FLUTE: Fast Lookup Table Based Wirelength Estimation Technique

Chris Chu
Electrical and Computer Engineering
lowa State University
Ames, IA 50010
email: cnchu@iastate.edu

Abstract not for high-degree nets. For example, the average error is 12.46%

for nets with degree 16. Although most nets in a typical circuit have
Wirelength estimation is an important tool to guide the design opa low degree, there are still a significant proportion of high-degree
timization process in early design stages. In this paper, we presdnts. Moreover, those high-degree nets usually account for a signif-
a novel wirelength estimation technique called FLUTE. Our techicant proportion of the total wirelength. For the 18 IBM circuits in
nique is based on pre-computed lookup table to make wirelengthe ISPD98 benchmark suite, 2.19% of all nets have a degree
estimation very fast and very accurate for low degmets. We and those nets account for 8.32% of the total wirelength. Hence, the
show experimentally that for FLUTE, RMST, and HPWL, the averRST-T technique will have limited accuracy in practice.

age error in wirelength are 0.72%, 4.23%, and -8.71%, respectively, |n this paper, we present a lookup table based routing estimation
and the normalized runtime are 1, 1.24, and 0.16, respectively. technique called FLUTE. We show that the set of all degtewts

can be partitioned inta! groups according to the relative positions
1 Introduction of their pins. For each group, the wirelength of all possible routing

topologies can be written as a small number of linear combinations
In the deep sub-micron / nanometer regime, interconnect issues likédistances between adjacent pins. We call each linear combination
delay and routability become the main concern in IC design. Thus, potentially optimal wirelength vector (POWYV). We store the few
design optimization even in the early design stages needs to BOWVs for each group into a table. To find the optimal wirelength
guided by physical information of interconnects (wirelength, conef a net, we just need to compute the wirelengths corresponding to
gestion, etc.). This paper focuses on layout stages like floorplannitige POWVs for the group the net belongs to, and then report the
and placement in which module (i.e., pin) locations are being fixeaine with minimum wirelength. This idea works well for low degree
We can evaluate each tentative floorplan or placement solution Imgts. For high-degree nets, we proposed a net breaking technigue to
performing real routing on it. However, it will be prohibitively ex- reduce the net size until the table can be used. We show experimen-
pensive to incorporate routing within the optimization process of atally that for FLUTE, RMST, and HPWL, the average wirelength
early stage. A more realistic approach is to apply some fast yet aerror are 0.72%, 4.23%, and -8.71%, respectively, and the normal-
curate techniques to estimate the physical interconnect informatidaed runtime are 1, 1.24, and 0.16, respectively.

A very popular technique is the half-perimeter wirelength The remainder of the paper is organized as follows. In Section 2,
(HPWL) estimation which equals the half-perimeter of the boundingve present the lookup table idea for wirelength estimation of low-
rectangle of pins [1]. This technique is very efficient. It also pro-degree nets. In Section 3, we describe the algorithm to generate
vides exact wirelength for optimally routed two-pin nets and threethe POWVs. In Section 4, we derive a very efficient technigue to
pin nets. However, it can significantly underestimate wirelength foevaluate all the POWVs when estimating wirelength for a given net.
higher-degree nets. Cheng [2] proposed a net weighting techniglreSection 5, we present the net breaking technique for high-degree
to scale up the HPWL estimation. The net weights are degreeets. In Section 6, we show the experimental results.
dependent constants and are experimentally determined. However,

even for different nets with the same degree, the error in the HPWé L k T b| f L D Net
estimation can be very different. It is impossible to derive a singl 00 Up aple 1or Low- egree €els

net weight to accurately scale up the HPWL estimation for all netSye define metof degreen to be a set of, pins such that the coor-
Another commonly used technique to estimate the wirelength inates of pini is (x;, y;) for 1 < i < n. Without loss of generality,

by rectilinear minimum spanning tree (RMST) [3,4]. This approaclassume:; < z» < --- < x,. Let thevertical sequence;ss . . . sn

can produce good wirelength estimation in reasonable runtime. Tl the list of indexes of all pins sorted in ascending order according

best time complexity of RMST i©(n log n) [3]. However, asimple to they-coordinate’ For example, for the net in Figure 1, its vertical

O(n?) time implementation of Prim’s algorithm is usually used insequence i8142.

practice because the degreare small for most nets [5]. In this paper, we only consider routing along the Hanan’gisl

We can also achieve accurate estimation by constructing rectiliptanan [11] pointed out that an optimal RSMT can always be con-
ear Steiner minimal tree (RSMT) using either optimal algorithmstructed based on the Hanan grid. Note that the length of a horizon-
[6, 7] or near-optimal heuristics [8, 9]. But these algorithms area| (respectively, vertical) edge in the Hanan grid is equal to the dis-
computationally too expensive to use in practice. Recently, Chaaince between two adjacent vertical (respectively, horizontal) Hanan
et al. [10] presented a very efficient RSMT heuristic called Regrid lines. We denothorizontal edge lengthsh; = z;4+1 — z; and
fined Single Trunk Tree (RST-T). This technique provides very good

wirelength estimation for low-degree nets (exact up to degree 5) but >Ties can be broken arbitrarily.
3Given a net, the Hanan grid is formed by drawing a horizontal line and

1Thedegreeof a net is the number of pins in the net. a vertical line through each pin.

net in Figure 1, the only two POWVs ard,2,1,1,1,1) and
(1,1,1,1,2,1). Which one is optimal depends on which/ef and

vo IS smaller. All possible routing solutions corresponding to these
two wirelength vectors are given in Figure 4. Some statistics on the
number of POWVs will be given later in Table 1.

Wirelength
. . . . vector:
Figure 1:An illustration of the vertical sequence of a net. (1,2,1,1,1,1)

vertical edge lengtlasv; = ys,,, — ys; for 1 < i < n. These

i+1
definitions are illustrated in Figure 2. Wirelength
vector:
° (1,1,1,1,2,1)
V3
Horizontal = #5555 e v Figure 4: The potentially optimal routing solutions for the net in
edge 2 .
o " Figure 1.
Vertical —> || Vi _
edge o If we can pre-compute all the POWVs and store them in a lookup
h h h table, the optimal wirelength will be easy to find. However, the

number of different nets is infinite as the pin coordinates can take
infinite different values. To handle this problem, we try to group to-
gether nets which can share the same set of POWVs. To see which
Observation 1 The wirelength of any routing solution on the nets can be grouped together, we first introduce the following def-
Hanan grid can always be written as a linear combination of edgénition. Two routing solutions for two different nets are said to be
lengths such that all coefficients are positive integers. topologically equivalenif they can be transformed to each other by
changing the edge lengths (or equivalently, the distance between ad-
For example, for the net in Figure 1, the wirelength of the thregacent Hanan grid lines), with the restriction that their values remain
possible routing solutions shown in Figure 3 (a), (b), and (c) can Legositive. This concept is illustrated in Figure 5.
written ashi+2ho+hs+v1+v2+2v3, h1+ho+hs+v1+2v9+3vs,
andhy + 2ha + hs + v1 + v2 + v3, respectively. For simplicity, _l '__l

Figure 2:An illustration of horizontal and vertical edge lengths.

we will express a wirelength as a vector of the coefficients, and call

it a wirelength vector For the routings in Figure 3 (a), (b), and

(c), the wirelength vectors afé, 2,1, 1,1, 2), (1,1,1,1, 2, 3), and ' o—
(1,2,1,1,1,1), respectively. ® °
. Figure 5:Topologically equivalent routing solutions for two differ-
T ent nets.
———— o— ° Observation 3 The wirelengths of topologically equivalent routing
I ® ® solutions can be expressed by the same wirelength vector.

2 b . . -
® ®) © For example, the wirelength of the two solutions in Figure 5 can
Figure 3:Three possible routings for the netin Figure 1. both be represented Ky, 2,1, 1,1, 2), although the values df;'s
andv;’s are different for the two nets.
In order to find the optimal wirelength for a given net, we can
enumerate all possible wirelength vectors. Note that although th&mma 1 If two nets have the same vertical sequence, then every

number of possible routing solutions is huge, the number of possouting solution of one net is topologically equivalent to a routing
ble wirelength vectors is much less. More importantly, we observgg|ution of the other net.

that we only need to consider a few wirelength vectors which have s hift the arid i £ th H ids f
the potential to produce the optimal wirelength. Most vectors argroo + Suppose we shift the grid lines of the two Hanan grids for

redundant because they have a larger or equal value than anotffip nets so that they become identical. Since they have the same

vector in all coefficients. For example, we can ignore the wirelengt}ﬁe"'cal sequence, the pins of the two nets are in the same locations

vector(1,2, 1, 1, 1, 2) because the wirelength produced by the vec! the Hanan grid. So every routing solution of one net will also be

tor (1,2,1,1,1,1) is alwaysvs less. We called a vector that can a routing solution of the other. =

potentially produce the optimal wirelength (i.e., cannot be ignored)

a potentially optimal wirelength vectqPOWYV). This observation Based on Observation 3 and Lemma 1, nets with the same vertical

is summarized below. sequence can be grouped together to share the set of POWVs. Since
the vertical sequence of a degreaet is a permutation of2. . . n,

Observation 2 For every low-degree net, there is only a few potenthere should be! groups. This observation is summarized below.

tially optimal wirelength vectors (POWVS).
Observation 4 The set of all degree-nets can be divided inta!

For example, for all degree-3 nets, the only optimal wirelengtlyroups according to the vertical sequence such that all nets in each
vector is (1,1,1,1), which corresponds to the HPWL. For the group share the same set of POWVs.

Our wirelength estimation technique pre-computes a lookup tabEvery POWV of G can be obtained by adding an entry of value 1
to store the set of POWVs associated with each group for low degreerresponding to the compacted edge to some POWYV of G'.
nets. To compute the optimal wirelength for a given net, we can fingroof: Assume without loss of generality that the left boundary
out the vertical sequence of the net and then obtain the vectors f@fth one pin P is compacted. So the first entry in POWVs of G cor-
the corresponding group from the table. Each vector generatesesponds to the compacted edge. We show that any POWSY
wirelength by summing up the product of the entries of the vectas must be in the forn{1, V') whereV”’ is a POWV of G'. Con-
with h;’s andv;’s. The minimum value over all vectors will give the sider any routing topology associated with If there are multiple
optimal wirelength. branches from P to other pins (as in Figure 7(a)), another routing

In fact, our approach can provide other information in addition téopology with a single branch can be constructed (as in Figure 7(b)).
the wirelength estimation. The table contains more detailed infofrfhe POWYV of this topology is better than in the first entry and is
mation on the utilization of different regions of the Hanan grid. Thaat least as good in all other entries, contrary to the factithist po-
information can be used for better congestion estimation. Moreovdgntially optimal. Hence, there should only be a single branch from
for each POWYV in each group, one or more of the routing topologig, which implies the first entry of" should be 1. Moreover, if the
can be stored. Then routing solutions can also be generated. branch does not go horizontally from P (as shown in Figure 7(c)),

it can be “flipped” (as in Figure 7(d)) to obtain a topology with the
: : same wirelength vector d8. By shifting P along the horizontal

3 Generation Of Wi relength Vectors branch until the next Hanan grid line, the grid becomes G'. Hence
In this Section, we discuss the generation of the sets of POWVs. Fite remaining entries df’ should form a POWV of G'. m
each small net degree and for each group (i.e., vertical sequence),
we need to generate all possible routing topologies, find the corre-

sponding wirelength vectors, and prune away the redundant ones. p T P J

The set of remaining vectors are the POWVs for the group. A trivial]
approach to generate all possible routing topologies is to enumerate ° o
all possible combinations of using and not using each edge in the i

Hanan grid and check if the resulting sub-graph is a Steiner tree cov-
ering all the pins. However, this approach is extremely expensive.
Even for degree 5, we need to enumerate a Hanan grid consisting of
40 edges for each of the 120 groups.

We propose a much more efficient algorithm based looumdary
compactiortechnique. For a given group, the boundary compaction °
technique reduces the grid size by compacting any one of the four ,
boundaries, i.e., shifting all pins on a boundary to the grid line adja- ©)
cent to that boundary. The set of routing topologies of the original
problem can be generated by expanding the routing topologies of the Figure 7:lllustration for proof of Lemma 2.
reduced grid back to the original grid. Figure 6 uses the compaction
of left boundary as an example to illustrate the idea. Our algorithm is given in Figure 8. Instead of first enumerating
all routing topologies and then producing the wirelength vectors,
we generate wirelength vectors directly, which is much easier and

(2) (b)

PR 'S —o— much more efficient. We also incorporate the pruning of redundant
O ® wirelength vectors into the algorithm to prune as early as possible,
which further improves the efficiency of the algorithm.
® °
(]
Left Left Algorithm Gen-WVs(G)
Boundary H Boundary Input: G is a grid with some pins at grid nodes
Compaction Expansion Output: A set of WVs for G
® . begin
One possible

1. If G is simple enough,

° X
. routing 2. generate and return the set of POWVs for G
topology :) >
4 3. else if any boundard contains only one pin,
J °) 4. return Expand{Gen-WVs(Compaci{G)))
else
Figure 6:An illustration of left boundary compaction. 5. S={Some extra WVs for routing topologies

not considered by boundary compacton
6. return Prune(& Expand-left(Gen-WVs(Compact-left(G)))
U Expand-right(Gen-WVs(Compact-right(G)))
U Expand-top(Gen-WVs(Compact-top(G)))
U Expand-bot(Gen-WVs(Compact-bot(G)))

We can route a net by performing boundary compaction and e
pansion recursively. By compacting the four boundaries in differ
ent order, a set of different routing topologies can be generated.
Since we are performing the routing in a restricted way, it is possible
that some routing topologies and hence some wirelength vectors e
missed. The following lemma suggests that nothing will be misse
if a boundary with only one pin is compacted.

. . .) . Figure 8:The wirelength vector generation algorithm.
Lemma 2 Given a grid G with some pins at grid nodes. Let G’ be

a reduced grid from G by compacting a boundary with only one pin. In Step 1-2, we directly generate the POWVs when G consists of

Degree| # of groups| # of POWVs in a group, Average # of ADD/SUB

n n! Min. Ave. Max. Degree per group per POWV

2 2 1 1 1 n Independent MST | Independent MST

3 6 1 1 1 2 0 0 0 0

4 24 1 1.667 2 3 0 0 0 0

5 120 1 2.467 3 4 1.333 1.333 0.8 0.8

6 720 1 4.433 8 5 4.267 4.267 1.73 1.73

7 5040 1 7.932 15 6 14.222 10.333 3.208 2.331

8 40320 1 15.803 34 7 39.651 20.025 4.999 2.525
Table 1:Number of POWVs in a group for nets of a given degree. 8 114.687 41521 7.257 2627

Table 2:Average number of addition/subtraction required.

a single (horizontal or vertical) grid line or i 2 grid. Step 3—4 is

based on Lemma 2. Since one recursive call is made instead of fdd®WV (a1, az, ..., an, 81, B2, ..., Bn), We compute the expres-

and this case occurs frequently for low degree nets, the runtime 8ionWL =>"" a;hi+ >, Bivi. Since entries in POWVs are

the algorithm can be dramatically reduced. Step 5 is to include sontigpically small integers, and addition is computationally much less

extra wirelength vectors missed by boundary compaction to ensuggpensive than multiplication, it is more efficient to add the edge

that POWVs are generated. We prove in the following theorem thégngth several times instead of using multiplication. In addition,

Step 5 is not needed for nets with degree 6 or less. each of the edge length should be used at least once. So it is better
to evaluate the expressiondsL = HPW L+ " (ai—1)hi+

Theorem 1 The algorithm Gen-WVs() enumerates all POWVs fop ., (8: — 1)v:. Then we havén less terms to add.

nets with degree 6 or less, even if no extra wirelength vector is in- However, we observe that most POWVs shared by a group of
cluded in Step 5. nets are very similar to one another. Many are differed in only one
Proof sketch: We can always apply Lemma 2 to reduce the griddr two entries. Hence, some POWVs can be efficiently evaluated by
until all boundaries contain at least two pins. If the net has onldding or subtracting some terms from some other previously com-
six pins or less, it implies at least two of the pins are at the gri@uted POWVs. By exploring the dependency among the POWVs,
corners. Some detailed case analysis can show that all POWVs villie evaluation of all POWVs for a net can be made more efficient
be generated by the algorithm. o than the independent approach.

The problem of determining the best dependency among POWVs

If we ignore Step 5 for nets with degree 7 or more, the wirelengtfPr a given group can be transformed into a minimum spanning tree
is not always optimal. We notice that for those non-optimal degredroblem. Consider a group associated with a sét BOWVs. We
7 nets, there is always a stage during recursive compaction such tapstruct a complete graph wikht 1 nodes . of these nodes corre-
all 7 pins are on the boundary of the grid. In that case, the optspond to thés POWVs in the set and one more node corresponds to
mal wirelength may be produced by performing the routing alon§e wirelength vectof1,...,1,1,...,1) (i.e., HPWL). The weight
the grid boundary. The boundary compaction technique may (@f each edge is set to the 1-norm of the difference of the two cor-
may not) miss such a topology and the associated wirelength vectegsponding wirelength vectors. In other words, the edge weight is
This problem also occurs for nets with degree 8 or more. Hence, ffiual to the number of addition/subtraction required to convert from
Step 5 of algorithm Gen-WVs(), if there ane(> 7) pins on bound- the wirelength of one vector to that of the other. Given a minimum
aries and no pin inside; wirelength vectors will be included in S. spanning tree of the graph, we can evaluate the POWVs in an order
Each vector corresponds to a ring topology that surrounds the gitgfined by a breath-first traversal of the tree starting from the node
with part of the ring between one of the pairs of adjacent pins Corresponding to the HPWL. The total edge Welght of the minimum
removed. Although we do not have a formal proof that after introspanning tree gives the number of addition/subtraction required to
ducing the near-ring topology, the set of WVs generated includegg®mpute allk POWVs.
all POWVs for 7-pin nets, we have experimentally verified that the The average number of addition/subtraction required for the inde-
FLUTE wirelength is always exact for 3 million randomly generatechendent approach and the MST-based approach are listed in Table 2.
7-pin nets. So it is very likely that FLUTE is also exact for degreeColumns two and three give the average number per group, which is
7. At least, it can be considered to be exact in practice. The negsroportional to the average runtime to evaluate a net. It is clear that
ring topology in Step 5 also helps to reduce the estimation error fahe MST-based approach can significantly speed up the evaluation
nets with degree 8 or more but is not enough to ensure that the Wshigh-degree nets. The last two columns give the average number
generated are POWVs. In the following, for the sake of simplicityper POWV, which is proportional to the average runtime to compute
we will refer to the WVs generated by Gen-WVs() as POWVs, ala POWV. It shows that for the independent approach, a lot more en-
though we lack a formal proof for degree 7 and we know it is notries need to be added for POWVs of high degree nets, while for
the case for degree 8 or more. the MST-based approach, the number of entries to be add/subtract

The number of POWVs generated by the algorithm Gen-WVs(icreases slowly with net degree.
is listed in Table 1. Note that the numbers in this table may not be

accurate fon = 7 (although very unlikely) and = 8. 5 Algorithm fOf High-Degree Nets

H : . For high-degree nets, the CPU time to generate the POWVs will be
4 Minimum erelength CompUtatlon signifigant agnd the memory requiremer?t for the table will be huge.
To compute the minimum wirelength of a given net, we need0 the table lookup approach is practical only for low-degree nets.
to consider the corresponding set of POWVs. A straightforward In FLUTE, we have a user-defined paramdierA lookup table
approach is to evaluate the POWVs independently. For eads constructed up to degrde. Nets with degree higher thah are

broken into several sub-nets with degree ranging from 2tto
which the table lookup estimation can be applied. To break a net,
we first select a breaking direction (either horizontal or vertical) and
a pin. We then separate the other pins into two sub-nets according
to the pin coordinate and the breaking direction. The selected pin is
included in both sub-nets as well. For example, in Figure 9(a), pin 3

Circuit | #ofnets Ave. degre¢

is selected to break a 7-pin net horizontally. Then two sub-nets are ibm01 | 14111 3.58

routed independently. If the degree of a sub-net is still greater than ibm02 | 19584 4.15

D, we can apply this idea recursively. ibm03 | 27401 3.41

ibm04 31970 3.31

ibm05 | 28446 4.44

. O ibm06 | 34826 3.68

o ibm07 | 48117 3.65

S N ibm08 | 50513 4.06

ibmQ9 60902 3.65

@ ®) © ibm10 | 75196 3.96

Figure 9:An illustration of net breaking. ibm1l | 81454 3.45

ibm12 77240 4.11

However, Figure 9(b) demonstrates that there may be some re- ibm13 | 99666 3.58

dundant wires in the resulting routing solution. Note that for the ibm14 | 152772 3.58

same example, if we break it horizontally at pin 4 as shown in Fig- ibm15 | 186608 3.84

ure 9(c), the solution will be optimal. So we need to try both di- ibm16 | 190048 4.10

rections and selecting different pins. If we really make recursive ibml7 | 189581 4.54

calls to evaluate each of these possibilities, the runtime will be sig- ibm18 | 201920 4.06

nificantly increased. In our implementation, we use the HPWL to All 1570355 3.92
predict the wirelength of each possibilities. Then only one pin in Table 3:Benchmark information.

each direction is selected to really break the net. The better of the
two wirelengths will be returned.

6 Experimental Results

We compare the following five techniques: the exact RSMT soft-
ware GeoSteiner 3.1 [12], the near-optimal Batched Iterated 1-
Steiner (BI1S) heuristic for RSMT [8], HPWL, an efficiet(n?)
implementation of Prim’s algorithm for RMST [5], and FLUTE

with D=7. HPWL and FLUTE are implemented by us in C. All Wirelength error

the other three programs are downloaded from the GSRC Book- Circuit T BIIS HPWL RMST ELUTE
shelf [13]. The 18 IBM circuits in the ISPD98 benchmark suite .

are used. Some information of the benchmark circuits are given in ibm01 | 0.10% -8.86% 4.09% 0.70%
Table 3. There are totally 1.57 million nets. The placement is gen- !bm02 0.12% -12.56% 5.85% 1.02%
erated by FastPlace [14]. All experiments are carried out on a 750 !meS 0.10% -8.65% 4.64% 0.64%
MHz Sun Sparc-2 machine. !bm04 0.06% -6.30% 4.05% 0.40%
. o .) . ibm05 | 0.11% -11.22% 4.49% 1.17%
The _Nlrelengt_h estimation comparison is shown in Table 4. ibmo6 | 0.14% -12.98% 5.96% 0.94%
GeoSteiner provides the exa(_:t wirelength for all nets. A_s the ta- ibm07 | 0.09% -8.29% 4.72% 0.49%
ble'sholws, FLUTE can consistently produce accurate erglength ibmos | 0.12% -12.45% 4.78% 1.38%
estimation for all circuits. The average error over all nets is only ibmo9 | 0.07% -7.97% 4.33% 0.58%
0.72%. RMST produces acceptable accuracy but is far Ie;s accurate ibm10 | 0.08% -7.85% 4.11% 0.60%
than FLUTE. The average error of RM_ST_ over all nets is 4.23%. ibmll | 0.06% -6.16% 4.02% 0.37%
HPWL underestimates the yvlrelength S|gn|f|gantly. The average er- ibmi12 | 0.07% -7.61% 3.78% 0.59%
ror of HPWL over all nets is -8.71%. BI1S is the most accurate. ibm13 | 0.11% -924% 4.78% 0.71%
ibom14 | 0.07% -6.98% 3.91% 0.48%
The breakdown of the wirelength estimation for nets with differ- ibml15 | 0.08% -8.06% 4.20% 0.65%
ent degree is shown in Table 5. A summary of all 18 circuits is given. ibm16 | 0.09% -9.26% 4.23% 0.77%
Columns 2 and 3 provide a breakdown on the number of nets and ibm17 | 0.08% -8.15% 3.90% 0.66%
the wirelength. Notice that although most nets are of degree two or ibm18 | 0.10% -10.65% 4.43% 1.07%
three, there are still a substantial proportion of high degree nets and All 0.09% -8.71% 4.23% 0.72%

the contribution of high degree nets to the wirelength is very signifi-
cant. For example, nets with degree 8 or higher account for 11.91%
of all nets and contribute 35.27% of total wirelength. Columns 4 to
7 report the percentage error in wirelength. As the table shows, all
four techniques have more error for nets with higher degree. In par-
ticular, the HPWL underestimates the wirelength significantly for

Table 4:Percentage error in wirelength estimation.

Net breakdown Wirelength error 7 Conclusion and Discussion
Degree # WL BI1S HPWL RMST FLUTE

54.92% 27.98%| 0.00% 0.00% 0.00% 0.00% Inthis paper, we introduced a fast and accurate lookup table based
14.40% 10.26%| 0.00% 0.00% 2.50% 0.00% wirelength estimation technique called FLUTE. The table stores the
7.68% 7.84% | 0.00% -2.20% 3.80% 0.00% setof POWVs associated with each vertical sequence for low degree
561% 8.18%] 0.05% -4.74% 4.74% 0.00% nets. We proposed an algorithm based on boundary compaction to
22202 igg(ﬁ: 88;02 ;8202 23202 8830; generate _the sets of PO\/_Vys. We designed a MST-based approach
813 | 8.40% 22.71%| 017% -16.28% 7.13% 1.299 to determine the most efficient way to evaluate each set of POWVs.
>14 | 351% 12.56%| 0.28% -28.83% 856% 3.41% We presented a net breaking technique to divide a high degree net
- into low degree nets so that the table lookup estimation can be used.
Table 5:Breakdown of the wirelength estimation according to deThe experimental results showed that FLUTE is significantly more
gree for nets of all 18 circuits. accurate than RMST and HPWL. It produces optimal wirelength for
all nets with degree 7 or less. It is also faster than RMST.

~NOoO O WN

Runtime (s)
Circuit GeoS BI1S HPWL RMST FLUTH References
ibm01 | 473.33 72.48 0.00 0.03 0.02

!bm02 907.86 108.93 0.01 0.06 0.05 [1] M. Sarrafzadeh and C. K. WongAn Introduction to VLSI
'Em83 358-83 12(2)-00 880 882 882 Physical DesignMcGraw-Hill, 1996.

ibm04 70.4 162.15 .01 . . I . . -

ibmo5 | 1194.88 146.23 0.01 0.08 0.07 [2] Chih-Liang Eric Cheng. RISA: Accurate and efficient place-

ment routability modeling. IfProc. IEEE/ACM Intl. Conf. on

Ibm06 | 1264.44 176.88 0.01 0.06 0.05 Computer-Aided Desigmpages 690-695, 1994.

ibm07 | 1683.45 244.50 0.01 0.09 0.07

ibmos | 1922.16 266.02 0.02 0.14 0.13 [3] L. J. Guibas and J. Stolfi. On computing all northeast nearest
ibm09 | 2039.19 308.61 0.01 0.12 0.08 neighbors in the L1 metricInformation Processing Letters
ibm10 | 3097.52 38344 002 016 0.3 17:219-223, 1983.

ibm11 | 2778.43 411.29 0.02 0.14 0.09 [4] T. H. Cormen, C. E. Leiserson, and R. L. Rivelttroduction
ibm12 | 3152.42 394.68 0.02 0.18 0.14 to Algorithms MIT Press, 1990.

!bm13 3364.12 504.71 0.02 0.19 0.13 [5] Andrew B. Kahng and lon Mandoiu. RMST-Pack: Rectilin-
ibml14 | 5558.21 775.54 0.04 0.29 021 ear minimum spanning tree algorithnttp://visicad.

ibm15 | 7053.64 949.99 005 040 032 ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST/

ibm16 | 7934.45 968.36 0.06 0.43 0.37
ibm17 | 8629.35 973.79 0.07 0.50 0.45
ibm18 | 7816.41 1036.36 0.07 0.49 0.43

[6] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree
problem.Annals of Discrete Mathematic$992. Elsevier Sci-
ence Publishers.

All 21678 2866 0.16 1.24 1
]]]] [7] D. M. Warme, P. Winter, and M. Zachariasen. Exact algo-
Table 6:RL_Jnt|me_ comparison. The overall_runtlmes in the last row rithms for plane Steiner tree problems: A computational study.
are normalized with respect to FLUTE runtime. In D.Z. Du, J.M. Smith, and J.H. Rubinstein, editokslvances
in Steiner Treespages 81-116. Kluwer Academic Publishers,
2000.

high degree nets. Note that if we scale the wirelength by the ne

weight¢ in [2], we will significantly overestimate the wirelength.

FLUTE is exact for _nets up to degree 7, while I?_,Ils_is exact only up Trans. Computer-Aided Design3(11):1351-1365, Novem-

to degree 4. For higher degree nets, FLUTE is still very accurate. ber 1994

The net breaking step is the cause of the error of FLUTE. For higher) ' o))

net degree, the net breaking step will be applied more times. So th&] Hai Zhou. Efficient steiner tree construction based on span-

wirelength error will also be higher. ning graphs. IrProc. Intl. Symp. on Physical Desigpages
152-157, 2003.

The runtime comparison is listed in Table 6. Geo_Stelner_and_ BI1_ 0] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng. Refined single
are both very expensive and not suitable for routing estimation in
early design stages. On the other hand, HPWL, RMST and FLUTE
are all very fast. In particular, RMST is 24% slower than FLUTE
and HPWL is 6.22 times faster than FLUTE. The time to generat;
the table up taD = 7 is 50.5 seconds and it only needs to be don
once.

f8] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. Closing
the gap: Near-optimal Steiner trees in polynomial titleEE

trunk tree: A rectilinear Steiner tree generator for interconnect
prediction. InProc. ACM Intl. Workshop on System Level In-
terconnect Predictionpages 85-89, 2002.

11] M. Hanan. On Steiner’s problem with rectilinear distance.
SIAM Journal of Applied Mathematict4:255-265, 1966.

)) [12] GeoSteiner — software for computing Steiner treéstp:

We have also performed the experiments whkis set to 8. The Iwww.diku.dk/geosteiner/
error in wirelength estimation over all 18 circuits is 0.59%. Only
0.064% of all degree-8 nets in 18 circuits are non-optimal. ThL:ls] A. B Caldwell, A. B'_ Kahng,_ and |. L. Markov.

: o N . VLS| CAD Bookshelf. http://www.gigascale.org/
wirelength estimation runtime is 1.25 times slower than thd? e bookshelf/
7 (i.e., comparable to RMST runtime). The time to generate the))) o
table up toD = 8 is 54.5 minutes. [14] Natarajan Viswanathan and Chris Chu. FastPlace: Efficient
analytical placement using cell shifting, iterative local refine-

ment and a hybrid net model. Rroc. Intl. Symp. on Physical
4According to [2], the net weights for nets with degree 3 to 8 are 1, 1.08, Design pages 26-33, 2004.

1.15,1.22,1.28, and 1.34, respectively.

