Optimal Wire Retiming Without Binary Search*

Chuan Lin and Hai Zhou
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

Abstract

The problem of retiming over a netlist of macro-blocks to
achieve the minimal clock period, where the block internal
structures may not be changed and flip-flops may not be
inserted on some wire segments, is called the optimal wire
retiming problem. To the best of our knowledge, there is
no polynomial-time approach to solve it and the existence of
such an approach is still an open question. In this paper, we
present a brand new algorithm that solves the optimal wire re-
timing problem with polynomial-time worst case complexity.
Since the new algorithm avoids binary search and is essentially
incremental, it has the potential of being combined with other
optimization techniques. Experimental results show that the
new algorithm is very efficient in practice.

1 Introduction

With a great market drive for high performance and integra-
tion, operating frequencies and chip sizes of System-On-Chip
(SOC) are dramatically increasing. Industry data showed
that the frequencies of high-performance ICs approximately
doubled every process generation and the die size also in-
creased by about 25% per generation. With such short clock
periods, the communication among different blocks on an
SOC circuit of ever increasing complexity is becoming a bot-
tleneck: even with interconnect optimization techniques such
as buffer insertion, the delay from one block to another may
still be longer than one clock period, and multiple clock cycles
are generally required to communicate such a global signal.

This trend has motivated recent research within Intel [3]
and IBM [8] on how to insert flip-flops on a given net if the
communication between the pins requires multiple clock cy-
cles. However, inserting flip-flops within a circuit will change
its functionality, and inserting arbitrary number of them on
a net without considering global consistency will destroy the
correctness of a circuit.

Retiming [12] is a traditional sequential optimization tech-
nique that moves flip-flops within a circuit without destroy-
ing its functionality. In traditional settings, retiming was used
mainly on gate level netlists [16, 7, 11, 15, 19]. Although some
research incorporated wire delays in retiming [11, 17, 5], they
did not consider the situation where multiple flip-flops may
be on a global interconnect. Not until recently [13, 2, 14, 18],
the alternative utility of retiming—that is, besides its computa-
tional function, a flip-flop can be used to fulfill communication
buffering requirements—has been explored.

Since dominant wire delays can only happen on global
wires, it is more meaningful to formulate the problem at the
chip level as in [13, 14], that is, the design we deal with is
a netlist of macro-blocks. The wires within a block are rela-
tively much shorter thus do not need multiple clock periods
for propagation. In SOC design, many of the macro-blocks are
IP (Intellectual Property) cores. Some of these blocks may be
combinational circuits, and others sequential. Because of the

*This work was supported by the NSF under CCR-0238484.

existence of pre-designed blocks such as IP cores or regular-
structured blocks such as memories, (combinational) buffers
or flip-flops may not be inserted everywhere [20].

In this application, the approaches in [2] cannot be used
because they took into account only gates and cannot be ex-
tended to handle complex blocks. On the other hand, our
previous work [13] solved the problem with complex blocks
by proposing timing macro-models to model the timing be-
havior of the blocks, based on which a set of integer differ-
ence inequalities was shown to be both necessary and suffi-
cient, thus quantify a feasible solution. Although it gave a
polynomial-time algorithm for feasibility checking, the com-
plexity was high, making it inhibitive even for checking cir-
cuits with about 1000 vertices. Furthermore, it only gave
a fully polynomial-time approximation scheme (FPTAS) for
clock period minimization, that is, the overall complexity was
dependent on a given precision. The same thing was also true
in [2] and our improved work [14].

Other FPTASs were proposed in [9], where the binary
search approach was used to deal with retiming in the contin-
uous domain. Although a tight lower and upper bound can
be obtained, the candidates of possibly feasible clock periods
are innumerable in the continuous domain, which is differ-
ent from Leiserson and Saxe [12]. Therefore, a precision is
required to terminate the binary search. However, the intro-
duction of precision leads to a trade-off between the accuracy
and the computational complexity. Theoretically, it fails to
be a polynomial-time approach as no precision is sufficient for
exact solution.

In this paper, a polynomial-time incremental algorithm is
proposed to compute the minimal clock period without using
the binary search. To the best of our knowledge, it is the
first work that shows the optimal wire retiming problem in
the continuous domain can be solved in polynomial time.

2 Problem formulation

The problem we want to solve is the same as [13, 14], which is
the retiming on an SOC design with a given block placement
(also known as floorplan) and a global routing of the global
wires. In Figure 1(a), we show a typical SOC design, includ-
ing a combinational block, a sequential block, and a net part
of which goes through buffer forbidden areas (illustrated as
shaded regions). Different blocks can also be classified into
two categories: complete bipartite and non-complete bipar-
tite. For the example in Figure 1(a), the sequential block
is complete bipartite, while the combinational block is non-
complete bipartite as there is no path from b to p. We will also
use the same timing models to specify the timing behavior of
the circuit. To avoid repetition, we only outline the models
below. Interested readers may refer to [13] for details.

The model for a combinational block is straightforward.
Edges between inputs and outputs are introduced to repre-
sent the path delays between them. Since we only care about
the set-up conditions of flip-flops, if minimum and maximum
delay pairs are given for a combinational block, only the max-
imum delays are taken. In the model for a sequential block, a



1o

ol 1o

— d{+d, W
]
o[ dud, | L
5744
p
ﬁi‘ . z

(b)

ot

Figure 1: A circuit example and its timing model

virtual flip-flop is introduced to enforce the set-up conditions
of the block inputs whenever there is a path from an input
to an interior flip-flop. It is also used to specify the arrival
times of the block outputs whenever a path exists from an
interior flip-flop to an output. Later, the virtual flip-flop is
further modeled as an edge with delay zero and weight one.
Modeling a net consists of two parts: the part within buffer
forbidden areas is treated as a combinational block; the other
as a Steiner tree. On those wire segments where buffers and
flip-flops are allowed, linear delays are assumed based on opti-
mal buffering. For others in buffer forbidden areas, delays are
computed using the Elmore delay model with the assumption
that the boundary of buffer forbidden areas is all buffered.
In short, with the macro-models, an SOC design becomes
a directed graph, where a vertex represents a source or sink of
a net, the input or output of the virtual flip-flop introduced
by a sequential block, a point where a wire gets into or out
of a buffer forbidden area, or a Steiner point outside buffer
forbidden areas. A directed edge represents a fan-out relation
within a block or a wire connection outside buffer forbidden
areas. On an edge representing a fan-out relation within a
block, the delay is a nonnegative constant and no flip-flop
change can be made on it. It is also called a forbidden edge.
On the other hand, flip-flops can be moved into or out of
an edge representing a wire outside buffer forbidden areas.
The delay of such a wire is positive and proportional to its
length. After applying these macro-models, the timing model
for the design in Figure 1(a) is illustrated in Figure 1(b). The
problem we want to solve can be formulated as follows.

Problem 1 (Optimal Wire Retiming)

Given a directed graph G = (V, E) with two types of edges E =
E1 U Es, where each edge e € E has a delay d(e) and a weight
(representing number of flip-flops) w(e), find a retiming—i.e.
a relocation of flip-flops in the graph—such that: 1. there is no
flip-flop change on any edge e € E1; 2. the delay between two
flip-flops on an edge e € Es is linear in terms of their distance;
3. the clock period (i.e. the maximum delay between any two
consecutive flip-flops, treating primary inputs/outputs as flip-
flops) is minimized.

3 Notations and constraints

From the formulation of the problem, we already have a delay
label d : E — R™ and a weight label w : E — Z1. We will

adopt the tradition to use a label r : V. — Z to denote the
number of flip-flops moved over a vertex and a labelt: V — R
to denote the arrival time of the vertex. Similarly, the arrival
time of a flip-flop is the arrival time of its input.

For any path p € G, we use d(p) to denote the delay along
p, which is the sum of the delays of p’s constituent edges.
Similarly, w(p) denotes the number of flip-flops on p before
retiming, which is the sum of the weights of p’s constituent
edges. To ease the representation, we use w,(u,v) to denote
the number of flip-flops on (u,v) € E after retiming, i.e.,

wr(u,v) = w(u,v) + r(v) — r(u).

We also use wr(p) to denote the number of flip-flops on p =
u ~> v after retiming: w,(p) = w(p) + r(v) — r(u). When a
path actually forms a cycle ¢, d(c¢) (w(c)) includes the delay
(weight) of each edge in the cycle only once. Since retiming
will not change the number of flip-flops in a cycle, w(c) is inde-
pendent of retiming. To avoid disturbing issues regarding zero
weight cycles, we assume in this paper that w(c) > 0 for all
¢ € G. The cycle ratio of ¢ is defined as p(c) = d(c)/w(c) [6].

Similar to [13], a vertex M is introduced into G, as well as
directed forbidden edges from each primary output to it with
zero delays and weights, and from it to each primary input
with delay zero but weight one.

3.1 Constraints for retiming validity
A valid retiming must satisfy the following constraints.

r(u) =r(v)

(v), V(u,v) € By (1)
wr(u,v) >0,

V(u,v) € E2 (2)

3.2 Constraints for timing validity
Let T denote a given clock period. Timing validity refers to

the following constraints.

t(v) = max(O, max _t(u) + d(u,v) — wr(u, U)T),Vv eV (3)

V(u,v)EE
tv) <T, YweV 4)

Edge (u,v) is called a critical edge if t(v) = t(u)+d(u,v) —
wr(u,v)T. Likewise, critical paths and critical cycles can be
similarly defined. Our task is to find the minimal 7" with
which both retiming and timing validities are satisfied.

4 Algorithm

Our strategy is to first construct a starting point, i.e., a retim-
ing satisfying (1)-(4), and then gradually target the minimal
clock period with (1)-(4) inviolate.

4.1

Naturally, the original flip-flop configuration satisfies retiming
validities, and can be initialized to satisfy timing validities
as well. A simple procedure as in Figure 2 will generate a
starting point satisfying (1)-(4) with r(v) = 0,Vv € V. The
idea is to line up the flip-flops on each edge (u,v) € E together
immediately before v. When completed, it returns a clock
period T and the corresponding ¢ values.

Initialization

4.2 Base algorithm
Suppose there exists another retiming (7,Z,T) satisfying (1)-

(4) with T < T. Intuitively, to reduce T to T', there are two
possible adjustments. One is to locally reposition flip-flops
under r, that is, without changing the number of flip-flops on
each edge. The other allows such changes. A straightforward
strategy is to iteratively apply these two adjustments in a way

that is guaranteed to lead to the minimal clock period. We



INIT(G, )

wn (1, 0) — w(u, v) +r(v) —
t(v) < 0, VvEV T« 0;

While (@ # 0) do

u «—dequeue(Q);
For each (u,v) € E do
£ ((wr(u,v) = 0) A (t(v) <
t(v) — t(u) + d(u,v);
Q—QU{v} if v¢Q;
If (T < t(u) +d(u,v)) then

T — t(u) + d(u,v);

r(u ) V(u v) € E;

t(u) + d(u,v))) then

Figure 2: Pseudocode of initialization procedure

will outline our algorithm and explain how to reduce 7" under
r in this section, and elaborate the second adjustment in the
next section.

To reduce T under 7, we actually want to find the minimal
T under r with which (3)-(4) are satisfied. If we neglect (4)
for a moment, it reveals that solving (3) is equivalent to com-
puting the maximum cycle ratio (MCR) of G. Burns’ algo-
rithm [1], which is known to be one of the fastest algorithms
for MCR computation within polynomial time [6], actually
solves a general form of (3) to obtain the minimal 7.

Further taking (4) into account, we found that Burns’ al-
gorithm can be extended to obtain the minimal 7" with which
both (3) and (4) are satisfied. We describe it in Figure 3.
The basic idea is to iteratively reduce T" and update the cor-
responding arrival times ¢ until either the minimal 7" under
the current r is reached, or the optimality of T for the wire
retiming problem is certified.

After the starting point (line 1), the algorithm enters the
outer while-loop whose condition is always true. Inside it, the
algorithm first identifies critical edges F. (line 3). If E. con-
tains a cycle, then the algorithm terminates with the current
T and r as the optimum (lines 4-5, the argument is given later
in Corollary 2.1). Otherwise, G. is a DAG, and a safe reduc-
tion @ for T is calculated (lines 12-15), which is based on the
computation of the maximum number of flip-flops A(v) on
paths from roots in G¢ to v, Yv € V (lines 7-11). The value
of # is further confined (lines 16-17). When it is finished, if
0 > 0, then at the end of the iteration we update ¢ and T
accordingly (lines 24-27, we will show later in Lemma 1 that
the resultant new ¢ and T will keep (3)-(4) inviolate), and
record the best solution found so far in 7°°* and r°P" (lines
28-29). On the other hand, if # = 0, we must have found
a vertex v such that t(v) = T resulting in 6 = 0 (line 17).
We then increase r(v) by 1 (the argument is given later in
Lemma 3), adjust = if (1) or (2) is violated, and initialize the
circuit under the new r (line 18-23). After the r adjustment,
some criteria checking (elaborated later in Theorem 2 and 3)
is applied to see if the optimal clock period has been obtained
(line 21). If yes, we terminate the algorithm with T°* and
r°P' as the output. Otherwise, we loop back to continue a
new iteration of the outer while-loop.

In Figure 4, we give the pseudocode for r adjustment.

4.3 Proof of correctness and computational complexity
To prove the correctness of the algorithm, we need to show
that the algorithm always terminates and reports a retiming
satisfying (1)-(4) with the minimal clock period.

First of all, we have the following lemma.

Algorithm Incremental Optimal Wire Retiming
Input: A graph representation G = (V, E).
Output: A retiming with minimal clock period.

1 INIT(G, 0); T°P" «— T; r°®"(u) «— 0, Yu e V;

2 While (true) do
>Identify critical edges in E
3 E. — {(u,v) € E | t(v) =t(u) + d(u,v) — wr(u,v)T};
4 If E. contains a cycle then
5 Report 7', r and exit;
6 Topological sort G.= (V,E.);
>Compute max FF number on paths from roots in G
7 For v € V in topological sort order of G. do
8 If v is a root in G. then
9 A(v) < 0;
10 Else for each (u,v) € E, do
11 A(v) — max{A(v), A(u)+ wr(u,v)};
>Compute a safe reduction 0 for T
12 0 «— o0
13  For each (u,v) € E do
14 If (A(u) 4+ wr(u,v) > A(v)) then
15 6 «— min{#0, t“’ui%ij}aﬁﬁw&%fﬂﬂ};
16 For each v eV do
17 0 — min{h, = Ut)(ﬁ}
18 If (0=0) then
19 r(v) < r(v) +1;
20 ADJUST(G, v);
21 If Theorem 2 or 3 is applicable then
22 Report T°P', r°P' and exit;
23 INIT(G, r);
>Update t and T
24 If (0 >0) then
25 T+—T-—0;
26 For each v €V do
27 t(v) « t(v) + 6 - Av);
28 If (T <T°P") then
29 Update 7°P* and r°P* with T and r;

Figure 3: Pseudocode of retiming algorithm

Lemma 1 (1)-(4) are kept every time the algorithm in Fig-
ure 8 starts a new iteration of the outer while-loop.

Proof: First of all, (1)-(4) are satisfied after initialization,
i.e., before the first iteration of the outer while-loop. Inside
the iteration, the algorithm either changes r (lines 18-19) or
successfully reduces T (lines 24-25). For the former, an r
adjustment and an initialization under the new r are immedi-
ately followed, which will keep (1)-(4) for the next iteration.
For the latter, we will show that they are kept too.

When T is successfully reduced, ¢ is also updated (lines
26-27), denoted as T" and t' respectively. Since (1)-(2) will
not be violated with r unchanged, we only need to consider
the effect of the update on (3)-(4). It is easy to show that (4)
is kept after the update, otherwise there exists a v € V' such
that

tw)>T =
= 0> (T-

t(v)+0-Aw)>T -0
t(v))/(A(v) +1)
which contradicts the computation of € in lines 16-17. To see

how (3) is kept, we study critical edges E. and non-critical
edges E— E. respectively. For all (u,v) € E., we have A(v) >




ADJUST(G, v)
Q — {v};

While (Q # @) do
u «—dequeue (Q) ;

For each e (= (z,u) or

If (((e € Er) A (r(x) #

r(@) —r(z)+1;
Q — QU {z};

(u,z)) € E do
r(u))) | 1 (wr(e) < 0)) then

Figure 4: Pseudocode of r adjustment to truthify (1)-(2)
A(u) + wy(u,v) (lines 10-11), thus after the update

t'(v) = t' (u) — d(u,v) + wr(u,v)T’
= (W) +0-A)) — (t(u) + 0 - A(w))
—d(u,v) + wr(u,v) - (T — 0)
= (t(v) — t(u) — d(u,v) + wr(u,v)T)
+0(A(v) — A(u) — wr(u, v))
0

%

For all (u,v) € E—E., if A(v)
same result as above. If A(v)
also true otherwise

0 > (t(v)—t(u)

which contradicts the computation of @ in lines 14-15. There-
fore, after the update, we have t'(v) > t'(u) — d(u,v) +
wy(u, )T, Y(u,v) € E. Then, for all vertex v that has
at least one edge in E. terminating at it, there is an edge
(u,v) € E. on which A(v) = A(u) + wr(u,v), and after the
update, (u,v) remains critical, that is, (3) is satisfied on v. For
all vertex v that has no edge in E. terminating at it, we know
t(v) = 0 by (3). Since v is actually a root in G, A(v) = 0,
thus ¢'(v) = 0. Given t'(v) > t'(u) — d(u,v) + wr(u,v)T",
V(u,v) € E, we know that (3) is also satisfied on v after the
update.

Therefore, (1)-(4) are kept when the iteration is com-
pleted. By induction, the lemma is true.

Examine the two places (lines 13-15 and 16-17) where 6 is
computed. Since A(v) > A(u)+wy(u,v) is true on all critical
edge (u,v), if the final value of 6 is actually determined in
lines 13-15 on some edge (u,v), the edge cannot be critical,
ie., t(v) —t(u) — d(u,v) + wr(u,v)T > 0, thus > 0. On the
other hand, if 6 is determined in lines 16-17 on vertex v, then
either 6 = 0 (i.e., t(v) = T), or t'(v) = T’ after the update
(lines 25-27) and @ will be assigned zero in the next iteration.

Assume 6 > 0 all the time, the iterations will keep re-
ducing T, and the algorithm has a provable complexity of
O(|V|?|E|) [1] before a critical cycle is emerged. In fact, the
occurrence of a critical cycle witnesses an optimal solution,
which is stated in the corollary of the following lemma [13].

A(’LL) +w7‘(ua
A(U) + wr (’U,,

v), we have the

>
< v), the result is

—d(u, v)+wr(u,0)T)/(A(u) +w(u, v) = A(v)),

Lemma 2 A feasible clock period T must satisfy

T > p'= max

p(c).
cycle ceGc

Corollary 2.1 When the algorithm in Figure 3 detects a crit-
ical cycle, current T' and r is an optimal solution.

Alternatively, if 6 = 0, we know ¢(v) = T for some v € V.
In fact, it implies that we have reached the minimal clock

period under the current r, which is specified in the following
lemma.

Lemma 3 If t(v) = T for some v € V, then there exists a
path p = u ~ v such that t(u) = 0, all flip-flops on p have
arrival times T, and any retiming satisfying (1)-(4) but with
a smaller clock period must have more than wr(p) number of
flip-flops on p.

Proof: Consider the edges terminating at v. They cannot
all be non-critical, otherwise ¢(v) = 0 by (3), which is kept by
Lemma 1. Therefore, there must exist a critical path p from
some root u € G. to v, on which all flip-flops have arrival
times T'. Since u is a root, all edges terminating at v have to
be non-critical, that is, t(u) = 0.

For the seek of contradiction, we assume that there exists
a retiming (7,7, T) with T < T, such that wz(p) < w.(p), i.e.,
7(v) — 7(u) < r(v) — r(u). Given the path delay d(p) is equal
to (wr(p) + 1)T', we have

t(v) t(u) + d(p) — wr(p)T

(UJ (wr(p) + DT = wr(p)T

(AVARVAN Y

Hence, T > #(v) > T, a contradiction. That is, wr(p) > w:(p)
must be true. U
Therefore, if T' is not the optimum, we must have

7v) — 7(u) > r(v) — r(u).

Since it is not the absolute values of r but their differences
that are relevant in the retiming, we can either increase r(v) or
decrease 7(u) to approach 7. No matter which one is chosen,
the amount of change should only be 1 since we do not want
to over-adjust r. Without loss of generality, we choose to
increase r(v) by 1 in our implementation.

Given the unimportance of the absolute values of r, we
can also conclude that there must exist an optimal retiming
t,7,T*) satisfying (1)-(4) with the optimal 7™, such that
7(v) > 0 for all vertex v € V, and 7(y) = 0 for some vertex
v € V. In particular, we call such an optimal retiming an
irredundant optimal retiming. In fact, there could be a bunch
of irredundant optimal retimings. Among them, we define
the least optimal retiming (t*,r*,T") such that for all other
irredundant optimal retiming 7, we have r*(v) < 7(v), Vv €
V. We then prove the existence of the least optimal retiming
by showing that our algorithm will reach it in polynomial
time.

—~

Theorem 1 The algorithm in Figure 3 will reach the least
optimal retiming in polynomial time.

Proof:  For all irredundant optimal retiming 7, we have
r(v) = 0 < 7(v), Yv € V, after initialization. Let T," denote
the minimal clock period under the current r. If T, = T,
then current r is actually r*. Otherwise, when T} is reached,
we must have § = 0. According to Lemma 3, we can locate a
critical path p = z ~ y such that
r(y) —r(z) <7(y) —7(z).
Since r(z) < 7(z) and r(y) < 7(y), if r(y) = 7(y), it leads to
r(z) > 7(x), a contradiction. Therefore, r(y) < 7(y). Thus,
r(y) + 1 < 7(y), that is, by increasing r( ) by 1, the new r
configuration still satisfies r(v) < 7#(v), Vo € V, for all 7.



By induction, r(v) < 7#(v), Yv € V, for all 7, is always true
before we reach T*. Let N denote the sum of all ¥ values

for any particular 7, i.e., N = 3 _ 7(v). Given the com-

plexity of Burns’ algorithm is O(|V |*| E|), we will reach T* in

O(|[V|?|E| - (N + 1)) time. When T* is reached, the r at that

moment is r*. [
Based on this, we have the following theorems.

Theorem 2 For the algorithm in Figure 8, if we have r(v) >
0 for all vertex v € V, we can terminate the algorithm.

Proof: Since r(v) > 0, Vv € V, we have r(y) > r*(y) =
0, meaning the algorithm has reached r* and already gone
beyond it. Thus, we can safely terminate the algorithm. []

Theorem 3 For the algorithm in Figure 3, if we have a ver-
texv € V such that r(v) > Ng, where Ng = Z(u,v)eE w(u,v)
is the total number of flip-flops in the circuit, we can termi-
nate the algorithm.

Proof: Let V' be the set of vertices that can be reached from
v in G regardless of edge directions, including v. Suppose
u € V' is such a vertex whose r(u) = min;cys (). All the
possible relations between u and v are shown in Figure 5.

N N Y

p1\/p2 p1.\/b2 TR, Y
(a) (o) (©) (@)

Figure 5: Four possible relations between u and v.

For case (a), we have w,(p1) = w(p1)+r(z)—r(v). Because
there is no direct path between u and v, all paths between v
and x must be from v to x. Therefore, the flip-flops that were
moved into p; are different from those that were originally
in p1. Thus, w(p1) + r(z) < Ng. It leads to wr(p1) < O,
which however is impossible when (2) is kept by Lemma 1.
For case (b), wr(p1) = w(p1) + r(v) — r(z). By the same
argument, the flip-flops that were moved into p; through =
must be different from those w(p1) number of flip-flops, that
is, w(p1) +7(v) < Ng. Then, r(v) < Ng —w(p1) < Ng, which
contradicts r(v) > Ng. For case (c) and (d), if 7(u) = 0, then
more than Ng number of flip-flops must be moved into or out
of the path between u and v, which is impossible.

Therefore, r(u) > 0, and there are two possible situations.
If V =V, it reduces to the situation in Theorem 2, by which
we can safely terminate the algorithm. Otherwise, since the
vertices in V — V' have no connection with those in V' at
all, the vertices in V' and the edges connecting them actually
constitute an independent sub-circuit G’ C G. The flip-flop
configuration of a sub-circuit is also independent on those of
others. Therefore, it must be true that r*(7y) = 0 for some
vertex v € V' and 7*(6) = 0 for some vertex § € V — V',
Given r(y) > r(u) > 0 = r*(v), we know that the algorithm
has already gone beyond r*, it then can be terminated. (]

Corollary 3.1 r*(v) < Ng, Vv € V.

With Corollary 3.1 incorporated, we eventually have a
polynomial bound for the computational complexity of the
algorithm, which enables us to establish the correctness of
the algorithm in the following theorem.

Theorem 4 The algorithm in Figure 3 will terminate with
the least optimal retiming in O(|V|*|E| - Ng) time, where Ng
is the total number of flip-flops in the circuit.

Remark 1 The significance of the above theorem is not the
actual formula of the bound, but showing that the optimal wire
retiming problem can be indeed solved in polynomial time.
Furthermore, caution should be used on this bound. First,
a program will usually have great running time variations on
different problem instances. The worst case running time may
only happen on a few rare instances, thus may not be a good
indication of the efficiency on most other instances. For ex-
ample, the worst case assumes that the algorithm terminates
when all r(v), Vv € V, is increased to Ng, which is hardly the
case in real applications. Second, even the worst case happens
on most problem instances, a bound may be loose due to the
difficulty to have an accurate analysis. For example, Burns’
algorithm typically performs in O(|E|) time on real circuits.
These assumptions lead to an ideally worst case which is very
unlikely to be attainable in reality. In other words, the bound
in the above theorem is very loose. Since only necessary oper-
ations are conducted in the algorithm, it should be efficient on
most instances. This is confirmed by our experimental results
in Section 5.

4.4 Speed-up techniques
4.4.1 A better initialization

In practice, the majority of the running time is consumed on
iteratively computing 6 for T reduction. Let T, and T, denote
the clock period returned by the initialization and the minimal
clock period under 7, respectively. Intuitively, the closer T
is to 7Y, the smaller the number of iterations the algorithm
has to take to reach T}". Recall the initialization procedure we
proposed in Figure 2, we found that it gave a very loose upper
bound for T} because all flip-flops were simply pushed to the
ending points of the edges there. Therefore, a better method
for initialization that can provide a tighter bound is desired.
On the other hand, we should also avoid complicated methods
whose overheads might dominate the overall complexity.

To meet both requirements, we adopt the same framework
as in Figure 2, while proposing an idea of local flip-flop even
distribution. More specifically, instead of pushing all flip-flops
to v for all (u,v) € E with w,(u,v) > 0 during the initializa-
tion, we check if ¢(u) + d(u,v) < (wr(u,v) + 1)T, where T is
the current maximum of ¢. In other words, we try to place
the flip-flops on (u, v) to make their arrival times to be T', and
see if the resultant t(v) exceeds T'. If t(v) does exceed T', we

then update T and ¢(v) with %,

on (u,v) thus have the same arrival times as ¢(v), they are
evenly distributed.

When completed, it gives a much better T, however, (3)
might not be satisfied because now the arrival times of flip-
flops on critical edges could be smaller than T,.. To truthify
(3), we propose another procedure called initialize t with a
given clock period, whose pseudocode is given in Figure 6.
The basic idea is to always make the arrival time of a flip-flop
to be equal to the given clock period if possible.

Applying it with 75, the arrival times of flip-flops on criti-
cal edges are then all equal to T;, hence (3) is satisfied. Here,
the resultant ¢ will not violate (4) either.

By doing so, we obtain a better initialization within the
same complexity, O(|V'||E|). The new procedure also justifies
the validity of the established correctness proof in Section 4.3.

meaning all flip-flops

4.4.2 Multiple r increases

Another factor that affects the efficiency of the algorithm is
the convergence rate of r to r*. In the base algorithm in Fig-
ure 3, when 6 = 0, there will be exactly one vertex v whose



INIT(G, r, T)
wr(1,0) — w(u,
t(v) «—0,Yv e V;
While (Q #0) do

u <—dequeue(Q) ;
For each (

t(v) — +d(u v)

— wr(u,v)T) then
—wr(u,v)T;

Else if (t(v) < d(u,v) — (wr(u,v) —1)T) then
t(v) «— d(u,v) — (wr(u,v) — 1)T;
Q—QU{v} if v ¢ Q;

Figure 6: Pseudocode of initialization procedure with T’

r(v) is increased by 1. Although it is necessary, the resul-
tant T)% under the new 7’ is not necessarily better. Generally
speaklng, r increases on multiple vertices are required in order
to reach a better clock period. If we can find an effective way
to quickly determine those increases, we can save the itera-
tions in between and expect a dramatic speed-up on practical
running time.
Inspired by Lemma 3, we have a similar result.

Lemma 4 If we initialize t with T°", and find a vertexv € V.
whose t(v) > T°PY, then there exists a path p = u ~> v such
that t(u) = 0 and all flip-flops on p have arrival times at least
T°P* we can increase r(v) by 1.

Based on this, if the clock period, obtained in line 23 in
Figure 3, is no smaller than T°P*, we can initialize ¢ with T°P*
and see if t(v) > T°P* for some v € V. If it is the case, we
immediately increase r(v) by 1 and go directly back to line 20
for an r adjustment. Thus, the iterations, which are otherwise
required in the base algorithm to identify the v for r increase,
are saved here.

4.4.3 Additional termination criterion

One useful information that has not yet been explored is the
history of the r updates. According to Lemma 3 and 4, if
t(v) > T°P* for some v € V, there exists a path p = u ~ v
such that d(p) > (w-(p) +1)T°"". We then increase r(v) by 1.
Furthermore, there is a stronger relationship between v and
v: assuming the optimal clock period has not been reached,
if 7(u) is increased, then r(v) needs to be increased as well in
order to reach the least optimal retiming. This can be easily
justified because otherwise the resultant clock period will be
larger than the optimum.

Similar to Zhou’s idea in [19] to construct a “safe-guard”
label, we use m : V. — V to represent the above relation-
ship. More specifically, for all v € V, m(v) is first set to 0
at the beginning. Later in the algorithm, whenever r(v) is
increased, we identify the aforementioned particular u for v
and set m(v) = u. If the succeeding r adjustment increases
r(z) for some x € V, we also set m(z) = u. Then we have
the following theorem.

Theorem 5 If the m label forms a cycle, we can terminate
the algorithm.

Proof: Suppose the last m assignment is m(v) = u, adding
which the m label forms a cycle. Assume the assumption for
adding m(v) = u is true, that is, we have not reached the
optimal clock period yet. Then, by the definition of m, r will
be increased along the cycle and finally result in r(v) > Ng,
which by Theorem 3 implies that we have reached the optimal
clock period, a contradiction. Therefore, what is in T°P* and
r°P' is already the desired optimal solution.

It thus provides another criterion to terminate the algo-
rithm. Furthermore, since maintaining m label and checking
m-~cycle will not increase the asymptotic complexity of the
base algorithm, its inclusion will not affect the result in The-
orem 4.

To further improve the efficiency, we will first test t at the
beginning of each iteration to see if ¢(v) = T for some v € V.
Unnecessary topological sort and succeeding 6 computations
are thus saved.

5 Experimental results

We implemented the algorithm with the proposed speed-up
techniques in a PC with a 2.4 GHz Xeon CPU, 512 KB 2nd
level cache memory and 1GB RAM. In order to give a com-
parison with the results of our previous works [13, 14|, we use
the same test files, which are modified from ISCAS-89 suite
with random delay assignment—1.0 and 2.0 units to gates
(treated as macro-blocks) and 0.2 to 5.0 to wires. To reflect
the impact of global interconnects in an SOC design, the de-
lay range is intentionally chosen in order for the wire delay to
be commensurate or even many times larger than the block
delay.

Although we treat gates as blocks, they can only be com-
plete bipartite as all gate has only one output. To further test
the cases with non-complete bipartite (denoted as “non-CB”
in Table 1 and 2) blocks, we apply hMETIS [10] to partition a
circuit into groups. All edges inside a group are then treated
as forbidden edges. For simplicity, we did not further apply
our timing model to the partitions when generating the re-
sults. The number of partitions of a circuit, which is denoted
as “No.Part” in Table 1, plays a key role in determining the
percentage of non-complete bipartite blocks. To better reflect
the influence of non-complete bipartite blocks on the optimal
clock period, we intensively choose these numbers in order for
the resultant difference to be significant.

In Table 1, we report the computed minimal clock period
for each circuit. They match the results in both [13] and [14].
The lower bound p* defined in Lemma 2 is also reported as a
comparison. Since we approach the optimal clock period by
gradual reduction in the algorithm, we also report the number
of reductions for each test file in the column of “No.Step”.
Note that, although we did not change the topology of the
circuit after partitioning, we have forced the type of the edges
within a group to F1. The consequent configuration of edges
has little to do with that before partitioning. We report them
in one table only to share the basic circuit information, such
as |V|, |E|, Ng and p*, and to be consistent with the report
format in [13, 14] for clear comparisons.

In Table 2, we highlight the difference of running time
among the algorithms in [13], [14] (both with precision as
0.1) and ours, denoted as tbs1, ths2 and tnew, respectively. The
results clearly show that our new approach achieves multiple-
order improvement over [13] and also generally better than [14].
It confirms that the bound in Theorem 4 is loose.

6 Conclusions

A polynomial-time algorithm for optimal wire retiming is pre-
sented in this paper. Contrary to all previous algorithms



Table 1: Minimal Clock Period
Circuit V] |E| Ng s w/o non-CB blocks w/ non-CB blocks
No.Step T°P' [ No.Part | No.Step | T°FF
s386 519 700 6 51.0 13 51.1 50 1 55.0
s400 511 665 21 32.2 120 32.2 50 1 50.6
s444 557 725 21 35.0 289 35.2 40 1 63.2
s838 1299 1206 32 76.0 2 76.0 130 1 84.0
s953 1183 1515 29 60.6 31 60.6 110 2 69.5
s1488 2054 2780 6 70.1 11 70.6 200 1 73.3
s1494 2054 2792 6 76.8 63 76.9 160 1 79.9
sb378 7205 8603 179 | 111.0 26 111.2 500 1 115.3
s13207 | 19816 | 22999 669 | 239.5 129 239.5 1000 1 292.8
s35932 || 46097 | 58266 | 1728 | 148.3 68 148.3 2000 1 163.2
s38584 || 53473 | 66964 | 1452 | 203.9 126 204.0 2000 1 264.0
i . . [2] C. Chu, E. F. Y. Young, D. K. Y. Tong, and S. Dechu. Retiming
Table 2: Running Time Comparison (Seconds) with interconnect and gate delay. In ICCAD, pages 221-226, 2003.
Circuit w/a non-CB blocks v/ non-CB blocks [3] P. Cocchini. Concurrent flip-flop and repeater insertion for high
ths1 ths2 thew ths1 ths2 | tnew performance integrated circuits. In ICCAD, pages 268-273, 2002.
s386 1.97 0.01 0.00 3.67 0.01 | 0.00
$400 1.64 0.01 0.03 3.38 0.01 | 0.00 [4] J. Cong, O. Coudert, and M. Sarrafzadeh. Incremental CAD. In
’ ’ ’ ’ ’ ’ ICCAD, 2000.
s444 2.23 0.03 0.09 4.31 0.01 | 0.00 ’
s838 8.79 0.03 0.00 33.42 0.02 | 0.00 [5] J. Cong and S. K. Lim. Physical planning with retiming. In IC-
5953 9.76 | 0.04 | 0.02 17.56 0.07 | 0.00 CAD, pages 27, November 2000.
51488 35.17 0.08 0.08 98.88 0.05 | 0.00 [6] A. Dasdan, S. S. Irani, and R. K. Gupta. Efficient algorithms for
s1494 34.13 0.08 0.06 62.86 0.09 | 0.00 optimum cycle mean and optimum cost to time ratio. In DAC,
$5378 684.6 0.24 0.31 || 1344.74 0.29 | 0.00 pages 37-42, 1999.
s13207 - 1.07 3.46 - 206.52 | 0.02 [7] R. B. Deokar and S. S. Sapatnekar. A fresh look at retiming via
$35932 - | 18.63 7.55 - 6.19 | 0.19 clock skew optimization. In DAC, pages 310-315, 1995.
538584 - 744 | 30.17 - | 21992.67 | 0.19 [8] S. Hassoun and C. J. Alpert. Optimal path routing in single and

which used binary search to check the feasibility of a range of
clock periods, the new algorithm directly checks the optimal-
ity of the current feasible clock period, and can thus either
pushes down the period or certifies the optimality.

The underlying idea looks into the incompetent nature of
the binary search approach in the continuous domain. At
each step, the binary search gives the answer to the question
if the current clock period is feasible. The optimality of a
feasible clock period can only be established indirectly, that
is, through the infeasibility of the next smaller clock period.
If there is no next smaller clock period as in the continuous
domain, the optimality will never be established in theory.
However, in our algorithm, the question being answered at
each step is if a feasible clock period smaller than the current
one exists. Since it gives the existence answer, the optimality
is established directly once we reach such a step that gives
the answer: “No”.

Besides the difference of program methodology, our algo-
rithm has many other advantages over the binary search ap-
proach. First of all, it is polynomial time bounded. No pre-
cision is required. Second, the implementation is simpler. No
upper and lower bounds are needed. It is even automatically
determined by the algorithm itself how far a necessary step
can proceed. Third, the algorithm is very efficient in prac-
tice, which is confirmed by the experimental results. Last,
but no the least, without using binary search, our algorithm
is essentially incremental and has the potential of being com-
bined with other optimization techniques, such as gate siz-
ing, budgeting, etc., thus can be used in incremental design
methodologies [4].

References

[1] S. M. Burns. Performance analysis and optimization of asyn-
chronous circuits. PhD thesis, California Institute of Technology,
Computer Science Department, 1991.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

multiple clock domain systems. In ICCAD, pages 247-253, 2002.

A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou. Optimizing
two-phase, level-clocked circuitry. JACM, 44(1):148-199, 1997.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel
hypergraph partitioning:application in vlsi domain. In DAC, pages
526-529, 1997.

K. N. Lalgudi and M. C. Papaefthymiou. An efficient tool for
retiming with realistic delay modeling. In DAC, San Francisco,
CA, June 1995.

C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Syn-
chronous Circuitry by Retiming. In Advanced Research in VLSI:
Proc. of the Third Caltech Conf., pages 86-116. Computer Sci-
ence Press, 1983.

C. Lin and H. Zhou. Retiming for wire pipelining in system-on-
chip. In ICCAD, pages 215-220, 2003.

C. Lin and H. Zhou. Wire retiming for system-on-chip by fixpoint
computation. In DATE, pages 1092-1097, 2004.

P. Pan, A. K. Karandikar, and C. L. Liu. Optimal clock period
clustering for sequential circuits with retiming. IEEE TCAD,
17(6):489-498, June 1998.

N. Shenoy and R. Rudell. Efficient implementation of retiming. In
ICCAD, pages 226-233, 1994.

T. Soyata, E. G. Friedman, and J. H. Mulligan. Incorporating in-
terconnect, register, and clock distribution delays into the retim-
ing process. In IEEE Transactions on Computer-Aided Design
of Integrated Circuits, pages 16(1):105-120, January 1997.

D. K. Y. Tong and E. F. Y. Young. Performance-driven register
insertion in placement. In ISPD, pages 53-60, 2004.

H. Zhou. A new efficient retiming algorithm derived by formal
manipulation. In Workshop Notes of Intl. Workshop on Logic
Synthesis, 2004.

H. Zhou, D. F. Wong, I-M. Liu, and A. Aziz. Simultaneous routing
and buffer insertion with restrictions on buffer locations. DAC,
1999.



