
Timing Macro-modeling of IP Blocks with Crosstalk∗

Ruiming Chen and Hai Zhou
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

Abstract

With the increase of design complexities and the decrease of
minimal feature sizes, IP reuse is becoming a common prac-
tice while crosstalk is becoming a critical issue that must be
considered. This paper presents two macro-models for spec-
ifying the timing behaviors of combinational hard IP blocks
with crosstalk effects. The gray-box model keeps a coupling
graph and lists the conditions on relative input arrival time
combinations for couplings not to take effect. The black-box
model stores the output response windows for a basic set of
relative input arrival time combinations, and computes the
output arrival time for any given input arrival time combi-
nation through the union of some combinations in the basic
set. Both macro-models are conservative, and can greatly re-
duce the pessimism existing in the conventional “pin-to-pin”
model. This is the first work to deal with timing macro-
modeling of combinational hard IP blocks with the consider-
ation of crosstalk effects.

1 Introduction

With the progress of deep sub-micron technologies, shrink-
ing geometries have led to a reduction in self-capacitance of
wires. Meanwhile coupling capacitances have increased as
wires have a larger aspect ratio and are brought closer to-
gether. For present day processes, the coupling capacitance
can be as large as the sum of the area capacitance and the
fringing capacitance, and the trends indicate that the role of
coupling capacitance will be even more dominant in the future
as feature sizes shrink. This makes crosstalk a major prob-
lem in IC design. Crosstalk introduces noise between adjacent
wires, and even alters the functions of circuits. If an aggressor
and a victim switch simultaneously on the same direction, the
victim will speed up. Likewise, if an aggressor and a victim
switch on the opposite directions, the victim will slow down.

With the growing complexity of VLSI systems, the intel-
lectual property (IP) reuse is becoming a common practice.
There are previous researches dealing with the timing macro-
modeling of IP blocks, and all of them are based on the con-
cept of path delay [1, 2, 3, 4, 5, 6]. The simplest of such
models is the “pin-to-pin” delay model used to characterize
standard cells and other complex combinational circuits. For
example, given a simple combinational circuit shown in Fig-
ure 1(a), its “pin-to-pin” delay model is shown in Figure 1(b).
The numbers shown on each arc give the minimal and maxi-
mal delays from one pin to another. In this case, if a(x) and
A(x) are used to represent the earliest and latest arrival time
of signal x, respectively, we have

a(x) = a(a) + 3; A(x) = A(a) + 5;

a(y) = min(a(b)+2, a(c)+3); A(y) = max(A(b)+4, A(c)+4).

To model a sequential circuit with memory elements, the “pin-
to-pin” model is extended to include timing constraints from a
clock pin to an input pin (to model setup and hold conditions)
and delay arcs from a clock pin to an output pin (to model the
latch output to circuit output delay) [1]. Functionality may
also be used to reduce the pessimism in these models [5, 6].

∗This work was supported by NSF under CCR-0238484.

a

b

c

a

b

c

x

y

x

y

x

y

a

b

c

(3,5)

(2,4)

(3,4)
(a) (b) (c)

Figure 1: (a) A simple circuit; (b) Its “pin-to-pin” macro-
model; (c) Coupling destroys path delay concept.

Unfortunately, coupling totally destroys the path delay
concept. For example, as shown in Figure 1(c), if the wires
x and y are coupled to each other, the arrival time on x and
y cannot be decided through paths from the inputs. Instead,
the relative switching time of a, b, c is important in deciding
the arrival time on x and y. Suppose when

a(a) = A(a) = 0, a(b) = A(b) = 1, a(c) = A(c) = 0,

we have the maximal delay variation on the coupled signals x
and y such that

(a(x), A(x)) = (2, 10), (a(y), A(y)) = (1, 11).

Then for any t such that

a(a) = A(a) = t, a(b) = A(b) = t + 1, a(c) = A(c) = t,

the delay variation will also be maximal and we have

(a(x), A(x)) = (t + 2, t + 10), (a(y), A(y)) = (t + 1, t + 11).

This means that the delays between pins are influenced by
the relative arrival time of inputs. So the conventional “pin-
to-pin” macro-model for IP blocks is pessimistic.

Many researches have been done on timing analysis or
modeling considering crosstalk [7, 8, 9, 10, 11, 12, 13, 14, 15,
16]. Most of them consider how to compute the delays of a set
of coupled nets given their input time, so the resulting delays
are accurate only for a specific input arrival time combination.
Sasaki et al. [17, 18] proposed relative window methods, and
Agarwal et al. [19] proposed an analytical method, to depict
the delay change curves for noise-aware static timing analysis
(STA). However, they can only handle the simple cases with
one victim and multiple aggressors.

So when considering crosstalk effects, all the current macro-
modeling methods cannot generate an accurate model for a
complex IP block. We propose two input-dependent models
for specifying the timing behaviors of complex IP blocks. To
the best of our knowledge, it is the first work dealing with
timing characterization of IP blocks with crosstalk effects.

The rest of the paper is organized as follows. Section 2
shows the requirements of a viable macro-model. Section 3
presents the extraction and application of SIMPMODEL. This
fast gray-box macro-model computes and utilizes the condi-
tions on the relative input arrival time combinations for cou-
plings not to take effect. Section 4 present the extraction
and application of UNIONMODEL. This accurate black-box
model stores the output response windows for a basic set of
relative input arrival time combinations, and computes the

output arrival time for any given input arrival time com-
bination through the union of some stored output response
combinations. Section 5 reports the experimental results on
the proposed macro-models and their comparison with “pin-
to-pin” model and STA results. Finally, the conclusion and
future work are discussed in Section 6.

2 Macro-model requirements

A viable timing macro-model of combinational hard IP block
should satisfy the following requirements:

• Hiding of implementation details. It is a requirement
for protecting intellectual property.

• Model accuracy. Given an input arrival time combi-
nation, the arrival time window of any primary output
generated by the timing macro-model should be as close
as possible to the corresponding actual output arrival
time window.

• Conservative modeling. Given an input arrival time
combination, the actual time window of any primary
output should be in the range of the corresponding out-
put time window generated by the timing macro-model.

When crosstalk effects are considered, the delay between
pins depends not only on the structural detail of IP blocks,
but also on the relative arrival time of primary inputs, or
input patterns.

Definition 1 (input/output pattern) An input/output
pattern of an IP block is an arrival time window vector where
each element is an arrival time window on one primary in-
put/output of the IP block.

So an input-dependent model may greatly improve the accu-
racy. As is said before, when considering crosstalk effects,
all the current macro-modeling methods cannot generate an
accurate model for a complex IP block. We introduce two
input-dependent macro-models that satisfy all the require-
ments.

3 SIMPMODEL

3.1 Delay model

The conventional “pin-to-pin” model assumed that the cou-
pling effects were always active, which led to a very pessimistic
estimation. In order to get a more accurate model, we com-
pute and utilize the conditions under which the couplings do
not take effect.

Hassoun [20] presented a dynamically bounded delay model
to represent the delay of a net. We use a modified dynami-
cally bounded delay model. A directed graph G = (V, E, C)
represents the IP block. Each vertex in V represents a pri-
mary input, a primary output, a gate, or a net. A connection
connecting inputs, outputs, gates or nets is represented by
one edge in E. Let set Cv be the set of aggressor nodes con-
nected via a coupling capacitor to victim node v, Wv be the
timing window of node v, and

C = ∪v∈V {Cv}

Each node v has a dynamically bounded delay model con-
sisting of a fixed delay range [δv, ∆v], and, for each coupling
capacitor attached to v from an aggressor node a, a predi-
cate γv,a indicating whether the coupling takes effect. If the
coupling does not take effect, the minimal delay should be
increased by δv,a, and the maximal delay should be decreased
by ∆v,a. So the minimal delay of node v is

δv +
∑

a∈Cv

γv,aδv,a,

and the maximal delay of node v is

∆v −
∑

a∈Cv

γv,a∆v,a,

where γv,a is defined as

γv,a =
{

0 if Wv overlaps with Wa,
1 otherwise.

3.2 SIMPMODEL details

First, the SIMPMODEL reduces the original complex directed
acyclic graph (DAG) G to a DAG called coupling graph that
contains only the input pins, the output pins, and the nodes
with coupling. Each edge in this coupling graph represents
that the end node is reachable from the start node through a
path without extra coupling nodes, and the weights of each
edge represent the minimal and the maximal delays from the
start node to the end node. This task can be accurately done
by any conventional STA.

The remaining task is to determine the value of γv,a. When
considering crosstalk effects, the determination of γv,a be-
comes a chicken-and-egg problem, and the conventional way
is to use iteration methods. With the coupling graph, the
macro-model users can use STA tools to get the output pat-
tern directly. Since the coupling relations are often complex,
this kind of macro-model leaves much work to users. Instead,
we design a fast conservative approximation method to deter-
mine the value of γv,a.

It is obvious that the value of γv,a is determined by the
relations among the time windows of primary inputs that can
reach v or a. Let set Iv be the set of primary inputs that can
reach node v, vi be the ith input that can reach node v, bvi

and wvi be the minimal and maximal delays from input vi to
v respectively, [xvi , yvi] is the arrival time window of input
vi. Then we have these two rules:

min
vi∈Iv

(xvi + bvi) > max
aj∈Ia

(yaj + waj) ⇒ γv,a = 1,

and

max
vi∈Iv

(yvi + wvi) < min
aj∈Ia

(xaj + baj) ⇒ γv,a = 1.

After getting the coupling graph, SIMPMODEL assumes
that γv,a = 0 for all the coupling nodes. Then do a PERT
traversal on the coupling graph to calculate the minimal and
maximal delays from each primary input to each node, and
put the results into a list L. Till now, a model composed by
a coupling graph and a result list is extracted successfully.

Then during the model application, once the input pattern
is given, we can check the two rules to determine the value
of each γv,a according to the information in the list L. Once
the delay of each node is determined, we traverse the coupling
graph to get the desired output pattern.

We assume that γv,a = 0 for all the coupling nodes, so
after checking these two rules, if γv,a = 0 for a pair of coupling
nodes v and a, it maybe equal to 1 in reality, but if γv,a = 1
for a pair of coupling nodes v and a, it must be 1 in reality, so
SIMPMODEL always achieves a conservative output pattern
for a given input pattern.

4 UNIONMODEL

SIMPMODEL shows a method to fast estimate the output
pattern, while its accuracy is sacrificed to get a high speed,
and SIMPMODEL is a gray-box model, that is, it unveils
part of the implementation details of IP blocks. However,
the accuracy of the model and the hiding of implementation

details are strongly required in many situations. The fol-
lowing UNIONMODEL satisfies these two requirements, that
is, UNIONMODEL is an accurate black-box timing macro-
model.

Let Ai represent the time window of pattern A correspond-
ing to pin i. First, we introduce some definitions.

Definition 2 (adjacent windows) If two windows a and b
overlap with each other at only one common point, then a and
b are adjacent, denoted as a � b.

Definition 3 (combinable input patterns) If the windows
corresponding to the same pin in two patterns A and B are
adjacent, and the other pairs of windows corresponding to the
same pins are the same respectively, then A and B are com-
binable, denoted as A ' B

Definition 4 (subwindow) If window a is contained in win-
dow b, then a is a subwindow of b, denoted as a ⊆ b.

Definition 5 (subpattern) Let A and B be two patterns.
If for any i, Ai ⊆ Bi, then A is a subpattern of B, denoted
as A ⊆ B.

Definition 6 (overlapped patterns) If each window in pat-
tern A overlaps with the corresponding window in pattern B,
then A and B are overlapped patterns, denoted as A∩B 6= φ.

Definition 7 (union of patterns) The union of two over-
lapped patterns A and B, denoted as A∪B, is a pattern where
each window is the union of the two corresponding windows
in A and B.

For example, in Figure 2, time windows a, b, c, d are [0, 10],
[10, 20], [0, 10] and [10, 20], respectively. Input patterns A{a, c}
and B{b, c} are combinable input patterns that can be united
into an input pattern {[0, 20], c}. But input pattern {a, c}
and {b, d} are not combinable, because a and b are adjacent,
and c and d are adjacent but not the same.

0 20a b

c d 200

Input 1:

Input 2:

10

10

Figure 2: An example of input patterns.

It is obvious that combinable input patterns are also over-
lapped patterns. Combinable input patterns have another
important property:

Lemma 1 Suppose A and B are input patterns for an IP
block, if A ' B, let input pattern X = A∪B, then the output
pattern for X is the union of the output patterns for A or B.

For example, in Figure 2, the output window for input
pattern {[0,20],[0,10]} is the same with the union of output
patterns for input patterns {[0,10],[0,10]} and {[10,20],[0,10]}.
UNIONMODEL uses this property to model the timing be-
havior of combinational IP blocks.

4.1 Model extraction

First, a wide range input pattern P is generated. Since se-
quential circuits dominate the reality, and combinational parts
are embedded in sequential circuits, the arrival time of pri-
mary inputs of a combinational circuit is between 0 and T ,
where T is the clock period of the sequential circuit. We can
make a reasonable assumption that T is upper-bounded by a
value denoted as Tmax, then we choose the arrival time win-
dow [0, Tmax] as Pi, i = 1, . . . , n, where n is the number of
primary inputs.

Then, each window in P is evenly partitioned into k parts,
where k is a positive integer. For each primary input, we pick
one part from the corresponding k parts as an input window in
the resulting small range input pattern, then we can construct
kn distinct input patterns, called basic patterns.

Performing STA or simulations on the IP block, we can
get the output pattern for each basic pattern. The results
are put into a table T : each entry corresponds to one basic
pattern and its output pattern. This table T provides all the
required information for UNIONMODEL application.

4.2 Model application

Given any input pattern I, the windows in I are shifted the
same distance to make I a subpattern of P. If failed, then
this case cannot use UNIONMODEL, and the “pin-to-pin”
model will be used. If succeeded, the output pattern can be
easily calculated by union operations on output patterns in
the table.

First, based on Lemma 1, if we can construct an input pat-
tern P satisfying I ⊆ P by union operations on basic patterns
in the table T , then the output pattern constructed by uniting
all the output patterns of these basic patterns is a conserva-
tive approximation of the output pattern of I. We designed a
procedure called Pattern-Construction that can complete this
construction successfully, which is shown in Figure 3. The
subroutine Extr-CmbPattern(S, i, A, B) searches for a pair of
combinable patterns A and B satisfying Ai �Bi in pattern set
S. If this search succeeds, A and B are removed from S and
true is returned. Procedure Pattern-Construction searches
and puts all the basic patterns overlapping with I into pat-
tern set S, then for each primary input i, it unites all the
combinable patterns found by Extr-CmbPattern. After the
ith outer loop, the following condition is satisfied:

∀P ∈ S : Ii ⊆ Pi.

Thus, at the end of this procedure, S contains only one pat-
tern, and I is the subpattern of this pattern.

Algorithm Pattern-Construction

Notations:
T: a table storing all the basic patterns
I: a given input pattern
n: the number of windows in I

Procedure:
S = {P : (P ∈ T) ∧ (P ∩ I 6= Φ)}
for i = 1 to n

while(Extr-CmbPattern(S, i, A, B)=true)
put X = A ∪B into S;

return S

Figure 3: Input pattern construction.

For example, in Figure 2, suppose the input pattern is

I{[2, 19], [3, 18]}.

Initially, S contains patterns A{a, c}, B{a, d}, C{b, c} and
D{b, d}, then in the first outer iteration, i = 1, we first unite
A and C to get pattern E{[0, 20], [0, 10]}, then unite B and D
to get pattern F{[0, 20], [10, 20]}, so before the second outer
iteration, S contains E and F , and I1 is a subwindow of E1

and F1. Then in the second outer iteration, i = 2, we unite
E and F to get a pattern X{[0, 20], [0, 20]}. Obviously I is a

subpattern of X. From this procedure, we can see that the
resulting input pattern is the same with the union of all the
basic patterns overlapping with I. So based on Lemma 1, we
have the following theorem:

Theorem 1 The output pattern for an input pattern I can
be conservatively calculated by uniting the output patterns for
basic patterns that overlap with I.

Thus, it is not required to do the expensive input pattern
unions. Instead, we search for all the basic patterns overlap-
ping with I, then look up the table T to find and unite all
the output patterns corresponding to these basic patterns to
get the desired output pattern directly. And during this union
step, we do not need to search for the combinable patterns and
unite them pair by pair. Instead, for each primary output, we
can simply select a window composed by the earliest and the
latest arrival time among the corresponding windows of these
output patterns as the corresponding output window of the
desired output pattern. Based on this union procedure, we
know that UNIONMODEL achieves the conservative output
pattern for any given input pattern.

Because of the large number of table entries, the most
expensive step is to search for the basic patterns that overlap
with I in the table. We need to design a method to find them
efficiently. We label the primary inputs by 1 . . . n, and label
the k parts in each window of P by 1 . . . k in the increasing
order of the earliest arrival time. Then each basic pattern can
be represented by a distinct key with radix k: (an . . . a1)k,
where 0 ≤ ai ≤ k − 1 for i = 1 . . . n, and the ith window of
this pattern is the (ai+1)th part in Pi. Then we put the input
patterns and their corresponding output patterns in a table
in the increasing order of keys. For a given input pattern I,
we can find the range of parts [ip, iq] in Pi overlapping with
Ii for i = 1 . . . n, then the keys of the basic patterns that
overlap with I are all the distinct keys satisfying ip ≤ ai ≤ iq
for i = 1 . . . n. Obviously this method can easily find the basic
patterns that overlap with I in the table.

An important contribution of UNIONMODEL is that it
provides a framework for timing macro-modeling of combi-
national hard IP blocks with the consideration of crosstalk
effects, that is, the obtainment of output patterns for basic
patterns is not restricted to STA. Instead, other timing anal-
ysis or simulation methods to calculate the output patterns
can be embedded into this macro-model. Also we can easily
incorporate functional information into this macro-model.

4.3 Speed-up techniques

The bottleneck of UNIONMODEL is the large number of ba-
sic patterns. However, from Section 1 we have known that if
input pattern A can be constructed by shifting input pattern
B, the output pattern of A can also be constructed by shifting
the output pattern for B. We call that A and B are relatively
the same. Obviously many basic patterns are relatively the
same. For example, in Figure 2, the corresponding windows
in input patterns {a,c} and {b,d} are shifted 10 unit time re-
spectively, so these two patterns are relatively the same. So
it is not necessary to perform timing analysis on all the ba-
sic patterns respectively. We only perform timing analysis on
the basic patterns that are not relatively the same with each
other. Our experiments show that this technique can reduce
the total number of basic patterns nearly half.

The number of basic patterns in UNIONMODEL is kn,
where k is the number of parts of an input window in P, and
n is the number of inputs. So it is very efficient to speed-
up the extraction of UNIONMODEL if we can reduce the
number of inputs. In reality, it is possible to partition the in-
put set into several disjoint sets such that the relative arrival

time of any two inputs in different sets has no influence on
the same coupling nodes. Then the number of basic patterns
in UNIONMODEL is

∑
1≤i≤u

kni , where u is the number

of disjoint sets, and ni is the number of inputs in the ith
disjoint set. This correlated input set partitioning technique
will divide a large size problem to many small size problems,
which will speed-up the overall running much. Our experi-
ments show that this method can reduce the number of basic
patterns greatly for some cases.

When the range of input windows in P is large, we need
to partition each input window in P into many parts to guar-
antee the accuracy, so the number of basic patterns increases
greatly. In order to avoid this problem, we randomly select
some input patterns, do STA or simulation to get the output
patterns, then we can find the range of input patterns where
delay changes frequently, so we can shrink the range of in-
put windows in P to this range, and for the input patterns
that cannot be shifted into P, we use conventional “pin-to-
pin” model. This range shrinking step can greatly reduce the
number of basic patterns, and benefit the model extraction
and application speed.

5 Experimental results

SIMPMODEL and UNIONMODEL have been implemented
in C++ and tested on ISCAS85 benchmark circuits. For each
circuit, we randomly designated the coupling between wires,
and input patterns are also randomly generated. All exper-
iments were run on a Linux PC with a 2.4G Hz Xeon CPU
and 2.0 GB memory.

To verify the results of our methods, we designed a STA
tool based on an iterative switch factor method that works
as follows. First, it uses the modified dynamically bounded
delay model to model the delay of coupling nodes, then itera-
tively does PERT-traversal on the graph representing circuit,
and after each iteration updates all the γv,a. It does not stop
until there is no change on all γv,a, and the output pattern
in last PERT-traversal is the desired. We also implemented
a “pin-to-pin” model for comparison, which assumed that all
couplings take effect. For each case, we compare the results
from our model applications with the results from the “pin-
to-pin” model. Suppose for the same primary input, {[d1, d2]}
is the output pattern from our models, {[a1, a2]} is the out-
put pattern from STA, then the error of our models for this
primary output is defined as

[(d2 − d1)− (a2 − a1)]/(a2 − a1).

The average error is the summation of the errors for all the
primary outputs divided by the number of primary outputs.
The maximal error is the maximum of the errors for the pri-
mary outputs.

A comparison of results among STA, SIMPMODEL and
“pin-to-pin” model is shown in Table 1, where ETime is the
time of model extraction, ATime is the time of model appli-
cation, MaxE is the maximal error, and AveE is the average
error. We can see that the results of SIMPMODEL are much
more accurate than the “pin-to-pin” model, and the running
time of the application of SIMPMODEL is always less than
1 second, much faster than STA in large cases. The errors
are always non-negative, which confirms that SIMPMODEL
is conservative.

Since UNIONMODEL can only deal with cases with a
small number of correlated primary inputs, for the cases with
a large number of correlated primary inputs, we designated
the arrival time windows of most primary inputs to be invalid
windows [∞,−∞] and modeled only the timing behavior of
the circuit stimulated by the remaining primary inputs that
are denoted by RPI in our test. We calculated the output

Table 1: Comparison results of STA, SIMPMODEL and “pin-to-pin” model
circuit STA SIMPMODEL “pin-to-pin” model

name #inputs #outputs #gates time(s) ETime(s) ATime(s) MaxE(%) AveE(%) MaxE(%) AveE(%)
c17 5 2 6 0.00 0.00 0.00 0.00 0.00 0.06 0.03
c432 36 7 160 0.04 0.23 0.05 69.21 11.18 72.23 12.29
c499 41 32 202 0.05 0.42 0.11 35.00 1.62 46.21 6.72
c880 60 26 383 0.22 1.33 0.39 1309.11 141.15 8848.00 629.36
c1355 41 32 546 0.29 1.02 0.21 20.97 3.02 26.10 6.43
c1908 33 25 880 0.68 1.39 0.07 28.60 1.82 32.73 10.67
c3540 50 22 1669 2.30 3.82 0.16 212.72 11.49 212.72 20.54
c5315 178 123 2307 4.71 9.76 0.13 168.08 1.68 12458.40 107.48
c6288 32 32 2416 5.08 6.38 0.12 0.00 0.00 8.01 0.87
c7552 207 108 3513 10.2 16.26 0.12 32.06 0.41 13073.70 122.99

Table 2: Comparison results of STA and UNIONMODEL
circuit STA UNIONMODEL

name RPI time # basic ETime ATime MaxE
(s) patterns (s) (s) (%)

c17 5 0.00 27,000 1.99 8.94 0.00
c432 5 0.03 3,200,000 2133.00 204.63 0.01
c499 5 0.06 1,048,576 1374.00 245.58 0.01
c1355 4 0.33 65,536 129.24 14.80 0.00
c5315 5 4.65 256 5.52 0.65 0.00

pattern for each basic pattern by STA. A comparison of the
results from UNIONMODEL with STA is shown in Table 2.
We can see that the results of UNIONMODEL are almost
the same with the results of STA, that is, UNIONMODEL
is an accurate model. From Table 2 we can also see that
although the numbers of RPI in c499 and c5315 are the same,
the number of basic patterns in c5315 is much less than in
c499, which is the effect of less number of correlated inputs in
c5315 than in c499. This confirms that our correlated input
set partition improves the model extraction and application
speed.

6 Conclusion and future work

We present two macro-models to characterize the timing be-
havior of combinational hard IP block with the consideration
of crosstalk effects. The first model, SIMPMODEL, keeps a
coupling graph and lists the conditions on input patterns for
couplings not to take effect. It can fast estimate the out-
put pattern for a given input pattern with the sacrifice of
accuracy. The second model, UNIONMODEL, performs STA
or simulations on basic input patterns, and based on these
results constructs the output pattern for a given input pat-
tern accurately. Both macro-models are conservative, and can
greatly reduce the pessimism existing in the traditional “pin-
to-pin” model. Since the number of basic patterns is large
when the size of correlated input set is large, the extraction
and application of UNIONMODEL become prohibitive. So
an important future task is to find a better way to reduce the
number of basic patterns. To the best of our knowledge, this
is the first work to deal with timing macro-modeling problem
with the consideration of crosstalk effects.

References

[1] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu. Au-
tomated timing model generation. In DAC, pages 146–151,
2002.

[2] C. W. Moon, H. Kriplani, and K. P. Belkhale. Timing model
extraction of hierarchical blocks by graph reduction. In DAC,
pages 152–157, 2002.

[3] M. Foltin, B. Foutz, and S. Tyler. Efficient stimulus inde-
pendent timing abstraction model based on a new concept of
circuit block transparency. In DAC, pages 158–163, 2002.

[4] S. V. Venkatesh, R. Palermo, M. Mortazavi, and K. Sakallah.
Timing abstraction of intellectual property blocks. In CICC,
pages 99–102, 1997.

[5] H. Yalcin, M. Mortazavi, R. Palermo, C. Bamji, and
K. Sakallah. Functional timing analysis for IP characteriza-
tion. In DAC, pages 731–736, 1999.

[6] H. Yalcin, R. Palermo, M. Mortazavi, C. Bamji, and
K. Sakallah. An advanced timing characterization method
using mode dependency. In DAC, pages 657–660, 2001.

[7] P. D. Gross, R. Arunachalam, K. Rajagopal, and L. T. Pileggi.
Determination of worst-case aggressor alighment for delay cal-
culation. In ICCAD, pages 212–219, San Jose, CA, November
1998.

[8] R. Arunachalam, K. Rajagopal, and L. T. Pilleggi. Taco: Tim-
ing analysis with coupling. In DAC, pages 266–269, Los An-
geles, CA, June 2000.

[9] S. S. Sapatnekar. A timing model incorporating the effect
of crosstalk on delay and its application to optimal channel
routing. IEEE TCAD, 2000.

[10] P. Chen, D. A. Kirkpatrick, and K. Keutzer. Switching window
computation for static timing analysis in presence of crosstalk
noise. In ICCAD, San Jose, CA, November 2000.

[11] T. Xiao, C.-W. Chang, and M. Marek-Sadowska. Efficient
static timing analysis in presence of crosstalk. In Proceedings
of 13th Annual IEEE International ASIC/SOC Conference,
pages 335–339, 2000.

[12] P. F. Tehrani, S. W. Chyou, and U. Ekambaram. Deep sub-
micron static timing analysis in presence of crosstalk. In In-
ternational Symposium on Quality Electronic Design, pages
505–512, 2000.

[13] T. Xiao and M. Marek-Sadowska. Functional correlation anal-
ysis in crosstalk induced critical paths identification. In DAC,
pages 653–656, 2001.

[14] H. Zhou, N. Shenoy, and W. Nicholls. Timing analysis with
crosstalk as fixpoints on a complete lattice. In DAC, pages
714–719, 2001.

[15] P. Chen, Y. Kukimoto, C.-C. Teng, and K. Keutzer. On
covergence of switching windows computation in presence of
crosstalk noise. In ISPD, pages 84–89, 2002.

[16] B. Thudi and D. Blaauw. Non-iterative switching window
computation for delay noise. In DAC, pages 390–395, 2003.

[17] Y. Sasaki and G. De Micheli. Crosstalk delay analysis using
relative window method. In ASIC/SoC Conference, 1999.

[18] Y. Sasaki and K. Yano. Multi-aggressor relative window
method for timing analysis including crosstalk delay degrada-
tion. In Custom Integrated Circuit Conference, pages 495–498,
2000.

[19] K. Agarwal, Y. Cao, T. Sato, D. Sylvester, and C. Hu. Efficient
generation of delay change curves for noise-aware static timing
analysis. In Proceedings of 15th International Conference on
VLSI Design, pages 77–84, 2002.

[20] S. Hassoun. Critical path analysis uing a dynamically bounded
delay model. In DAC, pages 260–265, Los Angeles, CA, June
2000.

