. 
 
[Pix92] Pixley, C., A theory and implementation of sequential 
hardware equivalence,  IEEE transactions on CAD, 1992. 
 
[Pnu85] Pnueli, A., In transition from global to modular temporal 
reasoning about programs, In: Logics and Models of Concurrent 
Systems, Springer LNCS, vol. F-13 of NATO ASI series, 1985. 
  
[PR96] Pomeranz, I. and S.M. Reddy, On removing redundancies 
from synchronous sequential circuits with synchronizing 
sequences, IEEE Trans. Computers, 1996. 
 
[RH02] Rosenmann, A. and Z. Hanna, Alignability equivalence of 
synchronous sequential circuits, HLDVT'02, 2002. 
 
[SPAB01]  Singhal, V., C. Pixley, A. Aziz, and R.K. Brayton, 
Theory of Safe replacement for sequential circuits, IEEE Trans. 
on CAD of integrated circuits and systems, vol. 20, n.2, 2001. 


