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Abstract
Improving logic capacity by time-sharing, dynamically reconfig-

urable FPGAs are employed to handle designs of high complexity and
functionality. In this paper, we model each task as a 3D-box and deal
with the temporal floorplanning/placement problem for dynamically re-
configurable FPGA architectures. We present a tree-based data struc-
ture, called T-trees, to represent the spatial and temporal relations among
tasks. Each node in a T-tree has at most three children which repre-
sent the dimensional relationship among tasks. For the T-tree, we de-
velop an efficient packing method and derive the condition to ensure the
satisfaction of precedence constraints which model the temporal order-
ing among tasks induced by the execution of dynamically reconfigurable
FPGAs. Experimental results show that our tree-based formulation can
achieve significantly better solution quality with less execution time than
the most recent state-of-the-art work.

1 Introduction
A Field Programmable Gate Array (FPGA) typically consists of regu-

lar identical reconfigurable cells (logic blocks) and interconnects around
these blocks. Traditionally, an FPGA can only implement circuits by
loading the serial configuration bit-streams into the chip at the starting
time, and the reconfiguration must be done in a whole. Recently, vari-
ous new architectures have been proposed by various vendors, such as
the Atmel AT40K series [4], the Xilinx XC6200 series [10] and the Xil-
inx Virtex II series [18]. These new-generation FPGAs are partitionable
and partially reconfigurable, allowing several tasks and circuits to share
the same physical locations at different times and part of the chip to be
reconfigured at run-time.
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Figure 1: (a) A running program. (b) A 3D-placement of the running program.

Due to the capability of partially reconfigurable of recent FPGAs,
studies have shown that an FPGA-based computation hardware system
can improve performance for many applications [9, 16]. A reconfig-
urable system usually consists a host processor and an FPGA coproces-
sor called reconfigurable function unit (RFU) [5]. During the execution
of a program, an RFU may have several configurations at different times.
Figure 1(a) shows a program code that can be mapped into four RFU
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operations (RFUOPs or modules). Each line represents one line of the
program code. Since the RFUOP must be placed on the RFU and has
its own execution time, we may denote each RFUOP as a 3D-box, with
its width and height (X and Y dimensions) representing the physical di-
mensions occupied by the RFUOP and its duration (Z dimension) being
the execution time required for the operation. Because of the area con-
straint, we may not load all RFUOPs at the same time. Thus, at time 2
of the example shown in Figure 1, RFUOP 3 is swapped out and RFUOP
4 is swapped in. The question of how to place these RFUOPs becomes
a 3D-placement problem. Each module is represented as a 3D-box with
the spatial dimensions X and Y and the temporal dimension T . There
exists temporal ordering constraints among tasks because one task’s in-
put may be another task’s output. The goal of temporal floorplanning is
to schedule all modules on an RFU so that the specified objective func-
tion (e.g., the product of chip area and execution time—the volume of
the 3D floorplan/placement) is optimized and no two modules violate the
temporal constraints.

One significant purpose of a temporal floorplanner is to be a sched-
uler. For some applications, the flow of the program has already been
known in advance (for example, in DSP applications). Thus, the sched-
uler can schedule all RFUOPs that must be executed on the RFU before
the program starts. Also, the scheduler can perform various optimiza-
tions on the configuration of the RFU, such as the minimization of the
reconfiguration overhead.
1.1 Previous Work

Teich et al. [15] first introduced a component graph to solve the
3D placement problem, assuming that there exists no temporal order-
ing among modules. However, in the real world, there exist temporal
relations among modules. Thus, Fekete et al. [7] extended their idea
and solved the 3D-placement problem with temporal precedence con-
straints by using the dependency graph. Bazargan et al. in their pioneer-
ing work [5] considered both the offline placement (3D template place-
ment) and the online placement problems. In the offline placement, they
modelled each RFUOP as a 3D box and fixed the width and height of the
RFU. They proposed a 3D floorplanner which implements four effective
methods, including one greedy method called KAMER-BF (Keep All
Maximal Empty Rectangles with Best Fit). In the online placement, they
allocated the free space of an RFU to an RFUOP dynamically based on
different greedy methods (e.g., the best-fit and first-fit heuristics). The
work [1] divided an RFU into several horizontal strips. This formula-
tion simplifies the traditional 2D placement problem as a 1D (linear)
placement problem, facilitating a faster placement and routing engine.
Recently, Yuh et al. [19] first proposed a graph-based topological repre-
sentation, called 3D-subTCG, to handle the temporal floorplanning prob-
lem. The 3D-subTCG uses three transitive closure graphs (one for each
dimension) to represent a 3D placement.
1.2 Our Contributions

In this paper, we propose the first tree-based formulation, called T-
trees, to model both the temporal and spatial relations among tasks
to solve the 3D-floorplanning/placement problem. Given a compacted
placement that cannot move toward the origin, we can construct its
corresponding ternary T-tree in linear time. In comparison with 3D-
subTCG [19] which is the fastest representation for the 3D floorplan-
ning/placement problem in the literature, T-trees have the following ad-
vantages:

• Since the operations on a 3D-subTCG are performed on edges,



its time complexity is O(n2), where n is the number of
nodes/modules. In contrast, the operations on a T-tree are per-
formed on nodes; therefore, the time complexity is only O(n).

• Based on the T-tree representation, we can derive a more efficient
packing method than that used by 3D-subTCG. T-trees show about
15X speedup over 3D-subTCG for packing 3D-ami49 (the largest
circuit used in [19]).

• There are only O(n! 33n

22nn1.5 ) combinations of a T-tree. Although
the authors of 3D-subTCG [19] do not derive its solution space,
we observe that a 3D-subTCG has O((n!)3) combinations.

To handle the precedence constraints among tasks, we derive an ef-
fective and efficient method to examine the feasibility of a T-tree. The
structure of T-tree presents a nice property that enables easy feasibility
detection; for example, if node nj is in the left subtree of node ni, task
vj must be executed after task vi. Based on this property, we can per-
form feasibility detection in O(h) time, where h is the height of a T-tree.
(Note that we treat the number of precedence constraints as a constant.)
If a T-tree results in an infeasible placement, the T-tree is re-constructed
to remove the violated conditions. To reduce the probability that a T-tree
results in an infeasible placement after an operation, we filter out a set of
operations that will definitely introduce precedence violations. We also
derive in this paper the solution space of T-tree and prove the reachability
of the solution space. The study provides a solid theoretical foundation
for the effectiveness and efficiency of the simulated annealing (SA) based
optimization process used in our temporal floorplanner. Experimental re-
sults show that our T-tree based SA scheme consistently obtains much
better results in shorter running time than the 3D-subTCG approach. For
a large circuit of 300 tasks and 120 precedence constraints, for example,
the T-tree based SA scheme obtains a solution of 13.7% deadspace in less
than 1.15 hours, while the 3D-subTCG method needs about 7.51 hours
and results in a solution of 34.2% deadspace.

In addition to the classical 3D-floorplanning problem that minimizes
the product of the area and execution time (i.e., the volume of the 3D
floorplan/placement), we also propose in this paper a novel T-tree based
SA mechanism to handle the fixed-outline floorplanning problem, for
which the area of a reconfigurable device is fixed.

The fixed-outline floorplanning problem was advocated by Kahng in
[12] to address modern floorplanning constraints. Adya and Markov in
[2] and [3] first proposed algorithms for the classical 2D fixed-outline
floorplanning problem. They added penalty to the cost function for the
modules that are placed out of the desired outline. In this paper, we
extend the idea to handle the fixed-outline temporal (3D) floorplanning
problem. For this problem, we propose a new objective function to guide
simulated annealing. Moreover, we bias the selection of operations per-
formed in each SA iteration to increase the probability of success of
satisfying the fixed outline constraint. Experimental results show that
our fixed-outline temporal floorplanner significantly improves the suc-
cess rate of fitting 3D-boxes into the fixed outline.

The remainder of this paper is organized as follows. Section 2 for-
mulates the temporal floorplanning problem. Section 3 introduces the
T-tree representation. Section 4 describes our temporal floorplanning al-
gorithm. In Section 5, we derive the solution space of T-tree and prove
the reachability of the solution space. Section 6 details our fixed-outline
floorplanning method. Section 7 reports the experimental results. Finally,
conclusions are given in Section 8.

2 Formulation
In the reconfigurable architecture, a task v is loaded into the device for

a period of time for execution. Therefore, each task can be represented as
a 3D module with spatial dimension X and Y and the temporal dimen-
sion T . Throughout this paper, we use task and module interchangeably.
Let V = {v1, v2, ..., vm} be a set of m tasks whose widths, heights,
and execution times are given by Wi, Hi, and Ti, 1 ≤ i ≤ m. We
use (xi, yi) ((x′

i, y
′
i)) to denote the coordinate of the bottom-left (top-

right) corner of a task vi, and ti (t′i) the starting (ending) time of task vi,
1 ≤ i ≤ m, scheduled in the reconfigurable device. These tasks often
need to be executed in a specific order because one task’s input could
be another task’s output. The temporal ordering among tasks is referred
to as the precedence constraint in the 3D floorplanning problem. Let
D = {(vi, vj)|1 ≤ i, j ≤ m, i �= j} denote the precedence constraint

for the tasks vi and vj (i.e., vi must be executed before vj). The prece-
dence constraints should not be violated during floorplanning/placement.

In order to measure the quality of a floorplan, we consider the same
objectives as those of [7] and [19], i.e., volume, wirelength, communica-
tion and reconfiguration overheads. The definitions of these four objec-
tive functions are given below:

• Volume (the minimum bounding box of a placement): In tem-
poral floorplanning, we need to consider the trade-off between the
area of a device and the total execution time. If we use a larger
device, the total execution time could be shortened. In contrast, it
takes longer if a smaller device is used. Therefore, we shall min-
imize the product of the area of the device and the total execution
time, i.e., the volume of a 3D floorplan/placement.

• Wirelength (the summation of half bounding box of inter-
connections): Due to the special architecture of the reconfig-
urable device, the method to estimate the wirelength in the tem-
poral floorplanning is different from the traditional floorplan-
ning/placement problem. Given a net, those nodes in the net may
be executed at the same time or at different times. If they are exe-
cuted at the same time, we can estimate the wirelength according
to their geometric distance directly. However, we have to project
all nodes onto the same time frame before computing their wire-
length if they are executed at different time frames.

• Communication overhead: We quantify the communication
overhead based on the Xilinx Virtex XCV1000-like architecture.
Similar to the work by Fekete et al. [7], we assume that a task
communicates with another task (data-dependence) in the follow-
ing way: the results of a CLB, which are read by the succeeding
task, are first written to external memory through a bus interface.
The dependent task, which has been loaded at the specified posi-
tion, then perform a read-in of the results. Recall that a frame is
the atomic unit that can be written to or read from. Each frame
contains 1248 bits and the bus width is of only 8 bit. Thus, it takes
approximately 1248/8 + 24 = 180 clock cycles in each read-
in or read-out, where the 24 cycles are used to configure the bus
interface as described on the Xilinx FPGA data book [17]. There-
fore, the communication overhead of each reconfiguration takes
360×f clock cycles (we should first write the data to the external
memory and then read back the data) if data in f columns need to
be transferred.

• Reconfiguration overhead: As described in [17], the Xilinx
Virtex-series FPGA is column-oriented (i.e., all bits in one col-
umn should be updated in each read-in or read-out). Suppose that
a task vi occupies Wi × Hi CLBs. We have to reconfigure Hi

columns of CLBs in each reconfiguration. As an example, each
CLB column in a Virtex FPGA consists of 48 frames, which takes
(1248/8) × 48 + 24 = 7512 clock cycles to configure one CLB
column. This means that we need 7512×Wi clock cycles in total
if the addresses in the column are incrementally updated.

In this paper, we treat a task vi as a 3D box. A placement P is an
assignment of (xi, yi, ti) for each vi, 1 ≤ i ≤ m, such that no two
boxes overlap and all precedence constraints are satisfied. The goal of
temporal floorplanning is to optimize a predefined cost metric (defined in
the above) induced by a placement.

3 The T-tree Representation
Chang et al. [6] first proposed a binary tree-based 2D floorplanning

representation, called B*-trees. Each node of the B*-tree has at most
two children that represent the dimensional relationship among modules.
T-trees are inspired by B*-trees, allowing each node with at most three
children that represent the dimensional relationship among modules, as
shown in Figure 2. The T-tree represents the geometric relationships
between two modules as follows. If node nj is the left child of node ni,
module vj must be placed adjacent to module vi on the T+ direction,
i.e., tj = ti + Ti. If node nk is the middle child of node ni, module vk

must be placed in the Y + direction of module vi, with the t-coordinate
of vk equal to that of vi, i.e., tk = ti and yk > yi. If node nl is the
right child of node ni, module vl must be placed on the X+ direction of
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Figure 2: The structure of a T-tree.
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Figure 3: A compacted placement and the corresponding T-tree

module vi, with the t- and y-coordinates equal to those of vi, i.e., tl = ti

and yl = yi.
Below we describe how to transform between a placement and its

corresponding T-tree.

3.1 From a Compacted Placement to its T-tree
Given a compacted placement, we can represent it by a unique T-

tree. A placement is said to be compacted if and only if no module can
be moved along its X−, Y − or T− directions while other modules are
fixed. The root of the tree corresponds to the task placed at the origin. We
construct a T-tree for a compacted placement in a DFS manner: Starting
from the root, we recursively construct the left subtree, then the middle
subtree, and finally the right subtree. Let Ri denote the set of tasks that
are adjacent to vi in the T+ direction . The left child of node ni cor-
responds to the lowest task of Ri in the X-Y plane. The middle child
of node ni corresponds to the first task in the Y + direction, with its t-
coordinate equal to that of ni. The right child of node ni represents the
first task in the X+ direction, with its y- and t-coordinates equal to those
of ni. A compacted placement can be transformed to its corresponding
T-tree in linear time.

We use the placement shown in Figure 3 to demonstrate how to con-
struct the corresponding T-tree. We choose na as the root of the T-tree
since task va is on the bottom-left corner of the placement. Since no task
is adjacent to va in the T+ direction, node na does not have any left
child. We then build the middle subtree of na. The middle child of na

is nb because task vb is adjacent to va in the Y + direction and tb = ta.
The left child of nb is nc because tc = tb + Tb, and the right child of nb

is nf because task vf is adjacent to vb in the X+ direction with tf = tb

and yf = yb. Similarly, we can construct the right subtree of na.
The above tree-construction method leads to the following theorem.
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Figure 4: The T-tree decomposition process

Theorem 1 There exists a unique correspondence between a compacted
placement and its induced T-tree.

3.2 From a T-tree to its Placement
Now we describe the packing method for a T-tree. The t-coordinate

of each module can easily be obtained by traversing the T-tree in the DFS
order. If node nj is the left child of node ni, tj = ti + Ti; otherwise,
tj = ti. Once the t-coordinates are fixed, we can utilize the existing tree
solutions in [8] and [6] to compute y coordinates. We first decompose
a T-tree into a set of binary trees. The T-tree decomposition process is
shown in Figure 4. Starting from the root, we traverse a T-tree in the
DFS order. When we encounter a node which has the right child, nb in
the example shown in Figure 4, we decompose the tree into two subtrees:
one is the right subtree of nb, and the other is the original tree without
the right subtree of nb. The same decomposition procedure is applied to
each subtree until a leaf node is encountered. For each binary tree, we
adopt the contour data structure presented in [8] and [6] to determine the
y-coordinate of each module. The contour structure is a doubly-linked
list of modules that records the contour line in current compaction. To
compute x coordinates, we maintain a list L to store all tasks whose t-
and y-coordinates are already determined. The x-coordinate of task vi

is equal to max{x′
k| the projections of vk and vi are overlapped on the

Y -T plane for k ∈ L}.
The time complexity of the T-tree packing method is O(n2), which is

bounded by the computation of x coordinates. Although the complexity
is the same as the 3D-subTCG [19], in practice, we observe about 15x
speedup over 3D-subTCG when packing 3D-ami49 (the largest circuit
used in [19]).

The 3D-subTCG representation uses three transitive closure graphs
(one for each dimension) to represent a placement. Given n nodes, a
3D-subTCG has n(n−1)

2
edges. Therefore, each transitive closure graph

has n(n−1)
6

edges on average. The time complexity for computing one
coordinate for each task is O(n2) by applying a well-known longest path
algorithm [14]. For the T-tree representation, the computation of t and y
coordinates takes only O(n) time. Therefore, based on the T-tree, we are
able to develop a more efficient packing method than the 3D-subTCG.
Consequently, we have the following theorem and property.

Theorem 2 Given a T-tree, there exists a feasible 3D placement corre-
sponding to the T-tree.

Property 1 If node nj is in the left subtree of node ni, task vj must be
executed after task vi.

4 Temporal Floorplanning Algorithm
Our floorplanning algorithm is based on the simulated annealing

method [13]. The cost function Φ used in the algorithm is given by

Φ = αV + βW + γO, (1)

where V stands for the volume of the placement, W is the total wire-
length, O is the reconfiguration and communication overheads, and α, β,
γ are user-specified constants. Given a T-tree (a feasible solution), we
perturb the T-tree to obtain another feasible T-tree by using the following
three operations:

• Move: move a task to another place.

• Swap: swap two tasks.

• Rotate: rotate a task.

Since the resulting T-tree after perturbation may violate the prece-
dence constraints, we need to perform feasibility checking on the result-
ing T-tree and re-construct the tree if any of the temporal constraints is
violated. Below we discuss the details of the three operations and feasi-
bility detection.
4.1 Move

The Move operation needs the Insertion and Deletion operations for
inserting and deleting a node to and from a T-tree.
Deletion

The target node for deletion could be as follows:

• Case 1: a leaf node,



• Case 2: a node with only one child, or

• Case 3: a node with two or three children.
For the first case, the target node is simply deleted. For Case 2, we

delete the target node and place its only child at the position of the deleted
node. This operation can be done in O(1) time. For Case 3, the target
node ni is deleted, and one of its children nc is moved to the original po-
sition of ni. Then we move one child of nc to the original position of nc.
This process proceeds until a leaf node is encountered. This operation
takes O(h) time, where h is height of the T-tree.
Insertion

When adding a task, we may place it around some tasks. There are
two types of positions that can be inserted, the internal position and the
external position. The internal position is a position between two nodes
in a T-tree while the external one is a position that is pointed by a NULL
pointer. A node can be inserted into one of these two positions.
4.2 Swap

For swapping two nodes in a T-tree, we simply exchange their parent
and child nodes.
4.3 Rotation

A module can only be rotated on the X-Y plane because the execution
time of a task is fixed. To perform the rotation operation, we simply
exchange the width and height of a node.
4.4 Feasibility Detection and Tree Re-construction

To maintain the temporal ordering among tasks, we need to guarantee
that a T-tree meets all the precedence constraints after each perturbation.
For the three operations mentioned above, Move and Swap might violate
the temporal constraints. Therefore, in this section, we describe how to
examine the feasibility of a T-tree and propose a procedure to re-construct
a T-tree to meet the precedence constraints.

From Property 1, we know that if node nj is in the left subtree of
ni, task vj must be executed after task vi. Therefore, to ensure all the
precedence constraints are not violated, a node nk must be placed in the
left subtree of np, where np has the latest ending time among the tasks
that must be executed before task vk. Therefore, the feasibility detection
can be summarized in the following theorem:

Theorem 3 Let Ik, 1 ≤ k ≤ n, denote the set of tasks that must be
executed before task vk. If node nk is in node np’s left subtree, where
t′p = max{t′i|vi ∈ Ik}, then vk is guaranteed to satisfy the precedence
constraint.

Once we identify a node that violates the precedence constraint, we
re-construct the T-tree to remove the violation conditions. Assume task
vi violates precedence constraints and vp is the task that has the latest
ending time in Ii. Let U = {all nodes in the left subtree of np} ∪ {np}.
In U , we look for a node nj that minimizes |tj − ti| with Ij = ∅. If
nj �= np, ni is swapped with nj ; otherwise, it means that nj = np or
Ij �= ∅ for every nj ∈ U . In this case, we make ni the left child of np.
The tree re-construction process is summarized in Figure 5:

To avoid infeasible T-trees that may trigger tree re-construction, we
design a mechanism to filter out the operations that will definitely cause
precedence violations. Consider the T-tree shown in Figure 6. Assume
vb must be executed before ve. Node ne can only be swapped with a
node in nb’s left subtree, or be inserted into an internal/external position
in nb’s left subtree. Further, node nb cannot be swapped with any node
in the subtree rooted by ne or be inserted into any internal/external posi-
tion in the subtree rooted by ne. Based on this observation, we number
each node in a T-tree in the depth-first search (DFS) order starting from
the right subtree. Each node is associated with two values, DFS up and
DFS low. Let Ok, 1 ≤ k ≤ n, be the set of tasks that must be exe-
cuted after vk. A node nk’s DFS low is the DFS number of np’s left
child, where t′p = max{t′i|vi ∈ Ik}. Similarly, nk’s DFS up is nq’s
DFS number, where tq = min{ti|vi ∈ Ok}. For the Swap and Move
operations performed on nk, we heuristically choose nodes in the range
of [DFS low, DFS up) based on the above observation.

5 Solution Space and Reachability
5.1 Solution Space

The total number of combinations of an n-node T-tree can be com-
puted by the number of different unlabled n-node 3-ary tree and the per-
mutation of n labels. The permutation of n labels is n!. From [11], the

Algorithm: Tree Re-construction(H , D)
H: a T-tree;
D: the set of precedence constraints
1 begin
2 repeat
3 Scan all pairs of tasks in D
4 if task vk violates precedence constraints then
5 Find np with t′p = max{t′i|vi ∈ Ik};
6 U = {all nodes in the left subtree of np}∪{np};
7 nj = min{|tj − tk||nj ∈ U, Ij = ∅};
8 if nj �= np then swap nodes nj and nk

9 else make nk the left child of np;
10 Perform packing for H
11 until all tasks satisfy the precedence constraint
12 end

Figure 5: Summary of the tree re-construction process.
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E(5)E(5)

D(2)D(2)

G(7)G(7)F(8)F(8)
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H(6)H(6)

B(4)B(4)

Figure 6: A T-tree and its DFS order.

counting of unlabled p-ary tree with n nodes is given by

1

(p − 1)n + 1

(
pn

n

)
. (2)

Applying Stirling’s approximation, we have

n! ≈
√

2πn(
n

e
)n. (3)

Setting p equal to 3 in Equation (2), we can obtain the following asymp-
totic form:

O(
33n

22nn1.5
). (4)

Thus, the total number of possible placements for an n-node T-tree is

O(n!
33n

22nn1.5
). (5)

Based on the above discussion, we have the following theorem:

Theorem 4 The size of the solution space of a T-tree is O(n! 33n

22nn1.5 ).

5.2 Reachability
For a well-structured solution space, it should have the property that

there exists a series of operations to transform between two arbitrary so-
lutions. For such solution structure, it is possible to find an optimal solu-
tion from any initial solution in the solution space. Two placements are
said to be eqivalent if the topologies of their corresponding T-trees, the
labelling for each node, and the orientations of all the tasks, are the same.
Below we prove the reachability of the solution space of the T-tree.

Theorem 5 Given two T-trees H1 and H2, H1 can be transformed to
H2 via at most 4n-3 operations.
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Proof:
To transform H1 to H2, we first transform H1 to a tree with the same

topology as H2. We can then get the correct label for each node by the
Swap operation and the correct orientation for each task by the Rotation
operation.

If there exists a T-tree H0 to which both H1 and H2 can be trans-
formed via a series of operations, and the operations are reversible, then
H1 can be transformed to H2 with H0 as an intermediate solution. The
transformation process is shown in Figure 7. The Swap and Rotation op-
erations are always reversible, but the Move operation is reversible only if
the target node is a leaf and the destination is an external position. Thus,
we choose a left-skew T-tree as the intermediate solution. A left-skew
T-tree is a T-tree in which each node has only a left child.

H1 can be transformed to H0 through a series of operations that re-
cursively move the rightmost leaf of H1 to its leftmost external position.
It needs at most n − 1 Move operations to transform H1 to H0 and an-
other n − 1 Move operations from H0 to H2. Then we need at most
n − 1 Swap operations to get the correct label for each node and at most
n Rotation operations to get the correct orientation for each task. As a
result, the total number of operations required to transform H1 to H2 is
at most 4n − 3.

6 Fixed-outline Floorplanning
For fixed-outline floorplanning, the area of the reconfigurable device

is fixed. Let Wf/Hf and Wp/Hp denote the width and height of a re-
configurable device and a placement, respectively. A feasible placement
of fixed-outline floorplanning must satisfy the outline constraint; that is,
Wp ≤ Wf and Hp ≤ Hf . Therefore, we consider excessive volumes of
a placement in the objective function for the fixed-outline floorplanning
problem. The new objective function Φ′ is given by

Φ′ = αV + βW + γO + δF, (6)

where δ is also a user-specified constant, and F is given by the following
equation:

F = min((max(Wp − Wf , 0) × Hp × Time) +

(max(Hp − Hf , 0) × Wp × Time),

(max(Wp − Wf , 0) × Hp × Time) +

(max(Hp − Hf , 0) × Wp × Time)), (7)

where Time is the total execution time for a placement. Since the whole
design can be rotated by 90 degrees, we choose the smaller excessive
volume of two orthogonal placements.

Besides considering the excessive volume in the objective function,
we bias the selection of the destination of the Move operations based on
the value k/n, where k is the number of infeasible placements in the
last n iterations. In our experiments, we set n equal to 500. A large
k/n value indicates that the placement is not easy to fit into the device
outline; therefore, we should try to place a module along the T direction
to increase the success probability. In contrast, if the k/n value is small,
we should try to place a module in the X or Y direction to minimize the
task execution time.

7 Experimental Results
Based on simulated annealing [13], we implemented our T-tree based

temporal floorplanning algorithm in the C++ programming language on
a 1GHz SUN Blade 2000 machine with 1GB memory. We also imple-
mented the 3D-subTCG based temporal floorplanner [19] with the same
simulated annealing engine and on the same SUN Blade 2000 machine.

Circuit # of # of # of # of
modules pads nets pins

3D-apte 9 73 97 214
3D-xerox 10 107 203 696

3D-hp 11 43 83 264
3D-ami33 33 42 123 480
3D-ami49 49 24 408 931

Table 1: The 3D-MCNC benchmark.

Circuit # of # of # of # of # of precedence
modules pads nets pins constraints

3D-n100 100 334 885 1873 49
3D-n200 200 564 1585 3599 88
3D-n300 300 569 1893 4358 120

Table 3: The three 3D-GSRC benchmarks.

For the outline-free problem, we conducted two experiments. For the
first experiment, we applied the five 3D-MCNC benchmark suites used
in [19]. Table 1 lists the five 3D-MCNC benchmarks. To test the cir-
cuits with more constraints, we further constructed five additional bench-
marks, 3D-apte-2, . . ., 3D-ami49-2. Table 2 shows the experimental re-
sult compared with the 3D-subTCG. Note that α, β and γ were all set
to 1 for all circuits in order to be consistent with [19]. We can see that,
compared with the 3D-subTCG, the T-tree can achieve smaller deadspace
(10.4 % vs. 12.82% for the original set of MCNC benchmarks from [19]
and 15.2% vs. 18.4% for the additional set of MCNC benchmarks) in
shorter running time (18.17 sec vs. 58.5 sec and 18.49 sec vs. 77.05 sec).
Figure 8 shows the resulting placement of 3D-ami49 with 11 precedence
constraints.

To test the scalablility of the T-tree, in the second experiment, we used
the GSRC benchmarks. The circuits in the GSRC benchmark are much
larger than those in the 3D-MCNC benchmark. We added task execution
times and precedence constraints by ourselves. The GSRC benchmark
with execution times and precedence constraints are referred to as 3D-
GSRC in this paper. The information of the 3D-GSRC circuits is sum-
marized in Table 3. Table 4 shows the experimental result. We can see
that for 3D-n300, the largest circuit in the GSRC with 300 tasks and 120
precedence constraints, the T-tree based SA scheme obtains a solution of
13.7% deadspace in less than 1.15 hours, while the 3D-subTCG method
needs about 7.51 hours and results in a solution of 34.2% deadspace.

For the fixed-outline floorplanning problem, we chose the 3D-n100
circuit for experiments. We added various outline constraints. Table 5 re-
ports the success rate 1 and the task execution time 2 of the fix-outline SA
engine described in Section 6. We also list the results from the outline-
free SA engine for comparison. In this experiment, we set different ratios
of desired widths and heights for 3D-n100. It shows that the fixed-outline
SA engine achieves much higher success rate compared with the outline-
free engine. According to the design of the fixed-outline SA engine,
we can achieve much higher success rates (88.75% vs. 47.37%) at the
expense of 5% longer task execution time. The results show the effec-
tiveness of the fixed-outline SA engine.

8 Conclusions
We have proposed the T-tree representation for handling the temporal

floorplanning/placement problem. Compared with the 3D-subTCG, the
T-tree can achieve better solution quality in less time. This makes it suit-
able for large circuits. The main reasons why the T-tree is more efficient
than the 3D-subTCG is three-fold: (1) the packing time of T-tree is faster,
(2) the size of the solution space is smaller than the 3D-subTCG, and (3)
the solution space of the T-tree is well-structured. Thus, the annealing
engine can devote more time to explore the solution space, resulting in
better solution quality and less running time.

One of the abilities of recent FPGA architectures is that they can be
reconfigured on the chip (internally), thus reducing the reconfiguration

1Number of runs that satisfies the fixed-outline constraint in 100 runs
2The minimum total execution time in all successful runs



Circuit Total # of 3D-subTCG T-tree
volume constraints Volume Wire Dead Time Volume Wire Dead time

length space length space
(mm) (%) (sec.) (mm) (%) (sec.)

3D-apte 9.88 × 107 3 1.05 × 108 252.5 5.9 0.91 1.05 × 108 252.5 5.9 0.35
3D-xerox 4.05 × 107 3 4.42 × 107 577.3 8.4 1.32 4.39 × 107 338.0 7.8 0.31

3D-hp 1.29 × 107 3 1.50 × 107 163.6 13.7 6.07 1.41 × 107 165.9 8.6 1.31
3D-ami33 2.32 × 106 7 2.82 × 106 59.7 17.8 115.51 2.77 × 106 56.6 16.2 28.72
3D-ami49 1.32 × 108 11 1.61 × 108 669.5 18.3 168.69 1.52 × 108 672.4 13.5 60.18
Average 12.82 58.5 10.4 18.17

3D-apte-2 9.88 × 107 4 1.05 × 108 252.5 5.9 0.96 1.05 × 108 252.5 5.9 0.37
3D-xerox-2 4.05 × 107 4 4.87 × 107 471.9 16.8 4.76 4.72 × 107 405.3 14.3 0.69

3D-hp-2 1.29 × 107 6 1.65 × 107 145.1 21.9 4.61 1.64 × 107 139.0 20.9 0.58
3D-ami33-2 2.32 × 106 15 3.16 × 106 55.4 26.5 60.69 2.92 × 106 49.4 20.7 28.13
3D-ami49-2 1.32 × 108 21 1.67 × 108 768.3 20.9 314.24 1.54 × 108 686.0 14.6 62.70
Average-2 18.4 77.05 15.2 18.49

Table 2: Results of volume and wirelength optimization for the five 3D-MCNC benchmarks (volume = mm2 x clockcycles).

Circuit Total 3D-subTCG T-tree
volume Volume Wire Dead Time Volume Wire Dead time

length space length space
(mm) (%) (sec.) (mm) (%) (sec.)

3D-n100 5.28 × 106 6.61 × 106 247.5 20.1 1086.89 6.07 × 106 158.0 11.4 388.61
3D-n200 5.27 × 106 6.22 × 106 540.6 15.3 8658.41 5.93 × 106 420.2 11.2 1873.85
3D-n300 8.19 × 106 1.24 × 107 1146.0 34.2 27064.23 9.49 × 106 822.5 13.7 4175.19
Average 23.2 12269.84 12.16 2145.88

Table 4: Results of volume and wirelength optimization for the three 3D-GSRC benchmarks (volume = mm2 x clockcycles).

overhead dramatically. One of the future work lies in utilizing internal
registers to reduce the reconfiguration overhead.

Figure 8: The result of 3D-ami49 with simultaneous volume and wirelength
optimization.
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