
Theoretical Framework for Compositional Sequential Hardware Equivalence
Verification in Presence of Design Constraints

Zurab Khasidashvili, Marcelo Skaba, Daher Kaiss, Ziyad Hanna

Intel, IDC, Haifa, Israel
{zurabk, smarcelo,dkaiss,zhanna}@iil.intel.com

Abstract

 We are interested in sequential hardware equivalence
(or alignability equivalence) verification of synchronous
sequential circuits [Pix92]. To cope with large industrial
designs, the circuits must be divided into smaller
subcircuits and verified separately. Furthermore, in order
to succeed in verifying the subcircuits, design constraints
must be added to the subcircuits. These constraints mimic
“essential” behavior of the subcircuit environment. In this
work, we extend the classical alignability theory in the
presence of design constraints, and prove a
compositionality result allowing inferring alignability of
the circuits from alignability of the subcircuits. As a result,
we build a divide and conquer framework for alignability
verification. This framework is successfully used on Intel
designs.

1. Introduction

We are interested in sequential hardware equivalence
verification of circuits, also called alignability verification,
introduced by Pixley [Pix92]. A very similar concept was
studied in the ATPG context of fault detection by Pomeranz
and Reddy [PR96]. We want to compare two gate level
versions of a full chip design: the gate level models can be
originated from RTL description, or extracted from a
schematic net list.

Because formal equivalence verification tools normally do
not scale to full chip verification, the gate level models are
usually split into smaller subcircuits, and corresponding
subcircuits are then verified. A question thus arises,
whether alignability of subcircuits implies the alignability
of the full chip models, and under what conditions. In other
words, we want to answer the question: under what
conditions is the alignability verification compositional?

The compositionality question is central to any concept of
sequential equivalence, as one wants to know whether
substituting a piece of a circuit by an equivalent (in some
sense) piece yields an equivalent (in the same sense)
circuit. Singhal et al. [SPAB01] pointed out that
alignability is not compositional, and this observation led
them actually to abandon alignability and to define a more

restricted and complex concept of equivalence – (delay)
safe replaceability, which is compositional: replacing, in a
design D, a piece C with its (delay) safe replacement C1
results in a design D1 which is (delay) safe replacement of
D. The idea of safe replaceability is that two equivalent
circuits behave similarly under any environment.

Safe replaceability is safe to use (when it can be used!).
However, we will see below (Section 3.1) that safe
replaceability is not sufficient in the context of divide and
conquer framework that we use in order to verify large
circuits in small pieces. This is because, in our verification
framework, we add properties to the subcircuits in order to
constrain their behavior. The constraints mimic the
“essential” behavior of the environment. We call these
constraints verification properties, because they are
introduced simply for the purpose of verification – in order
to eliminate spurious counter-examples arising during
verification of subcircuits (i.e., verification of subcircuits
without the environment). Note that the criticism of
alignability equivalence concept in [SPAB01] is based on
the fact that alignable circuits do not behave in the same
manner in an arbitrary environment. But in our approach, it
is enough for corresponding subcircuits in the two circuits
to behave same under the imposed constraints. Therefore,
the criticism of alignability equivalence concept in
[SPAB01] becomes vacuous for our verification
framework.

Huang et al. [HCC01] point out that safe replaceability
“…is more stringent (than alignability), and thus allows
less flexibility for logic optimization. Furthermore,
checking safe replaceability is difficult because every state
of the transformed circuit needs to be examined. If the
BDD representation can be constructed, this may be
feasible. But for circuits beyond the capability of BDDs,
this definition cannot be checked efficiently.” Therefore
[HCC01] introduced 3-valued safe replaceability which is
still stronger than alignability (for initializable circuits) but
is easier to check, and furthermore it has excellent
compositionality properties: (1) If in a large circuit every
subcircuit is replaced by one of its respective 3-valued safe
replacements, then the resulting circuit is 3-valued safe
replacement of the original one; (2) Any initializing
sequence of a circuit C initializes any of its 3-valued safe
replacement circuits; and (3) Any 3-valued safe
replacement of an initializable circuit C is alignable with C.

Still, just like safe replaceability, 3-valued safe
replaceability is restrictive in our divide and conquer
verification framework, because of the same reason (see
Section 3.1).

In this work we will show that it is possible to recover the
compositionality property of alignability under a certain
reasonable condition, without resorting to a stronger
concept of equivalence. The matter is complicated further
by the fact that, under the presence of constraints, the entire
alignability theory actually breaks down! Still, we show
how to recover the alignability theory in the presence of
verification properties, and we can derive alignability of
full chip models from the alignability of the subcircuits
under the assumption that the models are (weakly)
synchronizable.

The paper is organized as follows. In the next section, we
introduce main concepts of the sequential equivalence
theory. While abstraction based compositional model
checking methods are widely studied [CGP99], to the best
of our knowledge, treatment of verification properties has
not been addressed in the literature in the context of
sequential equivalence verification. Therefore in Section 3,
we provide a lengthy informal (but still pretty precise and
detailed) discussion of the problems arising in the
alignability theory in the presence of constraints. The
problems and a solution proposed in Section 3 are
formalized in Section 4. In Section 5 we prove our
compositionality results. Experimental data is provided in
Section 6. We conclude in Section 7.

2. Preliminaries

In order to be able to give an intuitive but precise
description of the problems that we are going to solve, we
start by introducing the basic concepts of sequential
equivalence theory used in this work.

Definition [HS98]: A Finite State Machine (FSM) M is a
6-tuple (S,Σ,Γ,δ,λ,S0) where
• S is a finite set of states (ranged over by s, s1, s2, …);
• Σ is a finite input alphabet (ranged over by a, …);
• Γ is a finite output alphabet (ranged over by e, …);
• δ: S x Σ S is a state transition function;
• λ: S x Σ Γ is an output function;
• S0 ⊆ S is the set of initial (i.e., start) states.

The FSMs that we will consider originate from
synchronous gate-level sequential circuits, built from logic
gates and state elements. For simplicity, we assume that the
only state elements in the circuits are edge-triggered flip-
flops with global clock (without set/reset or enable pins),
which we will call latches. Our theory extends to other
kinds of state elements as well.

Convention: In any FSM M = (S,Σ,Γ,δ,λ,S0) that we will
consider, a state s∈ S is represented as a tuple (l1,…,le) of
latch variables L={l1,…,le}. More precisely, a state is given
as a Boolean assignment to latch variables. Similarly, an
input a∈Σ is a tuple (i1,…,ih) of input variables I={i1,…,ih},
and is specified as a Boolean assignment to variables in I.
And an output is a tuple of output variables O={o1,…,oj}.
Further, S0 for us is the set of all power-up states, that is,
S=S0 and we will omit mention of S0 altogether. Therefore
we may write an FSM M as (S, L, Σ, I, Γ,O, δ, λ). Further,
we assume that δ is a collection of next state functions
(NSFs) δi for each latch li∈L, and likewise for λ. Finally,
for any input variable i∈ I, Xk(i) denotes the value of input
i at time k (while i = X0(i) represents the value of the input
i at time 0), and likewise for o∈O and l∈L. Note that the
values Xk(l) are constrained with δ, and values Xk(o) are
constrained with λ, while input values Xk(i) are not
constrained in general.

Notation:
• Without loss of generality, we assume that every

circuit has exactly one output. We consider circuits C,
C1, C2, Cxnor with outputs o, o1, o2, and oxnor,
respectively, where oxnor = o1 xnor o2 denotes the
output of the product circuit Cxnor = C1× C2 (circuits C1
and C2 are assumed to be compatible – to have the
same set of inputs and outputs) [HS98].

• π will denote a binary input vector sequence for C.
Further, o(s,π) denotes the value of o after simulating
C with π, where C was initially at state s; C(s,π)
denotes the state into which π brings C from state s;
and C(S',π)={C(s, π) | s ∈ S'; S' ⊆ States(C)}.

• u denotes the undefined value; and⊥ denotes the
undefined state of C, where all state elements have u
values; C(⊥,π) denotes the state of C after its 3-valued
simulation with π, when C is initially at state ⊥; and
o(⊥,π) denotes the corresponding value of o – it can
be 1, 0 or u (see e.g. [HCC01]).

Definition:
• [CA89] An initializing sequence πi brings C from state

⊥ to a state si whose state elements have binary values
1 or 0 (which stand for True (T) and False (F),
respectively). The state si is called an initial state.

• [Koh78] A reset or synchronization sequence πr brings
C from any binary state to a unique state sr, called a
reset or synchronization state.

• [Koh78] States s1∈States(C1) and s2∈ States(C2) are
equivalent, written s1 ≃ s2, if ∀π: o1(s1, π) =o2(s2, π).
State (s1,s2) is then an equivalent state of Cxnor .

• [PR96] A weak synchronizing sequence (ws-sequence
for short) of a circuit C is an input vector sequence that
brings C from any binary state to a subset of equivalent
states {s1,…,sm}, called ws-states of C.

An initializing sequence for C is its synchronizing
sequence, and a synchronizing sequence is a ws-sequence.
The converse to any of these statements is not true.

Definition [Pix92]:
• A binary input sequence π is an aligning sequence for

a (binary) state (s1,s2) of Cxnor if it brings Cxnor from
state (s1,s2) to an equivalent state.

• Circuits C1 and C2 are alignable, written C1≃alnC2, if
every state of Cxnor has an aligning sequence
(equivalently, there is a sequence, called universal
aligning sequence, that aligns every state of Cxnor).

Note that initialization and (weak) synchronization refer to
(i.e., require) one circuit only, while alignability refers to
two circuits. When the two circuits are the same, one
speaks of self-alignability. In particular, an input vector
sequence for C is a ws-sequence for C iff it is a universal
aligning sequence for C×C.

The alignability verification method reported in [Pix92] is
BDD based [Bry86] – a BDD representing the set of all
equivalent states of two circuits C1 and C2 is built first, and
then it is checked whether any state can be synchronized
into one of these states (again by using BDDs). A SAT
based [DLL62] method is proposed in [RH02, KRSH04],
where the circuits C1 and C2 are first weakly synchronized
and then the resulting ws-states s1 and s2 of C1 and C2 are
checked for state-equivalence. Following this method,
below we distinguish between weak-synchronization and
state-equivalence checking stages of alignability
verification. This method is based on the following
theorem:

Alignment Theorem [Pix92, HCC01, RH02]: Circuits C1
and C2 are alignable if and only if each circuit is weakly
synchronizable and there is an equivalent pair s1 ≃ s2 of
states in C1 and C2; the concatenation π1π2 of a ws-
sequence π1 of C1 and a ws-sequence π2 of C2 is a ws-
sequence for both C1 and C2, and is a universal aligning
sequence for C1 and C2 (when the latter are alignable).

3. Alignability equivalence and constraints

As already mentioned in the introduction, in order to verify
equivalence of large complex circuits, they are partitioned
into smaller subcircuits. Development of sequential ATPG
[HCC01] and SAT [BCC99] based verification methods
made it possible to allow subcircuits with sequential logic –
the subcircuits may contain internal latches. This however
adds burden to equivalence verification check, not only in
terms of complexity, but also in terms of semantic
correctness. We explain the arising correctness issue on an
example in Figure 1:

Figure 1

i l1

l2

o2Logic
2

C2

l4

l3

i l1

l2

o1Logic
1

C1 l3

l4cut

cut

A B

C D

Suppose we want to split the circuits C1 (specification, or
spec) and C2 (implementation, or imp) at latches l1 and l2.
Call the subcircuits A, B, C and D, as shown on the figure.
And assume B and D both represent the FSM in Figure 2
(we do not show the output values on the FSM – we
assume that they differ only at state (l3=0, l4=0) – the only
state where outputs o1 and o2 on Figure 1 differ):

(0,1)

(1,0)

(0,0)

(1,1)

(1,1), (0,0)

(1,1)

(0,0)

(1,1),
(0,0)(0,1),

(1,0)

(0,1),
(1,0)

(0,1), (1,0)

(1,1),
(0,0)

Figure 2

(0,1),
(1,0)

Bad state

From the structure of subcircuits A and C, it is clear that, at
any ws-state of C1 and C2, latches l1 and l2 have equal
values. Furthermore, without the constraint l1 = l2 on the
inputs of B and D, these subcircuits are synchronizable
(e.g., input vector (l1 =1,l2 =1) synchronizes both B and D
into state (l3=1,l4=1), vectors (1,0) and (0,1) synchronize B
and D into state (0,1)), but B and D are not alignable
(because the product B×D has a non-equivalent
synchronization state ((0,0),(0,0)), and hence all its
synchronization states are non-equivalent). On the other
hand, C1 and C2 are synchronizable and alignable (any
input sequence of length 2 or more aligns every state of
C1×C2). That is, we must impose the constraint l1 = l2 on the
inputs of B and D in order to be able to reduce alignability
of C1 and C2 to alignability of the subcircuits.

3.1. Limitations of safe replaceability concepts in a
divide and conquer paradigm

Recall that circuit C2 is a safe replacement of C1 if
∀s2∈States(C2) and ∀π , there is s1∈States(C1) such that,

from s1 and s2, C1 and C2 produce equal outputs along
π [SPAB01]. And C2 is a 3-valued safe replacement of C1 if
o1(⊥,π) = o2(⊥,π) when o1(⊥,π) is binary [HCC01].

Any synchronizable FSM has an initializable state encoding
[CA89]. The shown state encoding of the FSM in Figure 2
is such that input (l1=0, l2=1) initializes B and D. Further,
for weakly synchronizable circuits, safe replaceability
implies alignability [SPAB01]. And for initializable
circuits, 3-valued safe replaceability implies alignability
[HCC01]. Thus D is not a safe replacement or a 3-valued
safe replacement of B because B and D are not alignable.
Thus we cannot use (3-valued) safe replaceability to reduce
alignability verification C1 and C2 to alignability
verification of their subcircuits.

Actually, even if we are interested in safe replaceability
equivalence or 3-valued safe replaceability, we cannot split
the circuits at latches l1 and l2, if we want to verify them in
a divide and conquer fashion: C2 is (3-valued) safe
replacement of C1, say when Logic 1 = Logic 2 in B and D,
while D is not (3-valued) safe replacement of B. (Actually,
the same is true for the delay replaceability equivalence
[SPAB01]). To prove that C2 is a safe replacement of C1,
note that for any input sequence π, at time 0 the outputs o1
and o2 are determined by values of latches l3 and l4 (o1 = l3
xnor l4, o2 = l3 & l4); at time 1, the outputs are determined
by values of l1 and l2, and for the later times 2,3,…, the
outputs are determined by π. Thus for any state s2 of C2 we
can easily find state s1 of C1 such that o1=o2 at times 0 and
1. And for later times, o1=o2 follows from the fact that
neither C1 nor C2 can be in the bad state (0,0). Finally, to
prove C2 is a 3-valued safe replacement of C1, it is enough
to note that o1 and o2 become binary at the same time (no
matter what binary inputs are injected, starting from state
⊥), and by a previous argument, o1=o2 at all initial states of
C1 and C2.

We conclude that these replaceability concepts do not
permit convenient partitioning of circuits, and usage of
verification properties is often inevitable (this is supported
by experimental data in Section 6). Taking into account
subcircuit constraints in a safe replaceability check is
against the nature of safe-replaceability (it was invented to
make an equivalence concept independent of the
environment). And it is not clear how 3-valued safe
replaceability can be generalized in the presence of
constraints, and whether its compositionality properties will
be preserved. In the next subsection, we generalize
alignability theory in the presence of constraints.

3.2. Methodology for handling properties in
alignability equivalence

We call a constraint like l1 = l2 (in our example in Figure 1)
a verification property, since it must be imposed on B and
D in order to “pass” alignability verification on these

subcircuits. Note that there may be other properties on the
designs that are not related to the decomposition – we call
them correctness properties. The correctness properties can
be added to the circuit if the designer wants to verify the
design correctness. Some of the correctness properties may
be used as verification properties. In this paper we are not
interested in verification of correctness properties, so we
ignore correctness properties that are not needed or used as
verification properties. Thus we assume we only have
verification properties in the spec and or imp circuits.

Clearly, verification properties that will be used in proving
alignability of the subcircuits must be verified as well – in
the spirit of the assume-guarantee paradigm [Pnu85,
CGP99]. Note that it is not correct to require their validity
at all times or at all states: For example, the property l1 = l2
is valid at all ws-states of the circuits C1 and C2 and of
subcircuits A and C (and at all post-ws times), but it is not
valid at some legal power-up states (of the circuits or the
subcircuits).

There are a number of possible intuitive semantics to
verification properties (in the context of alignability
verification), and here we give two of them that seemed
most appealing to us:
1. Verification properties must be valid at all post-ws

times (after a ws-sequence has been injected into the
circuit, bringing the subcircuits into ws-states).
Accordingly, during alignability verification of a
subcircuit pair, the relevant verification properties on
the subcircuits must be imposed only after weak
synchronization of the subcircuit: that is, only at state-
equivalence stage of alignability verification.

2. Verification properties must be valid at all ws-states of
the subcircuits (no relation with time at all).
Accordingly, during alignability verification of a
subcircuit pair, the relevant verification properties must
be imposed at all ws-states of the subcircuit: this
includes both weak synchronization and state-
equivalence stages of alignability verification.

We will now demonstrate that the first approach to the
semantics of verification properties is problematic. If we
allow inputs violating the assumption l1 = l2 during weak
synchronization of the subcircuits B and D, we can arrive to
any of the three potential ws-states of the subcircuits; under
a potential ws-state of say B we mean all ws-states of B
when there are no constraints imposed on it. After the weak
synchronization ends, the FSM corresponding to B
changes: for example, it is not possible to exit state (l3=1,
l4=1) and arrive to the bad state (l3=0, l4=0) any longer
because the constraint l1=l2 is “activated” at post-ws times.
Thus if our ws-sequence brings the subcircuits B and D to
state (l3=1,l4=1), the (state-equivalence part of the)
alignability check will report “equal”; while if a ws-
sequence brings B and D to state (l3=0, l4=0), the
alignability check will report “differ”!

Recall from [PR96] that states s and s' in a circuit C are
called strongly connected if there exist transitions from s to
s' and from s' to s. Strong connectivity is an equivalence
relation, and it splits the states of C into equivalence
classes, called strongly connected components (SCCs). An
SCC that is closed under state transition is called a terminal
SCC [SPAB01]. The alignability theory is based on a fact
that the set of all synchronization states forms a terminal
SCC [PR96]. A similar statement is true, up to state-
equivalence, for ws-states as well – all terminal SCCs
containing a ws-state are equivalent sets of states [PR96].
The problem with the alignability theory that we are facing
in the presence of verification properties is that, under the
first approach, the above strong connectivity property fails
for sets of potential synchronization or ws-states, as the
underlying FSMs during and after the ws-stage are
different.

Note that with the second approach to the semantics of
verification properties, at the potential ws-states of the
subcircuits B and D, we must restrict to input vectors
{l1=l2=0, l1=l2=1}, therefore the subcircuits can be weakly
synchronized into only one of the three potential ws-states
– the state (1,1). For example, sequence l1=l2=1 is a ws-
sequence for both B and D, bringing every state of each
subcircuit into state (1,1). From this state, B and D will
remain in equivalent states. Thus the alignability check will
always report “equal”.

While the second approach may seem to resolve the
problem of the first one – the dependency of alignability
verification outcome on a computed ws-state, it is not
satisfactory for the following reason. A non-empty ws-
sequence of a subcircuit – well, at least a (positive) number
of its first transitions – should be applicable to any state of
the subcircuit. This is different from what is stated in the
second approach: in our example, the second approach
permits a transition according to input vector (l1=1, l2=0)
from state (0,0) but disallows transitions from the
remaining states (with the same input vector).

To avoid this situation, we will impose verification
properties on subcircuits at all states (and all times:
including both the weak synchronization and the state-
equivalence stages of alignability verification). The
intuition justifying imposing the verification properties at
all states of a subcircuit is as follows: suppose we are
injecting an input vector sequence into the circuits C1 and
C2 in Figure 1. By the time when these input values reach
subcircuits B and D, the subcircuits A and C are
synchronized, and the property l1=l2 is valid. And till that
time, the input values at B and D can be ignored because
they are generated by random latch values in A and C.

It is often convenient to impose needed constraints on
internal latches rather than on inputs of the subcircuits.

Since the verification properties replace environment
behavior, without loss of generality we will assume that all
latch properties have equivalent input properties. Therefore
in the compositionality proofs in section 5, we restrict
ourselves to input properties only.

There is also another reason that may cause the “instability”
of the FSM corresponding to a subcircuit: in the presence
of sequential properties, some of the arcs in the FSM graph
may “disappear” and “re-appear” at different time phases.
A simple sequential property causing instability of an FSM
is a property expressing that the next value of an input i
coincides its negation.

4. Conditional FSMs

We now formalize our observations by introducing
conditional FSMs, and show that under our property
treatment methodology and some additional conditions, the
conditional FSMs induced by verification properties remain
FSMs, thus alignability theory is valid for them.

Definition:
• A (state transition) path of an FSM M = (S, Σ, Γ, δ, λ)

is a sequence p: (s0,a0) … (sn-1,an-1) sn, where
for each 0<i<n+1: si = δ(si-1,ai-1). (When the length n =
0, p coincides with s0.)

• A conditional FSM is a pair (M, Π), also written as a
tuple (S, Σ, Γ, δ, λ, Π), where M=(S, Σ, Γ, δ, λ) is an
FSM and Π is a subset of paths in M, called admissible
paths of (M,Π),

Equivalently, a conditional FSM (M, Π) can be defined as
tuple (S, Σ, Γ, δ*, λ), where S, Σ, Γ and λ are as in an FSM,
and δ* is a total function δ*: Πx Σ S, where Π is a
subset of paths satisfying the following:
• If p: (s0,a0) … sn ∈ Π and an∈Σ is such that δ* is

defined on (p, an), then (s0,a0) … (sn, an)
sn+1∈ Π, where sn+1 = δ*(p, an).

Recall from the convention in Section 2 that an input a∈Σ
is a tuple of circuit inputs I={i1,…,ih}, represented as an
assignment of 0s and 1s to i1,…,ih; and an input ak∈Σ at
time k is represented as an assignment to the inputs at time
k, which are denoted by Xk(i1),…,Xk(ih). Similarly, a state
s∈S at time 0 is represented as an assignment to latches
L={l1,…,le}, and a state sk∈S at time k is represented by an
assignment to variables Xk(l1),…, Xk(le).

Definition: The assignment σ corresponding to path p:
(s0,a0) … (sn-1,an-1) sn in an FSM M=(S, L, Σ, I, Γ,
O, δ, λ) is an assignment of 1 or 0 to variables Xk(im) and
Xr(lq), such that σ(Xk(im)) is the value of input im∈I in ak
and σ(Xr(lq)) is the value of latch lq∈L in sr (k=0,…,n-1;
r=0,…,n).

We need assignments to define whether a path satisfies a
sequential property (defined below); the latter may refer to
input and latch values at a number of time stages. For
example, the transition (s,a) s' where s = (l1=0, l2=1), a is
an input (vector) i1=1, and s' = (l1=1, l2=1), defines the
assignment σ={l1=0, l2=1, i1=1, X(l1)=1, X(l2)=1}. This
transition satisfies property l2=X(l2), for example.

Definition: Let M =(S, L,Σ, I, Γ,O, δ, λ) be an FSM.
• A property P on M is a formula written using Boolean

variables in I and L, the operator X, and Boolean
connectives (& (and), + (or), ! (not), etc).

• P is a combinational property if it does not contain
occurrences of X; else it is sequential. P is an input
property if it does not contains variables in L.

• A path p: (s0,a0) … (sk-1,ak-1) sk in M satisfies P
if for any tail pj: (sj,aj) … sk of p and the
corresponding assignment σpj of pj, the substitution
instance σpj(P) of P is satisfyable. In this case we say
that the path p is admissible for P in M, or simply, that
path p is P-admissible in M.

• A property P on M induces a conditional FSM
MP=(S,ΣP,Γ,δ, λ, Π) as follows:
• The set of admissible paths Π of Mp coincides

with the set of P-admissible paths of M.
• ΣP ⊆ Σ is the set of all inputs in M that participate

in at least one admissible path in MP.

For example, the sequential property expressing that the
next value of an input i is its negation, is written as X(i) =
!i. To see whether a path p satisfies it, we need to check
each sub-path of p of length 2, which is equivalent to
checking validity of the property on each tail of p. Note
that the state sets of M and MP are the same – a property
may rule out paths but not states, as an FSM can power up
at any state of M. Power-up states may become “isolated”
in MP because of the constraints on transitions.

Definition: Let M =(S, Σ, Γ, δ, λ) be an FSM. An FSM
M'=(S', Σ', Γ', δ', λ') is called a sub-FSM of M if S'⊆
S, Σ'⊆ Σ, Γ'⊆ Γ, and δ' and λ' are restrictions of δ and λ on
S' × Σ'.

Theorem: Let M=(S, Σ, Γ, δ, λ) be an FSM and let P be a
(satisfyable) combinational input property on M. Then
there is a sub-FSM M' of M whose set of all paths coincides
with the set of admissible paths of the conditional FSM MP
induced by M and P.
Proof: Let Σ'⊆ Σ be the set of all inputs satisfying P. Let
M'=(S, Σ', Γ, δ', λ') be a sub-FSM of M. Then (s,a') s' in
M' iff (s,a') s' is P-admissible in MP. Thus the set of all
paths of M' coincides with the set of P-admissible paths of
MP (since for a combinational input property P, P-
admissibility of a path is determined by P-admissibility of
its one-step transitions).

Property Convention: We restrict ourselves to verification
properties P on an FSM M such that the induced
conditional FSM MP can be associated with a sub-FSM of
M whose set of paths coincides with the admissible paths of
MP. We call such properties stable.

Stable properties exist by the above theorem. An example
of a stable sequential property is i=X(i), on an input
variable i∈I of a FSM M. Such a property causes “case
splitting” on M, since i is either always 1 or always 0.

5. Decomposition and Compositionality

In this section, we establish our compositionality results.
We start by defining our divide and conquer framework.
Without loss of generality, we assume all subcircuits are
sequential.

Definition (stable decomposition): Assume a circuit C is
given together with a set of cut-points (including the
outputs), and a set VP of verification properties, such that C
can be partitioned into subcircuits Ai as follows:
1. For every cut-point there is exactly one subcircuit in C.

And every subcircuit corresponds to one or more cut-
points, which are the outputs of that subcircuit.

2. The subcircuits are non-overlapping, and expand
maximally from the subcircuit outputs to the nearest
cut points or primary inputs.

3. There is at most one property Pi∈VP on the inputs of a
subcircuit Ai. The variables in Pi may be primary
inputs. Else all of them are output nodes of another
subcircuit, Aj, called a supporting subcircuit for Ai.

Then we call such a decomposition of C stable if every Pi is
stable on (the FSM corresponding to) Ai; and Pi is valid at
all ws-states of the relevant supporting subcircuit Aj, under
the input constraint on Aj (if any).

The concept of stable decomposition can be relaxed by
allowing more than one supporting subcircuits for any
subcircuit; by allowing overlaps between the subcircuits
under certain conditions, etc. This is necessary for the
applicability of the framework in the practice.

Given a stable decomposition of a circuit C into subcircuits,
by compositionality of synchronization we mean that
synchronization of the subcircuits implies that of C;
compositionality of weak synchronization and initialization
are defined similarly.

It is clear from discussions in [SPAB01] that weak
synchronization, synchronization, and initialization are not
compositional. To demonstrate this, we build a non-
weakly-synchronizable circuit and partition it into two
initializable subcircuits. A simple FSM with two disjoint
SCCs and two outputs l1 and l2 is given on Figure 3. Its

corresponding circuit is not weakly synchronizable but can
be split into initializable subcircuits, as shown.

l1

l2 (0,1)

(1,0)

(0,0)

(1,1)

l1 l2 l2 l1

The slices

Figure 3

When we speak about a decomposition of two circuits C1
and C2 into subcircuits, we assume that for every cut point
in C1 there is at least one corresponding, also called
mapped, cut point in C2, and vice versa.

Definition: Suppose we are given a stable decomposition
of C1 and C2 into subcircuits.
• By compositionality of alignability we mean that

alignability of corresponding subcircuit pairs implies
alignability of C1 and C2.

• By weak compositionality of alignability we mean that
alignability of corresponding subcircuit pairs implies
that of C1 and C2 under the assumption that C1 and C2
are weakly synchronizable.

To see that alignability is not compositional [SPAB01],
assume C1 = C2 and let they coincide with the circuit in
Figure 3. Then the subcircuits corresponding to l1 and l2 in
C1 and C2 are alignable, while the circuits are not: for
example, states (0,1) of C1 and (1,1) of C2 are not alignable.
Therefore, C1 and C2 are not alignable.

Definition: States s1 and s2 of C1 and C2 are consistent with
respect to a given stable decomposition of C1 and C2 if any
corresponding subcircuit pair (A1,A2) in C1 and C2 is in an
equivalent ws-state (s'1,s'2) (verification properties are used
as constraints when computing the ws-states).

We will show that, for a stable decomposition of C1 and C2,
consistency is a transition invariant implying state
equivalence, and that consistent states exist if the
subcircuits are alignable (that is, the consistency relation is
a non-empty bisimulation [Par81] on the states of C1 and
C2). Note that under the stability and consistency
assumptions, inputs received by any subcircuit satisfy the
input property on that subcircuit, thus any subcircuit
behaves as the sub-FSM induced by the subcircuit FSM and
the property on it. Therefore, in the proofs below, we will
use term “constrained subcircuit” to refer to the constrained
behavior of the subcircuit. Note also that the alignability
theory is sound for constrained subcircuits since they are
(sub) FSMs, thanks to the property convention.

Lemma 1: Assume we are given a stable decomposition of
C1 and C2 such that the corresponding constrained
subcircuits are alignable. Then the set of consistent states of
C1 and C2 is non-empty and is closed under state transition.
Proof: We build consistent states s1

* and s2
* as follows:

Assign such values to the latches in C1 and C2 that all
corresponding constrained subcircuits will be set into
equivalent ws-states. This is possible by the assumption
that subcircuits are non-overlapping, and corresponding
constrained subcircuits in C1 and C2 are alignable. The
properties on subcircuit outputs are valid by the stability
assumption. Now let s1' and s2' be any consistent states of
C1 and C2, and let a be an input vector. Since
corresponding subcircuits are in equivalent (ws-) states,
their corresponding outputs have equal values (these
outputs are mapped). Thus all subcircuits receive equal
values at mapped inputs. Therefore, all corresponding
subcircuits will remain in equivalent (ws-) states at the next
time phase, and the properties on subcircuit outputs will
remain valid. Thus, the states C1(s1',a) and C2(s2',a) remain
consistent.

Lemma 2: Let s1 and s2 be states consistent with respect to
a stable decomposition of C1 and C2. Then s1 ≃ s2.
Proof: By Lemma 1, s'1 = C1(s1,π) and s'2= C(s1,π) are
consistent for any π. And the outputs of corresponding
subcircuits, and in particular the outputs of C1 and C2, have
the same values in s'1 and s'2. Hence s1 ≃ s2.

Theorem: Alignability is weakly compositional.
Proof: Assume we are given a stable decomposition of C1
and C2, and let corresponding constrained subcircuits be
alignable. Let π be a ws-sequence for both C1 and C2. Let
s1

* and s2
* be consistent states of C1 and C2, constructed as

in the Lemma 1, and let s1=C1(s1
*,π) and s2= C(s1

*,π). By
Lemma 1, s1 and s2 are consistent, and by Lemma 2, s1 ≃ s2.
Hence, by the Alignment Theorem, C1≃alnC2.

6. Experimental data

We have verified a large number of Intel designs using this
verification framework, which is implemented in our
sequential equivalence verification tool – Seqver. Hundreds
of bugs were found, ranged from missing invertors to
wrong coding, before a reboot sequence was provided by
the designers. The two tables below contain data on the size
of 3 verified circuits, as well as average size of the
subcircuits. In some cases, subcircuits have substantial
overlap (including common latches). The reported run
times were measured on a 2.4GHz Linux machine with
2GB memory. We use SAT-based algorithms similar to
those reported in [RH02, KH03, KRSH04] in the
alignability and 3-valued safe replaceability checks. We do
not have a safe replaceability verification algorithm in
Seqver, and cannot report corresponding experimental data.

On design M3, 129 subcircuits (with 1981 verification
pairs) needed verification properties to pass alignability
verification of decomposed spec / imp circuits; only 101
remaining pairs (which form two subcircuits) are 3-valued
safe replaceable. On another spec / imp pair M2, 2 chunks
(16 verification pairs) needed verification properties to
prove alignability, and 2666 pairs could be verified without
any properties (both using alignability and 3-valued safe
replaceability notions). On yet another spec / imp pair M1,
207 chunks (1318 verification pairs) needed verification
properties, and 1046 remaining pairs can be verified
without using properties. All verification properties were
found manually. Often same verification properties were
used for several subcircuits.

Model Gates Latches Outs Inps Cpu(sec)

M1 362604 12693 389 397 4700

M2 423070 23913 349 302 5722

M3 157110 22080 572 578 2478

Model SubCkts Avrg Inps Avrg Gates Avrg Latches

M1 524 650 11171 804

M2 402 102 824 33

M3 134 233 2874 187

7. Conclusions

We have developed a divide and conquer framework for
verifying alignability equivalence of large circuits by
dividing them into smaller subcircuits and verifying each
subcircuit separately using properties (constraints) that
abstract behavior of the subcircuit environment. And we
have proven a suitable compositionality result allowing
inferring alignability of the circuits from alignability of the
constrained subcircuits. To enable this, we have extended
the classical alignability theory in the presence of design
constraints.

Note that our compositionality result ensures that, under the
condition that the specification and implementation circuits
are weakly synchronizable, there is no need to worry about
cyclic dependences in the assume-guarantee reasoning
[Pnu85, CGP99] – it is enough we prove output properties
on subcircuits by using their input properties. Note also that
weak synchronization is a reasonable requirement from any
reboot sequence, as otherwise the post-reboot behavior of
the circuit will not be deterministic – it will depend on the
specific (random) power-up state.

Acknowledgements: We thank S. Goldenberg and A. Jas,
who were the first to encounter the inconsistency of

alignability verification in Seqver, in the presence of design
constraints. And we thank the referees for constructive
feedback.

References

[BCC99] Biere, A., A. Cimatti, and E. Clarke, Symbolic model
checking without BDDs, Tools and Algorithms for the
Construction and Analysis of Systems, 1999.

[Bry86] Bryant R.E., Graph-based algorithms for Boolean
function manipulation, IEEE Trans. Computers, C-35(8), 1986.

[CA89] Cheng K.-T. and D. Agrawal, State assignment for
initializable synthesis, ICCAD’89, 1989.

[CGP99] Clarke E.M., O. Grumberg, D.A. Peled, Model
Checking, MIT Press, 1999.

 [DLL62] Davis, M., G. Logemann and D. Loveland, A machine
program for theorem-proving, Communications of ACM 5(7),
1962.

[HS98] Hachtel G.D. and F. Somenzi, Logic Synthesis and
Verification Algorithms, Kluwer Academic Publishers, 1998.

[HCC01] Huang, S.-Y., K.-T., Cheng, and K.-C. Chen, Verifying
sequential equivalence using ATPG techniques, ACM Trans. on
Design Automation of Electronic Systems, 2001.

[KRSH04] Kaiss, D., A. Rosenmann, M. Skaba and Z. Hanna, A
formal method and apparatus for an automatic synchronization of
finite state machines for sequential verification of chip design, US
Patent application, 2004.

[KH03] Khasidashvili, Z., Z. Hanna, SAT-Based methods for
sequential hardware equivalence verification without
synchronization, BMC’03, ENTCS 89 (4), 2003.

[Koh78] Kohavi, Z., Switching and Finite Automata Theory,
McGraw-Hill, 1978.

[Par81] Park, D. Concurrency and automata on infinite sequences,
5th GI-Conference on Theoretical Computer Science, Springer
LNCS, vol. 104, 1981.

[Pix92] Pixley, C., A theory and implementation of sequential
hardware equivalence, IEEE transactions on CAD, 1992.

[Pnu85] Pnueli, A., In transition from global to modular temporal
reasoning about programs, In: Logics and Models of Concurrent
Systems, Springer LNCS, vol. F-13 of NATO ASI series, 1985.

[PR96] Pomeranz, I. and S.M. Reddy, On removing redundancies
from synchronous sequential circuits with synchronizing
sequences, IEEE Trans. Computers, 1996.

[RH02] Rosenmann, A. and Z. Hanna, Alignability equivalence of
synchronous sequential circuits, HLDVT'02, 2002.

[SPAB01] Singhal, V., C. Pixley, A. Aziz, and R.K. Brayton,
Theory of Safe replacement for sequential circuits, IEEE Trans.
on CAD of integrated circuits and systems, vol. 20, n.2, 2001.

