
Simultaneous Short-Path and Long-Path Timing Optimization for FPGAs

Ryan Fung, Vaughn Betz, William Chow
Altera Corporation

Toronto Technology Center – Toronto, Canada
{rfung, vbetz, wchow}@altera.com

Abstract
This paper presents the Routing Cost Valleys (RCV) algorithm

– the first published algorithm that simultaneously optimizes all
short- and long-path timing constraints in a Field-Programmable
Gate Array (FPGA). RCV is comprised of a new slack allocation
algorithm that produces both minimum and maximum delay
budgets for each circuit connection, and a new router that strives
to meet and, if possible, surpass these connection delay
constraints. RCV achieves excellent results. On a set of 100 large
circuits, RCV improves both long-path and short-path timing
slack significantly vs. an earlier Computer-Aided Design (CAD)
system that focuses solely on long-path timing. Even with no
short-path timing constraints, RCV improves the clock speed of
circuits by 3.9% on average. Finally, RCV is able to meet timing
on all 72 Peripheral Component Interconnect (PCI) cores tested,
while an earlier algorithm fails to achieve timing on all 72 cores.
Keywords: timing, routing, FPGA

1 Introduction
Long-path timing optimization is an essential feature of most,

if not all, modern CAD tools. In order for designs to meet
performance targets, designers specify long-path timing
constraints, which indicate that the longest path between certain
circuit endpoints must have a delay less than some value.
Examples of long-path timing constraints include frequency
requirements for clocks, setup times required at circuit primary
inputs (TSETUP), and maximum permissible clock-to-output delays
at circuit primary outputs (maximum TCLOCK-TO-OUTPUT). If a CAD
tool fails to satisfy all the long-path timing constraints, time
consuming manual intervention is often required; users may be
forced to manually synthesize, place, and/or route parts of the
design to achieve the needed delays. Consequently, much
research has been devoted to the study of techniques for long-
path timing optimization.

Satisfying all long-path timing constraints is not sufficient to
guarantee design functionality, however. For a circuit to function
correctly, short-path timing constraints must also be satisfied.
Short-path timing constraints specify that the minimum path
delay between two circuit endpoints must be greater than some
value. Short-path timing constraints not only occur between
registers in a chip to guarantee there are no hold time violations
within the chip, they also occur on paths from the circuit primary
inputs to registers (input THOLD requirements), and on paths from
registers to circuit primary outputs (minimum TCLOCK-TO-OUTPUT
requirements), to guarantee correct data transfers between chips.

Generally, if a design does not meet all long-path timing
constraints, the design must be run at a frequency lower than
originally desired. However, if a design fails to meet its short-
path timing constraints, the design will typically fail to operate at
any clock frequency. Despite this fact, short-path timing

optimization has received very little research attention, both in
academia and industry. This resulted in designers having to
manually fix short-path timing violations – a laborious process
that is becoming ever more painful as designs grow larger, and as
clocking structures grow more complex. As well, since fixing
short-path timing violations involves adding delay to portions of
the circuit, manually fixing short-path violations often creates
long-path violations, resulting in lengthy design iterations.

The FPGA industry has recently recognized that requiring
manual optimization of short-path timing is no longer acceptable,
and recent versions of Altera's Quartus® II CAD system [1] and
Xilinx's ISE CAD system [2] both incorporate optimization
algorithms for short-path timing constraints. This paper presents
a new algorithm, RCV, which is the first published algorithm for
simultaneously satisfying both short-path and long-path timing
constraints in an FPGA. RCV is the algorithm used by Altera’s
Quartus II software.

The algorithm described in this paper has several advantages
over prior techniques. First, it removes the need for designers to
manually repair short-path timing constraint violations. Second,
this algorithm meets short-path constraints by inserting extra
routing delay where appropriate – hence it does not require any
extra logic cells. This is better than the typical manual technique
where designers insert logic cells configured as buffers to slow
down signals, wasting logic. Third, this algorithm simultaneously
optimizes both short-path and long-path timing constraints to
maximize the chance of achieving a design implementation that
meets all timing constraints. Finally, when the RCV technique is
applied to designs with only long-path timing constraints, it
produces a 3.9% improvement in the performance of designs
compared to a state-of-the-art negotiated congestion-based router.
This indicates RCV is very effective at optimizing long-path
timing constraints and, hence, is also useful for designs with no
short-path timing problems.

This paper is organized as follows. Section 2 outlines related
prior work. Section 3 provides a precise problem definition.
Section 4 describes the RCV algorithm and Section 5 presents
experimental results. Section 6 concludes the paper.

2 Prior Work
2.1 FPGA Techniques

Prior to this work, FPGA vendors primarily attacked the short-
path problem by building special features into their FPGAs –
instead of employing more general CAD algorithms. First,
FPGAs include dedicated low-skew clock networks. When a
clock is routed on such a network, register transfers within the
clock domain will not have hold-time (short-path) violations.
Second, FPGAs include programmable delay chains in each IO
cell. The designer or the CAD tool sets these delay chains to slow
down incoming and outgoing signals appropriately to meet short-
path timing constraints at the circuit primary inputs and outputs.

These hardware solutions fall short of the needs of modern
FPGAs and designs in several ways. First, today’s complex
FPGA designs often contain more clocks than the number of
available low-skew networks. This forces some clocks to use
regular routing, which introduces significant clock skew and,
hence, increases the chance of a short-path timing violation.
Second, the increasing magnitude of process variation and the
increasing speed of FPGAs are making it more difficult to design
a clock network with sufficiently low skew that all possible
register transfers are free of short-path timing problems. Third,
many modern designs use Phase-Locked Loops (PLLs) to
generate phase- and frequency-related clocks; those designs
typically expect synchronous transfers between these clock
domains. This often leads to short-path timing problems. Fourth,
programmable delay chains require a large amount of area, so
they are typically only used to slow down signals entering and
leaving the chip. This presents a problem because delay can only
be added to timing paths at the point they intersect the chip
periphery. Often several timing paths begin at the same input IO,
pass through a common delay chain, and terminate at various
registers throughout the chip. Each of those paths would “prefer”
a different delay chain setting to ensure short-path timing
constraints can be met while still satisfying long-path timing
constraints. However, since all those paths pass through the same
delay chain, a compromise is the best the programmable delay
chain solution can achieve. Figure 1 illustrates the problem. If the
goal is to program the delay chain to achieve IO THOLD ≤ 0 and
TSETUP ≤ 3 ns, no setting of the delay chain can meet both these
timing constraints. To satisfy THOLD ≤ 0 at Register A, the delay
chain must be set to at least 1 ns, but to satisfy TSETUP ≤ 3 ns at
Register B, the delay chain must be set to 0 ns (turned off).

Programmable Delay Chain

Path B Delay: 6 ns

Path A Delay: 2 ns

Clock Delay: 3 ns

Logic Cells

Register A Register B

IO

Clock

Figure 1 Example of programmable delay chain use.

2.2 ASIC Techniques
Typically, Application-Specific Integrated Circuit (ASIC)

CAD tools fix short-path timing violations by inserting chains of
buffers on some connections to slow down paths that are too fast.
Shenoy et al [3] present two algorithms to help address the short-
path buffer insertion problem – a greedy algorithm (with
quadratic-time complexity in connection count) and one based on
linear programming. Both algorithms are used to determine the
minimum amount of delay that should be added to connections to
satisfy short-path timing – without creating a long-path violation.
In FPGAs, the equivalent technique inserts logic cells configured
as buffers on some connections. Logic cell insertion is highly
inefficient in FPGAs, however, since a significant portion of the
logic capacity of an FPGA can be consumed by these logic cell
buffers.

2.3 Long-Path Timing Optimization
The RCV algorithm builds on two prior long-path timing

optimization algorithms: slack allocation and negotiated-
congestion routing.

2.3.1 Slack Allocation
Timing constraints are specified on paths in a circuit. The end-

points of paths are typically registers, primary inputs, or primary
outputs – with zero or more levels of combinational logic
between them. In general, however, a path can be any series of
connections in a circuit. The number of possible paths in a circuit
is exponential in the number of connections. Explicitly
monitoring all these paths during CAD optimization would be
highly inefficient, both in terms of memory and run-time. Long-
path slack allocation is a well-known technique that produces a
maximum delay budget for each connection in a circuit. If the
design can be implemented such that each connection has a delay
less than its maximum delay budget, all long-path timing
constraints will be satisfied.

Various techniques have been discussed for long-path slack
allocation. All these techniques rely on long-path timing analysis
which computes connection slacks – where a connection slack is
the minimum slack of all paths passing through that connection.

The Zero-Slack Algorithm (ZSA) is developed in [4]. ZSA
starts with a set of connection delays that result in all long-path
slacks being positive. It then iterates between allocating slack to
increase the connection delays and performing timing analyses to
update the connection slacks. During each iteration, ZSA
identifies the path with the smallest positive slack and distributes
the slack to the connections of the respective path by increasing
the connection delays. Eventually, all the positive path slack is
allocated, and every connection has zero slack. The final set of
connection delays can be used as maximum delay budgets. CPU
time is quadratic in the number of connections.

The Iterative-Minimax-PERT algorithm [5] improves on ZSA
by introducing a faster slack allocation algorithm. This algorithm
defines weights that can be used to distribute slacks non-
uniformly – connections with larger weights are allocated more
slack. Path weights can be computed from the connection
weights, where the weight of a path is the sum of the weights of
its connections. The slack allocated to each connection, c, is:

h(c)ths_throug_of_all_pamax_weight

weight(c)slack(c)
cated(c)slack_allo

⋅
= (1)

This technique has linear-time complexity in the number of
connections because each slack-allocation iteration uses (1) to try
to distribute all the remaining slack throughout the design and, in
practice, only a few iterations are required to converge.

The Limit-Bumping Algorithm [6] proposes the use of
connection lower delay bounds. By ensuring that the maximum
delay budget of each connection is larger than its lower delay
bound, many unrealizable solutions are avoided. To facilitate
this, a weighting scheme is proposed that encourages removal of
delay from connections that are further from their lower delay
bounds. Finally, this algorithm is capable of handling problems
where some connection slacks are initially negative.

2.3.2 FPGA Routing
While there are many FPGA routing techniques, only a

minority of the algorithms developed explicitly analyze and
optimize circuit timing, and all of those algorithms focus solely
on meeting long-path timing constraints [6][7][8][9][10].

Frankle, in [6], describes a router that attempts to route
connections so each has a delay less than a maximum delay
budget, determined from a long-path slack allocation.
Connections with maximum delay budgets closer to their lower-
bound “achievable” delays are routed first. If some connections

cannot be routed with delay less than their maximum delay
budgets, the corresponding maximum delay budgets are increased
by 20%, and a rip-up and re-try procedure is invoked.

In [8], Ebeling et al develop the Pathfinder negotiated-
congestion routing algorithm. This general algorithm has become
a very successful routing technique for FPGAs, and also
underlies the VPR router [9]. The academic FPGA routers with
the lowest wiring requirements on a set of standard benchmarks
[9][11] are based on negotiated congestion. This indicates that the
negotiated congestion framework is excellent for FPGA routing,
where wiring is generally quite limited.

A negotiated congestion router begins by picking a set of
routing resources – wires and block input/output pins – to
implement each connection. The routing resources are initially
selected so each connection is routed in minimum delay, while
accepting “congestion.” Congestion occurs when multiple nets
use the same routing resource – an electrical short, indicating an
illegal routing. After the initial routing of connections in
minimum delay, the router iteratively re-routes all nets
encountering congestion. The router inner-loop uses a routing-
resource cost to “score” the use of resources as it does a directed
search through a graph representing the routing fabric from the
source to the sink of a connection. The congestion component of
that cost is used to gradually resolve congestion (over several
routing iterations) by encouraging connections to take detours
around congested resources. The delay portion of the router cost
tries to keep critical connection delays to a minimum, and makes
the router timing-driven. More specifically, from [9], the delay
cost of a partial routing path, r, for a connection c is:
 sink(c))(r,T(c)RITCc)(r,delay_cost TERPPATH-LONG ⋅= (2)

The long-path connection criticality, CRITLONG-PATH, indicates
the importance that a connection be routed with small delay [9]:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 0,

MAX
PATH-LONG D

slack(c)-0.99max(c)RITC (3)

DMAX is the longest path delay in the circuit. Connections with
small long-path slack will tend to get CRITLONG-PATH values near
1. TTERP(r,sink(c)) is the total estimated routing path delay, which
is a function both of the partial routing path, r, being considered
by the router and the destination (sink(c)):
 sink(c))(r,Tα(r)Tsink(c))(r,T ESTIMATEKNOWNTERP ⋅+= (4)

 The delay of the partial routing path, TKNOWN(r), can be
computed accurately. However, the delay from the end of r to the
destination, TESTIMATE(r,sink(c)), is not precisely known as the
router evaluates (4); a look-ahead function is used to estimate
how much additional delay will be incurred. Larger values of α
make the search more directed, potentially at the expense of
quality; many FPGA routers use values of α near 1.

The total cost of a partial routing path, r, is:

 c)estion(r,total_congcCRIT-[1
c)(r,delay_costc)(r,total_cost

PATH-LONG ⋅
+=

)]((5)

This results in critical connections avoiding detours more than
non-critical connections – critical connections penalize delay and
ignore congestion to a greater extent.

3 Problem Formulation
We represent a circuit as a directed graph G(V,E) in which

each vertex, v, represents a block input pin or output pin, and
each edge, e, represents either a connection, c, from a block
output pin to a block input pin, or a dependency from an input pin

to an output pin of a block. Each edge has an associated delay.
The delays of the edges representing connections from block
output pins to input pins can be altered by the FPGA placement
and routing tool, while the delays of the dependency edges within
blocks are generally fixed.

Timing constraints are applied to paths in G. A long-path
timing constraint states that the total delay of a path must be less
than some value. For example, if the user has a frequency
requirement of 100 MHz for some clock, clk, the following
constraint is implied for all paths from register output nodes,
sreg, to register input nodes, dreg, clocked by clk:

domain clock clkdreg sreg,

ns, 10dreg)(clk,T-sreg)(clk,Tdreg)(sreg,T FASTSLOWSLOW
∈∀

≤+ (6)

TSLOW(sreg,dreg) is the largest delay of any path from node
sreg to node dreg, while TFAST(clk,dreg) is the smallest path delay
from the clk node to register dreg. Therefore, for each pair of
registers in the clock domain, there are three paths that affect
long-path constraint satisfaction – two clock paths and the
register-to-register data path. The two clock path delays are
usually similar because low-skew global networks are generally
used for clock distribution. Even when that is not the case, most
CAD tools attempt to control the skew on the clock paths, and
hence optimization of the register-to-register path delay is
sufficient to satisfy most long-path timing constraints.
Consequently, in this paper, we adjust only the data-path delay
and leave clock-path delays constant. Re-arranging (6) to reflect
this yields:

ns 10sreg)clkT-dreg)clkT dreg)(sreg,AX M

wheredomain, clock clkdreg sreg,
 dreg),(sreg,AXMdreg)sreg,T

SLOWFASTT

TSLOW

+=
∈∀
≤

,(,(

(
 (7)

A short-path timing constraint states that the delay along a
path should be no less than a particular value. For example, a
THOLD = 0 constraint on a circuit’s primary inputs implies:

G circuitdst_reg src_io,

0,dst_reg)dst_regclkT-dst_reg)src_io,T SLOWFAST
∈∀

≥),((((8)

Assuming that we optimize only the IO-cell-to-register path
delays, while the clock-path delays are constant, (8) becomes:

dst_reg)(dst_reg)clkTdst_reg)(src_io,IN M where

G, circuitdst_reg src_io,
dst_reg),(src_io,INMdst_reg)src_io,T

SLOWT

TFAST

,(

(

=
∈∀
≥

 (9)

Therefore, the simultaneous short-path and long-path
optimization problem can be summarized as:

G circuitdst src,

dst),(src, MAXdst)src,Tdst)src,Tdst)(src,INM TSLOWFASTT
∈∀

≤≤≤ (((10)

MINT(src, dst) is the minimum delay allowed for all data paths
between the source and destination based on the designer’s short-
path timing constraints and the relevant clock-path delays;
MAXT(src, dst) is the maximum delay allowed for all paths
between the source and destination based on the designer’s long-
path timing constraints and the relevant clock-path delays. The
goal of this work is to implement a design with connection delays
that lead to the satisfaction of (10).

4 Algorithm Description
We attack the simultaneous short- and long-path timing

optimization problem in two phases. First, we use a new slack
allocation algorithm to convert the path-based timing constraints
of (10) into connection-based delay-budget constraints. Second,
we develop a new FPGA routing algorithm, which is guided by a

combination of these delay budgets and connection slacks, to
meet the circuit timing constraints.

4.1 Short-Path and Long-Path Slack Allocation
The new slack allocation algorithm extends [4], [5], and [6] to

consider short-path timing constraints as well as long-path timing
constraints. It produces minimum delay budgets in addition to
maximum delay budgets and introduces upper delay bounds to
complement lower delay bounds. These upper delay bounds
result in the algorithm producing better maximum delay budgets,
and are essential to computing reasonable minimum delay
budgets. These minimum and maximum delay budgets can be
used to guide an optimization algorithm to satisfy all short-path
and long-path timing constraints. While implementing each
connection with a delay between its minimum and maximum
delay budgets is a sufficient condition for meeting all timing
constraints, it is not a necessary one. All short-path and long-path
timing constraints can be satisfied with some connections
violating their minimum and maximum budgets, as long as other
connections achieve “sufficient margin”.

For each connection from a block output to a block input, c,
minimum and maximum delay budgets, DBUDGET_MIN and
DBUDGET_MAX, are determined that satisfy the following condition:

)()(

)()(
cD cD

cD cD

RBOUND_UPPEBUDGET_MAX

BUDGET_MINRBOUND_LOWE

≤
≤≤

 (11)

Both lower and upper delay bounds, DBOUND_LOWER and
DBOUND_UPPER, are useful for modeling limits on achievable
delays. For example, there may be a lower bound on a connection
delay because the FPGA floorplan prevents two blocks from
getting closer than a certain distance. There may be an upper
bound on a connection delay because the router needs to use a
dedicated resource to route a connection – in this case, the lower
and upper bounds will be equal. Both delay bounds are important
to provide achievable delay budgets and to avoid “wasting slack”.
If the maximum delay budget exceeds the upper delay bound for
a connection, the slack allocated above the upper delay bound is
wasted in the sense that the connection can not be implemented
with that delay. It would have been better to allocate that slack to
another connection; in general, the larger the separation between
minimum and maximum delay budgets, the more flexibility an
optimization algorithm has to satisfy timing.

4.1.1 Basic Algorithm
Figure 2 summarizes the short-path and long-path slack

allocation algorithm. This algorithm calls both short-path and
long-path Static Timing Analyses (STA). DBOUND_LOWER{C}
represents the set of lower-bound delays for connections in the
circuit, and so on.

The algorithm starts with “temporary delays”, DTEMP, equal to
the lower delay bounds. The maximum delay budget iterations
allocate positive long-path slack, adjusting DTEMP appropriately.
When the iterations complete, the maximum delay budgets are set
to DTEMP. Note that the final maximum budgets of all connections
that initially have non-positive slacks will be equal to
DBOUND_LOWER because only positive slack is allocated; therefore,
the algorithm tries to minimize the magnitude of any unavoidable
long-path violations.

Next the minimum delay budget iterations begin. Since only
positive short-path slack is allocated, DTEMP for each connection
will never increase. This guarantees that DBUDGET_MIN will be less
than or equal to DBUDGET_MAX. By keeping DTEMP above

DBOUND_LOWER, the algorithm permits short-path slack to be
allocated only to connections that can achieve lower delays.

Input: Long-path and short-path timing

constraints, DBOUND_LOWER{C}, and DBOUND_UPPER{C}.
Output: DBUDGET_MIN{C} and DBUDGET_MAX{C}.

DTEMP{C} = DBOUND_LOWER{C}

/* perform maximum delay budget iterations */
iterate until stopping condition met {
 perform long-path STA using DTEMP{C}
 allocate positive long-path slacks using

Minimax-PERT and update DTEMP{C}
 DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})
}

DBUDGET_MAX{C} = DTEMP{C}

/* perform minimum delay budget iterations */
iterate until stopping condition met {
 perform short-path STA using DTEMP{C}
 allocate positive short-path slacks using

Minimax-PERT and update DTEMP{C}
 DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})
}

DBUDGET_MIN{C} = DTEMP{C}

Figure 2 Basic Short-Path and Long-Path Slack Allocation

Two weighting schemes were tested. The first was a unit
weighting scheme. The second was a weighting scheme, similar
to that used in [6], which favours adding (or removing) delay to
connections that are further from their respective upper (or lower)
delay bounds; those connections can better accommodate the
delay change. Both schemes produced comparable final results.

The stopping condition in Figure 2 consists of two parts. First,
there is an absolute limit on the number of iterations. The
absolute limit ensures the algorithm has linear-time complexity in
connection count – which is important for today’s large designs.
We found that the number of maximum delay budget iterations
can be limited to 20 and the number of minimum delay budget
iterations can be limited to 5 without affecting result quality.
Second, the largest DTEMP change in any connection is measured
each iteration. When it drops below 200 ps, the iterations
terminate because very little progress is being made. Stopping
iterations when either of these two conditions is satisfied reduces
the run-time for slack allocation by nearly 50% vs. using the first
stopping condition alone, without affecting result quality.
Consequently, slack allocation consumes less than 2% of the
placement and routing time, on average.

4.1.2 Algorithm Enhancements
The basic algorithm does not take short-path timing into

account when it determines DBUDGET_MAX. Since DBUDGET_MIN is
less than DBUDGET_MAX, for each connection, the basic algorithm
can fail to find DBUDGET_MIN values large enough to meet all short-
path timing constraints, even if a solution exists.

Figure 3 illustrates a situation where the basic algorithm will
fail to find a set of delay budgets that can satisfy the timing
constraints. With the indicated lower-bound delays, the path
delay from IO to Register A must be increased by at least 1.1 ns
to satisfy the short-path constraint, THOLD = 0. Unfortunately, the
logic cell and Register A are connected via a constant delay
resource. The connection from the IO to the logic cell, c', is the
only connection to which the slack allocator can add delay. This
connection has only 2 ns of long-path slack because of the TSETUP
requirement of 3 ns. That means 55% of the long-path slack
needs to be allocated when determining DBUDGET_MAX(c') or the

algorithm will later not be able to create a sufficiently large
DBUDGET_MIN(c'). Since there are 8 connections to which the long-
path slack can be distributed, it is highly unlikely that sufficient
slack will be allocated to c'. In fact, if the algorithm of Figure 2 is
applied to this circuit, the final worst-case slacks achieved are
668 ps (TSETUP) and -738 ps (THOLD) – a timing violation.

IO

Logic Cell and Register A

Register B

Constant (Delay ResourcesNegligible)

Connection c’

2.1 ns Data Delay700 ps Data Delay

1.8 ns Clock Delay T Requirement: 3 ns
T Requirement: 0

SETUP

HOLD

Logic Cells

Clock

Figure 3 Example illustrating failure of the basic algorithm.

To improve the basic algorithm, we add a pre-processing step
that iterates between short- and long-path slack allocation to
modify the initial DTEMP values. The pseudo-code in Figure 4
replaces the DTEMP{C} = DBOUND_LOWER{C} line in Figure 2 to
improve robustness:
/* start of basic algorithm */

DTEMP{C} = DBOUND_LOWER{C}

iterate until stopping condition met {
 perform short-path STA using DTEMP{C}
 allocate negative short-path slack using

Minimax-PERT and update DTEMP{C}
 DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})

 perform long-path STA using DTEMP{C}
 allocate negative long-path slack using

Minimax-PERT and update DTEMP{C}
 DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})
}

/* continue basic algorithm */

Figure 4 DTEMP pre-processing algorithm.

By iterating between allocating short-path and long-path
negative slack, the pre-processor adjusts DTEMP{C} so that
connections that need more delay, for short-path timing, have
more delay before long-path positive slack allocation (in Figure
2). Notice there is only one iteration loop in Figure 4; that is,
short-path negative slack may not fully allocated before long-path
negative slack allocation is performed. It is unnecessary to fully
allocate short-path negative slack before long-path negative slack
allocation because only an adjustment of the delay starting point
represented by DTEMP{C} is needed each iteration, not perfect
convergence. In practice, the single loop in Figure 4 is enough to
lead to good delay budgets for the routing algorithm described in
4.2; this is because the routing algorithm tries to achieve margin
when satisfying the delay budgets so perfect delay-budget
convergence is not essential. The stopping criteria for Figure 4 is
similar to that described for the algorithm of Figure 2. The
stopping condition is satisfied when either 10 iterations have
been performed or the maximum DTEMP change of all connections
is less than 5 ps in some iteration. The iteration count restriction
ensures this pre-processing algorithm also has linear-time
complexity in connection count. Also, in practice, the pre-
processing algorithm converges quickly and the run-time impact
is negligible compared to the rest of slack allocation. Going back
to the Figure 3 example, with this DTEMP pre-processing step, the

worst-case slacks achieved are 817 ps (TSETUP) and 179 ps
(THOLD) – both constraints are satisfied.

4.2 Using Delay Budgets to Guide Routing
With a few exceptions (described in Section 4.3), we found

that effective optimization of short-path timing constraints can be
achieved by modifying the routing algorithm alone, leaving
synthesis and placement only aware of long-path timing
constraints. That is, even though earlier phases make decisions
that the router can not reverse, the router can almost always find
an appropriate place to add delay to solve short-path violations.
The router benefits from the fact that all other phases of
optimization are finished, so it can model delays very accurately.
Furthermore, short-path optimization in an FPGA router is
effective because modern FPGA routing fabrics are relatively
flexible and routing delay is a large fraction of total delay.

All elements in the FPGA general-purpose routing fabric can
be used to “slow down” connections; most connections can be
“slowed” dramatically (provided congestion is not a problem) by
selecting spirals of routing resources. Resources, such as IO
delay chains, if properly represented in the routing fabric graph,
can also be selected and configured by the router to help “slow
down” connections.

We use a negotiated congestion router with a modified delay
cost and look-ahead function to achieve desirable routing delays.

4.2.1 Delay Portion of the Routing Cost
The delay budgets produced by the slack allocation algorithm

described in Section 4.1 are used to augment the delay portion of
the partial routing path cost. To generate these delay budgets, the
slack allocation algorithm needs lower and upper delay bounds.
An initial minimum-delay routing of all connections, ignoring
congestion, provides the lower bound delays needed. The delay
upper bounds for connections forced to use dedicated resources
are set to the dedicated resource delays. The delay upper bounds,
for other connections, are set to a very large delay (100 ns).

The delay portion of the routing cost is illustrated in Figure 5.
The cost vs. total estimated routing path delay profile looks like a
valley with a gently sloping bottom and steep sides. This
similarity led to the algorithm’s name – Routing Cost Valleys
(RCV).

-5 5 15 25 35 45Total Estimated Path Delay

D
el

ay
Po

rt
io

n
of

R
ou

tin
g

C
os

t

Old Routing Cost New Routing Cost

Short-Path Linear Region

Short-Path Quadratic Region

Target Delay

Minimum
Delay Budget

Long-Path Quadratic Region

Long-Path Linear Region

Maximum
Delay Budget

Total Estimated Routing Path Delay (T)TERP

Figure 5 Illustration of the delay portion of the routing cost.

The minimum delay cost is achieved when the router achieves
the “target” delay, DTARGET, of a connection:

[]

ns) 1.0(c)D
 ,(c)D (c)D(0.5min(c)D

BUDGET_MIN

BUDGET_MAXMINBUDGETTARGET
+

+⋅= _ (12)

The algorithm is restricted from always aiming for the middle
of the delay budget window to avoid adding excessive delay to
connections with large maximum delay budgets – in practice, a
restriction of 1 ns above the minimum delay budget is sufficient.
Choosing the target delay in this manner avoids wasting routing
resources, which speeds up routing convergence both by limiting
the scope of the graph search and by reducing congestion
(preventing excessive wire use). Limiting routing resource usage
also avoids unnecessary power consumption.1

When the anticipated total connection delay is within the
delay budgets, only linear costs are seen. The slope of the line to
the right of the target delay is the long-path connection criticality
(between 0 and 1). We determine CRITLONG-PATH(c) from a
generalized version of (3) that handles the variety of timing
constraints available in commercial CAD tools. The magnitude of
the slope of the line to the left of the target delay is the short-path
connection criticality:

β

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

(c)D
cD-(c)D

c)RITC
TARGET

RBOUND_LOWETARGET
PATH-SHORT

)(
((13)

CRITSHORT-PATH grows larger as more delay must be added
above the lower-bound connection delay. β (> 0) is used to
control how much extra emphasis the router should place on
connections that need a significant amount of delay added. Larger
values of β lead the router to focus more heavily on a smaller
number of connections – those that need large percentage
increases in delay. We found experimentally that a value of 0.5
produces good results, indicating it is best to consider most
connections that need delay increase to be short-path critical.

For delays outside the delay budgets, a quadratic cost is
added, on top of the linear cost, to heavily penalize such routing
paths. Since costs are used to penalize delay budget violations,
the delay budgets will be enforced unless there is significant
congestion; in that case, congestion is resolved while sacrificing
timing quality as little as possible.

The new delay cost (which replaces (2)) of a partial routing
path, r, for connection, c, can be summarized as:

()

()
ps 100

 sink(c)))(r,TcD max(0,

ps 100
cD- sink(c))(r,T max(0,

 sink(c)))(r,T - (c)D max(0,
c)]RITCc)[CRIT

 sink(c))(r,T(c)RITCc)(r,delay_cost

TERPBUDGET_MIN

BUDGET_MAXTERP

TERPTARGET

PATH-LONGPATH-SHORT

TERPPATH-LONG

2)(

2))(

((

−

+

+
⋅+

+⋅=

 (14)

The 100 ps denominators normalize the quadratic costs
relative to the linear costs. 100 ps was selected since it
corresponds roughly with the smallest delay increment that can
be reliably achieved in the FPGA routing fabric.

It should be noted that the delay cost formulation just
described is not used for all connections. The short-path linear
and quadratic costs are removed for connections that have a
short-path slack of at least 1 ns with lower-bound delays. This
prevents the addition of delay to achieve unnecessary short-path
margin at the expense of long-path margin and CPU time.

1 To this end, the long-path criticality is also restricted to be >= 0.1.

4.2.2 Routing Look-ahead Function
This modified router places more stringent accuracy

requirements on the routing look-ahead function. In traditional
negotiated congestion routers, a look-ahead function that
conservatively (and systematically) underestimates delay is
typical – underestimating delay increases CPU time but facilitates
the search for the best routing path because the router is trying to
minimize connection delay [9]. In RCV, however, there are many
potential routing paths which will have similar delay cost, since
we are not searching for the minimal delay routing path, but
rather a routing path with a “target” delay that may be well above
the minimum achievable. Therefore, for RCV, the look-ahead
function must accurately estimate delays. If the function
underestimates delay, the router will add delay close to the
connection source, anticipating quick routing paths to the sink.
Closer to the sink, however, the router will find it can not meet
DTARGET, because it added too much delay earlier. This will force
the router to backtrack to explore lower delay paths from the
source – increasing routing time. Conversely, if the look-ahead
function overestimates delay, the router will pick a low-delay
routing path near the source anticipating a large delay increase
closer to the destination. Close to the destination, the router will
realize it has arrived there using too little delay and will use a lot
of resources around the sink to achieve DTARGET. This increases
the likelihood of congestion around the sink, which may force the
router to backtrack to explore higher delay paths from the source.

We use a look-ahead function that anticipates a minimum
delay routing to the destination (ignoring congestion) – the FPGA
routing fabric is pre-buffered and is regular enough that
minimum delay routes can be accurately predicted. For long-path
critical connections, as mentioned earlier, the “optimistic” look-
ahead function facilitates the search for the best routing path. For
short-path critical connections, the function encourages the router
to add enough delay to meet short-path constraints close to the
connection source. If congestion prevents the acquisition of
additional resources close to the source, the router will grab the
additional resources opportunistically before it reaches the sink –
minimizing the need for backtracking.

4.3 Dedicated Resource Avoidance
Sometimes synthesis or placement decisions can force certain

connections to be routed using dedicated resources, which have a
fixed delay. Examples of such dedicated resources are the carry
chain circuitry and the dedicated look-up table to register routing
in Stratix™ FPGAs [12]. When synthesis or placement forces the
use of such a dedicated connection, the router has no ability to
change the connection delay and, hence, no ability to solve short-
path timing violations using that connection.

We modified the FPGA placement algorithm to ensure that all
short-path critical paths have at least one connection to which
delay can be added. This is achieved by identifying connections
that: (a) are part of paths that could violate short-path timing; (b)
could tolerate additional delay, without violating a long-path
timing constraint; and (c) might be forced to use dedicated
routing resources in some placements. After enumerating all such
connections, the placer forbids any placement in which dedicated
routing must be used for any of those connections.

5 Experimental Results
The experimental results from two sets of designs will be

presented. The first set consists of 100 representative FPGA
designs gathered from Altera customers – with all user

constraints (timing, placement, and routing) removed to avoid
ambiguity in what is being measured. These designs have 3,264
to 67,311 logic elements (median of 12,072 logic elements) and
target a range of Altera Stratix devices and packages [12]. The
second set consists of 72 master-target 66-MHz PCI cores
compiled into a range of Altera Stratix devices and packages
[12], for the two fastest speed grades. Half of these cores contain
only timing constraints while the other half contain timing and
locked-IO constraints. These cores have 1,171 to 1,878 logic
elements (median of 1,353 logic elements). PCI cores are
measured because they are representative of typical FPGA
customer designs with challenging IO timing.

All the experiments were run with version 4.0 of Altera’s
Quartus II Software [1] on 3.066 GHz Intel Pentium 4 machines.
Without RCV, the Quartus II software only attempts to meet
long-path constraints through most of the CAD flow. The
Quartus II software only tries to address short-path constraints by
setting the delay chains in the IO cells appropriately; however, as
described in 2.1, this technique is not very powerful. With RCV,
the Quartus II software simultaneously optimizes long-path and
short-path timing during routing; the remainder of the CAD flow
is unchanged, so placement is only aware of long-path constraints
and “intelligent” IO delay chain setting is still performed.

No routing failures were observed while conducting the
experiments below – this despite the limited routing available in
an FPGA. This routing success rate is achieved because costs are
used to enforce delay budgets rather than hard limits. RCV
applies “pressure” to find a good routing solution for timing;
however, if a design is facing routing difficulty, increasing
congestion penalization gracefully “pushes” the router to
sacrifice timing quality to achieve a routing solution.

5.1 Customer Design Benchmarks
5.1.1 Long-Path Results

This experiment measures the improvement in long-path
results that can be achieved by replacing the traditional delay cost
of a negotiated congestion router with that of the RCV algorithm.
For this experiment, the Quartus II Software was instructed to
optimize only clock frequency, FMAX (measured by the frequency
of the slowest clock in circuits with multiple clocks). Figure 6
summarizes the results. There is an average FMAX improvement of
3.9%, at a run-time cost of a 35.6% extra router time, and a total
placement-and-routing CPU time increase of 9.3% – including
the time needed to compute delay budgets. There was an
additional cost of 2.8% extra wire use; however, since no routing
failures were observed, this shows that the router can leverage
“available wire” in devices to achieve better timing.

An upper bound on router FMAX performance can be computed
from a minimum delay routing solution that ignores congestion
(allowing shorts). Before RCV, the final FMAX was, on average,
12.3% worse than this FMAX bound. With RCV, the final FMAX is,
on average, only 8.3% below this bound.

The RCV delay cost is the key to these excellent results.
Traditional negotiated congestion assigns a fixed criticality, or
cost, per unit of delay, for each connection. The result is that non-
critical connections often pay so little attention to delay that they
become critical and slow the circuit. In RCV, however, once the
delay of a connection goes beyond DBUDGET_MAX, the router knows
that this connection could now limit the speed of the circuit, and
aggressively tries to avoid further delay increases. At the same
time, RCV is more sophisticated than routers that simply try to
route each connection in less delay than its maximum delay

budget (such as [6]). In designs that are pushing the limits of
FPGA speeds (for example, the design spec is “as fast as
possible”), it is almost inevitable that some connections can not
be routed within their delay budgets. Often, RCV is able to cover
the violation of a connection delay budget by achieving delays
less than DBUDGET_MAX on other connections. This is achieved
using the long-path criticality term in (14), which encourages
delay reduction beyond that required by DBUDGET_MAX, in
proportion to the importance of a connection to the circuit timing.

5.1.2 IO TSETUP and THOLD
This experiment measures the effectiveness of the RCV

algorithm on 100 real customer designs with artificial, but
“typical of common usage”, timing constraints. The Quartus II
Software was instructed to optimize three types of long-path
timing constraints simultaneously: (i) maximize clock frequency
(FMAX), (ii) meet a TSETUP constraint of 5.75 ns (this affects all
primary input to register transfers), and (iii) meet a maximum
TCLOCK-TO-OUTPUT constraint of 10 ns (this affects all register to
primary output transfers). One type of short-path timing
constraint was also set: meet a THOLD constraint of 0 (this affects
all primary input to register transfers).

Table 1 presents the overall results. RCV improves
performance on all four types of timing constraints, at the cost of
14% higher CPU time and 8.4% additional wire.

5.1.3 Register-to-Register Internal THOLD
This experiment measures how well the RCV algorithm solves

THOLD violations internal to an FPGA on the set of 100 customer
designs. For this experiment, the Quartus II Software was
instructed to: (i) optimize clock frequency (FMAX) and (ii) attempt
to prevent internal THOLD violations (between registers).

0

50

100

150

200

250

0 50 100 150 200 250

Slowest-Clock FMAX without RCV

Sl
ow

es
t-C

lo
ck

 F
M
A
X
 w

ith
 R

C
V

Figure 6 FMAX improvement with RCV.

Table 1 Effect of RCV on 100 designs with FMAX and short-path/long-
path IO timing constraints.

 Without RCV With RCV
Average FMAX 87.52 MHz 91.34 MHz

Average Worst TSETUP Slack 0.15 ns 0.39 ns
Average Worst

TCLOCK-TO-OUTPUT Slack
-2.23 ns -1.94 ns

Average Worst THOLD Slack -0.81 ns 0.27 ns
Average Place and Route Time 741 seconds 846 seconds

Of the 100 customer designs, 18 had internal THOLD violations
without RCV. All these designs had complex clocking, such as
gated clocks or locally routed clocks. With RCV, only 5 of the
designs had internal THOLD violations. RCV managed to achieve a
3.4% FMAX improvement despite also focusing on short-path
timing, but there is a placement-and-routing time increase of
20.9% and a 30.5% increase in wire used. Again, since no routing
failures were observed, the router was using “available wire” to
improve timing. Table 2 summarizes the internal THOLD results.
Most of the small and moderate violations are repaired by RCV –
only severe violations remain.

5.2 PCI Cores
PCI cores represent a highly challenging combined short- and

long-path timing optimization problem, due to the many tight
timing requirements on IO-to-register transfers in the PCI
specification (the IO TSETUP and THOLD constraints). Figure 7
shows that without RCV, the Quartus II software meets the short-
path (THOLD) constraints on only 19 of the 72 PCI cores tested,
and it fails to meet the long-path (TSETUP) constraints on all of the
cores. Figure 8 shows the comparable results with RCV enabled.
All of the 72 PCI cores meet their short-path (THOLD) and long-
path (TSETUP) constraints – a vast improvement.

The PCI specification also includes two more long-path
constraints – a 66-MHz clock frequency requirement and
maximum TCLOCK-TO-OUTPUT requirements that affect register to
primary output paths. The Quartus II software meets these
requirements with and without RCV.

6 Conclusion
This paper introduced RCV, the first published algorithm to

simultaneously optimize short-path and long-path timing
constraints in FPGAs. RCV comprises a new slack allocation
algorithm and a new routing formulation. The slack allocation
algorithm is the first to incorporate upper delay bounds and
compute minimum delay budgets. The router incorporates a new
delay cost formulation, using the delay budgets from slack
allocation, to enable satisfaction of both short- and long-path
timing constraints, without requiring any additional FPGA logic.

Experimental results show that RCV outperforms earlier
approaches used to satisfy short- and long-path timing
constraints. Using only FPGA IO delay chains to solve short-path
violations failed to meet the timing constraints on all 72 PCI
cores tested, while RCV met the constraints on all of the cores.
On a set of 100 benchmark circuits, with short- and long-path
timing constraints, RCV improved the short-path THOLD and the
long-path TSETUP timing, on average, by 1.08 ns and 0.24 ns,
respectively. On a set of 100 benchmark circuits, with no short-
path timing constraints, RCV achieves 3.9% higher circuit speed
than a traditional negotiated congestion router, indicating that
RCV outperforms this highly successful algorithm, even on the
well-studied long-path-only timing problem.

7 References
[1] "Quartus II Software", www.altera.com.
[2] "ISE Logic Design Tools", www.xilinx.com.
[3] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli, “Minimum

Padding to Satisfy Short Path Constraints,” ICCAD, 1993, pp. 156-161.
[4] P. S. Hauge, R. Nair, and E. J. Yoffa, “Circuit Placement for

Predictable Performance”, ICCAD, 1987, pp. 88-91.

[5] H. Youssef and E. Shragowitz, “Timing Constraints for Correct
Performance”, ICCAD, 1990, pp. 24-27.

[6] J. Frankle, “Iterative and Adaptive Slack Allocation for Performance-
driven Layout and FPGA Routing”, DAC, 1992, pp. 536-542.

[7] Y. S. Lee and A. Wu, “A Performance and Routability-Driven Router
for FPGAs Considering Path Delays”, DAC, 1995, pp. 557-561.

[8] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and
Routing Tools for the Triptych FPGA”, IEEE Trans. on VLSI, Dec.
1995, pp. 473-482.

[9] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, 1999.

[10] S. Lee and M. Wong, “Timing-Driven Routing for FPGAs Based on
Lagrangian Relaxation,” IEEE TCAD, April 2003, pp. 506-511.

[11] “The FPGA Place and Route Challenge”,
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html.

[12] “Stratix Device Family Data Sheet”, www.altera.com.

Table 2 Internal THOLD violation repair with RCV.

Magnitude of Worst-case THOLD Violation

Without
RCV

With RCV Without
RCV

With RCV

0.086 ns No Violation 3.130 ns No Violation
0.289 ns No Violation 3.301 ns 0.913 ns
0.374 ns No Violation 3.562 ns No Violation
0.403 ns No Violation 3.887 ns No Violation
0.418 ns No Violation 4.009 ns No Violation
1.103 ns No Violation 4.898 ns 4.916 ns
1.633 ns No Violation 5.774 ns 5.971 ns
1.862 ns No Violation 8.928 ns 8.500 ns
2.207 ns No Violation 19.228 ns 18.647 ns

0
5

10
15
20
25
30
35
40
45

< -900 -900 to -
600

-600 to -
300

-300 to 0 0 to 300 300 to
600

600 to
900

> 900

Worst-case Slack (ps)

N
um

be
r o

f P
C

I C
or

es

Worst-case TSETUP Slack Worst-case THOLD Slack

Figure 7 PCI core IO timing performance without RCV.

0
5

10
15
20
25
30
35
40
45
50

< -900 -900 to -
600

-600 to -
300

-300 to 0 0 to 300 300 to
600

600 to
900

> 900

Worst-case Slack (ps)

N
um

be
r o

f P
C

I C
or

es

Worst-case TSETUP Slack Worst-case THOLD Slack

Figure 8 PCI core IO timing performance with RCV.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

