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Abstract 
This paper presents the Routing Cost Valleys (RCV) algorithm 

– the first published algorithm that simultaneously optimizes all 
short- and long-path timing constraints in a Field-Programmable 
Gate Array (FPGA). RCV is comprised of a new slack allocation 
algorithm that produces both minimum and maximum delay 
budgets for each circuit connection, and a new router that strives 
to meet and, if possible, surpass these connection delay 
constraints. RCV achieves excellent results. On a set of 100 large 
circuits, RCV improves both long-path and short-path timing 
slack significantly vs. an earlier Computer-Aided Design (CAD) 
system that focuses solely on long-path timing. Even with no 
short-path timing constraints, RCV improves the clock speed of 
circuits by 3.9% on average. Finally, RCV is able to meet timing 
on all 72 Peripheral Component Interconnect (PCI) cores tested, 
while an earlier algorithm fails to achieve timing on all 72 cores. 
Keywords: timing, routing, FPGA 

1 Introduction 
Long-path timing optimization is an essential feature of most, 

if not all, modern CAD tools. In order for designs to meet 
performance targets, designers specify long-path timing 
constraints, which indicate that the longest path between certain 
circuit endpoints must have a delay less than some value. 
Examples of long-path timing constraints include frequency 
requirements for clocks, setup times required at circuit primary 
inputs (TSETUP), and maximum permissible clock-to-output delays 
at circuit primary outputs (maximum TCLOCK-TO-OUTPUT). If a CAD 
tool fails to satisfy all the long-path timing constraints, time 
consuming manual intervention is often required; users may be 
forced to manually synthesize, place, and/or route parts of the 
design to achieve the needed delays. Consequently, much 
research has been devoted to the study of techniques for long-
path timing optimization.  

Satisfying all long-path timing constraints is not sufficient to 
guarantee design functionality, however. For a circuit to function 
correctly, short-path timing constraints must also be satisfied. 
Short-path timing constraints specify that the minimum path 
delay between two circuit endpoints must be greater than some 
value. Short-path timing constraints not only occur between 
registers in a chip to guarantee there are no hold time violations 
within the chip, they also occur on paths from the circuit primary 
inputs to registers (input THOLD requirements), and on paths from 
registers to circuit primary outputs (minimum TCLOCK-TO-OUTPUT 
requirements), to guarantee correct data transfers between chips.  

Generally, if a design does not meet all long-path timing 
constraints, the design must be run at a frequency lower than 
originally desired. However, if a design fails to meet its short-
path timing constraints, the design will typically fail to operate at 
any clock frequency. Despite this fact, short-path timing 

optimization has received very little research attention, both in 
academia and industry. This resulted in designers having to 
manually fix short-path timing violations – a laborious process 
that is becoming ever more painful as designs grow larger, and as 
clocking structures grow more complex. As well, since fixing 
short-path timing violations involves adding delay to portions of 
the circuit, manually fixing short-path violations often creates 
long-path violations, resulting in lengthy design iterations.  

The FPGA industry has recently recognized that requiring 
manual optimization of short-path timing is no longer acceptable, 
and recent versions of Altera's Quartus® II CAD system [1] and 
Xilinx's ISE CAD system [2] both incorporate optimization 
algorithms for short-path timing constraints. This paper presents 
a new algorithm, RCV, which is the first published algorithm for 
simultaneously satisfying both short-path and long-path timing 
constraints in an FPGA. RCV is the algorithm used by Altera’s 
Quartus II software. 

The algorithm described in this paper has several advantages 
over prior techniques. First, it removes the need for designers to 
manually repair short-path timing constraint violations. Second, 
this algorithm meets short-path constraints by inserting extra 
routing delay where appropriate – hence it does not require any 
extra logic cells. This is better than the typical manual technique 
where designers insert logic cells configured as buffers to slow 
down signals, wasting logic. Third, this algorithm simultaneously 
optimizes both short-path and long-path timing constraints to 
maximize the chance of achieving a design implementation that 
meets all timing constraints. Finally, when the RCV technique is 
applied to designs with only long-path timing constraints, it 
produces a 3.9% improvement in the performance of designs 
compared to a state-of-the-art negotiated congestion-based router. 
This indicates RCV is very effective at optimizing long-path 
timing constraints and, hence, is also useful for designs with no 
short-path timing problems.  

This paper is organized as follows. Section 2 outlines related 
prior work. Section 3 provides a precise problem definition. 
Section 4 describes the RCV algorithm and Section 5 presents 
experimental results. Section 6 concludes the paper. 

2 Prior Work 
2.1 FPGA Techniques 

Prior to this work, FPGA vendors primarily attacked the short-
path problem by building special features into their FPGAs –
instead of employing more general CAD algorithms. First, 
FPGAs include dedicated low-skew clock networks. When a 
clock is routed on such a network, register transfers within the 
clock domain will not have hold-time (short-path) violations. 
Second, FPGAs include programmable delay chains in each IO 
cell. The designer or the CAD tool sets these delay chains to slow 
down incoming and outgoing signals appropriately to meet short-
path timing constraints at the circuit primary inputs and outputs. 



These hardware solutions fall short of the needs of modern 
FPGAs and designs in several ways. First, today’s complex 
FPGA designs often contain more clocks than the number of 
available low-skew networks. This forces some clocks to use 
regular routing, which introduces significant clock skew and, 
hence, increases the chance of a short-path timing violation. 
Second, the increasing magnitude of process variation and the 
increasing speed of FPGAs are making it more difficult to design 
a clock network with sufficiently low skew that all possible 
register transfers are free of short-path timing problems. Third, 
many modern designs use Phase-Locked Loops (PLLs) to 
generate phase- and frequency-related clocks; those designs 
typically expect synchronous transfers between these clock 
domains. This often leads to short-path timing problems. Fourth, 
programmable delay chains require a large amount of area, so 
they are typically only used to slow down signals entering and 
leaving the chip. This presents a problem because delay can only 
be added to timing paths at the point they intersect the chip 
periphery. Often several timing paths begin at the same input IO, 
pass through a common delay chain, and terminate at various 
registers throughout the chip. Each of those paths would “prefer” 
a different delay chain setting to ensure short-path timing 
constraints can be met while still satisfying long-path timing 
constraints. However, since all those paths pass through the same 
delay chain, a compromise is the best the programmable delay 
chain solution can achieve. Figure 1 illustrates the problem. If the 
goal is to program the delay chain to achieve IO THOLD ≤ 0 and 
TSETUP ≤ 3 ns, no setting of the delay chain can meet both these 
timing constraints. To satisfy THOLD ≤ 0 at Register A, the delay 
chain must be set to at least 1 ns, but to satisfy TSETUP ≤ 3 ns at 
Register B, the delay chain must be set to 0 ns (turned off). 
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Figure 1 Example of programmable delay chain use. 

2.2 ASIC Techniques 
Typically, Application-Specific Integrated Circuit (ASIC) 

CAD tools fix short-path timing violations by inserting chains of 
buffers on some connections to slow down paths that are too fast. 
Shenoy et al [3] present two algorithms to help address the short-
path buffer insertion problem – a greedy algorithm (with 
quadratic-time complexity in connection count) and one based on 
linear programming. Both algorithms are used to determine the 
minimum amount of delay that should be added to connections to 
satisfy short-path timing – without creating a long-path violation. 
In FPGAs, the equivalent technique inserts logic cells configured 
as buffers on some connections. Logic cell insertion is highly 
inefficient in FPGAs, however, since a significant portion of the 
logic capacity of an FPGA can be consumed by these logic cell 
buffers. 

2.3 Long-Path Timing Optimization 
The RCV algorithm builds on two prior long-path timing 

optimization algorithms: slack allocation and negotiated-
congestion routing. 

2.3.1 Slack Allocation 
Timing constraints are specified on paths in a circuit. The end-

points of paths are typically registers, primary inputs, or primary 
outputs – with zero or more levels of combinational logic 
between them. In general, however, a path can be any series of 
connections in a circuit. The number of possible paths in a circuit 
is exponential in the number of connections. Explicitly 
monitoring all these paths during CAD optimization would be 
highly inefficient, both in terms of memory and run-time. Long-
path slack allocation is a well-known technique that produces a 
maximum delay budget for each connection in a circuit. If the 
design can be implemented such that each connection has a delay 
less than its maximum delay budget, all long-path timing 
constraints will be satisfied. 

Various techniques have been discussed for long-path slack 
allocation. All these techniques rely on long-path timing analysis 
which computes connection slacks – where a connection slack is 
the minimum slack of all paths passing through that connection. 

The Zero-Slack Algorithm (ZSA) is developed in [4]. ZSA 
starts with a set of connection delays that result in all long-path 
slacks being positive. It then iterates between allocating slack to 
increase the connection delays and performing timing analyses to 
update the connection slacks. During each iteration, ZSA 
identifies the path with the smallest positive slack and distributes 
the slack to the connections of the respective path by increasing 
the connection delays. Eventually, all the positive path slack is 
allocated, and every connection has zero slack. The final set of 
connection delays can be used as maximum delay budgets. CPU 
time is quadratic in the number of connections.  

The Iterative-Minimax-PERT algorithm [5] improves on ZSA 
by introducing a faster slack allocation algorithm. This algorithm 
defines weights that can be used to distribute slacks non-
uniformly – connections with larger weights are allocated more 
slack. Path weights can be computed from the connection 
weights, where the weight of a path is the sum of the weights of 
its connections. The slack allocated to each connection, c, is: 

 
h(c)ths_throug_of_all_pamax_weight

weight(c)slack(c)
cated(c)slack_allo

⋅
=  (1) 

This technique has linear-time complexity in the number of 
connections because each slack-allocation iteration uses (1) to try 
to distribute all the remaining slack throughout the design and, in 
practice, only a few iterations are required to converge. 

The Limit-Bumping Algorithm [6] proposes the use of 
connection lower delay bounds. By ensuring that the maximum 
delay budget of each connection is larger than its lower delay 
bound, many unrealizable solutions are avoided. To facilitate 
this, a weighting scheme is proposed that encourages removal of 
delay from connections that are further from their lower delay 
bounds. Finally, this algorithm is capable of handling problems 
where some connection slacks are initially negative. 

2.3.2 FPGA Routing 
While there are many FPGA routing techniques, only a 

minority of the algorithms developed explicitly analyze and 
optimize circuit timing, and all of those algorithms focus solely 
on meeting long-path timing constraints [6][7][8][9][10]. 

Frankle, in [6], describes a router that attempts to route 
connections so each has a delay less than a maximum delay 
budget, determined from a long-path slack allocation. 
Connections with maximum delay budgets closer to their lower-
bound “achievable” delays are routed first. If some connections 



cannot be routed with delay less than their maximum delay 
budgets, the corresponding maximum delay budgets are increased 
by 20%, and a rip-up and re-try procedure is invoked. 

In [8], Ebeling et al develop the Pathfinder negotiated-
congestion routing algorithm. This general algorithm has become 
a very successful routing technique for FPGAs, and also 
underlies the VPR router [9]. The academic FPGA routers with 
the lowest wiring requirements on a set of standard benchmarks 
[9][11] are based on negotiated congestion. This indicates that the 
negotiated congestion framework is excellent for FPGA routing, 
where wiring is generally quite limited. 

A negotiated congestion router begins by picking a set of 
routing resources – wires and block input/output pins – to 
implement each connection. The routing resources are initially 
selected so each connection is routed in minimum delay, while 
accepting “congestion.” Congestion occurs when multiple nets 
use the same routing resource – an electrical short, indicating an 
illegal routing. After the initial routing of connections in 
minimum delay, the router iteratively re-routes all nets 
encountering congestion. The router inner-loop uses a routing-
resource cost to “score” the use of resources as it does a directed 
search through a graph representing the routing fabric from the 
source to the sink of a connection. The congestion component of 
that cost is used to gradually resolve congestion (over several 
routing iterations) by encouraging connections to take detours 
around congested resources. The delay portion of the router cost 
tries to keep critical connection delays to a minimum, and makes 
the router timing-driven. More specifically, from [9], the delay 
cost of a partial routing path, r, for a connection c is: 
  sink(c))(r,T(c)RITCc)(r,delay_cost TERPPATH-LONG ⋅=  (2) 

The long-path connection criticality, CRITLONG-PATH, indicates 
the importance that a connection be routed with small delay [9]: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 0,

MAX
PATH-LONG D

slack(c)-0.99max(c)RITC  (3)  

DMAX is the longest path delay in the circuit. Connections with 
small long-path slack will tend to get CRITLONG-PATH values near 
1. TTERP(r,sink(c)) is the total estimated routing path delay, which 
is a function both of the partial routing path, r, being considered 
by the router and the destination (sink(c)): 
 sink(c))(r,Tα(r)Tsink(c))(r,T ESTIMATEKNOWNTERP ⋅+=  (4)  

 The delay of the partial routing path, TKNOWN(r), can be 
computed accurately. However, the delay from the end of r to the 
destination, TESTIMATE(r,sink(c)), is not precisely known as the 
router evaluates (4); a look-ahead function is used to estimate 
how much additional delay will be incurred. Larger values of α 
make the search more directed, potentially at the expense of 
quality; many FPGA routers use values of α near 1. 

The total cost of a partial routing path, r, is: 

 c)estion(r,total_congcCRIT-[1     
c)(r,delay_costc)(r,total_cost

PATH-LONG ⋅
+=

)](  (5) 

This results in critical connections avoiding detours more than 
non-critical connections – critical connections penalize delay and 
ignore congestion to a greater extent. 

3 Problem Formulation 
We represent a circuit as a directed graph G(V,E) in which 

each vertex, v, represents a block input pin or output pin, and 
each edge, e, represents either a connection, c, from a block 
output pin to a block input pin, or a dependency from an input pin 

to an output pin of a block. Each edge has an associated delay. 
The delays of the edges representing connections from block 
output pins to input pins can be altered by the FPGA placement 
and routing tool, while the delays of the dependency edges within 
blocks are generally fixed. 

Timing constraints are applied to paths in G. A long-path 
timing constraint states that the total delay of a path must be less 
than some value. For example, if the user has a frequency 
requirement of 100 MHz for some clock, clk, the following 
constraint is implied for all paths from register output nodes, 
sreg, to register input nodes, dreg, clocked by clk: 

 
domain clock clkdreg sreg,     

ns, 10dreg)(clk,T-sreg)(clk,Tdreg)(sreg,T FASTSLOWSLOW
∈∀
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TSLOW(sreg,dreg) is the largest delay of any path from node 
sreg to node dreg, while TFAST(clk,dreg) is the smallest path delay 
from the clk node to register dreg. Therefore, for each pair of 
registers in the clock domain, there are three paths that affect 
long-path constraint satisfaction – two clock paths and the 
register-to-register data path. The two clock path delays are 
usually similar because low-skew global networks are generally 
used for clock distribution. Even when that is not the case, most 
CAD tools attempt to control the skew on the clock paths, and 
hence optimization of the register-to-register path delay is 
sufficient to satisfy most long-path timing constraints. 
Consequently, in this paper, we adjust only the data-path delay 
and leave clock-path delays constant. Re-arranging (6) to reflect 
this yields: 
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A short-path timing constraint states that the delay along a 
path should be no less than a particular value. For example, a 
THOLD = 0 constraint on a circuit’s primary inputs implies: 
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Assuming that we optimize only the IO-cell-to-register path 
delays, while the clock-path delays are constant, (8) becomes: 
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Therefore, the simultaneous short-path and long-path 
optimization problem can be summarized as: 

 
G circuitdst src,     
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MINT(src, dst) is the minimum delay allowed for all data paths 
between the source and destination based on the designer’s short-
path timing constraints and the relevant clock-path delays; 
MAXT(src, dst) is the maximum delay allowed for all paths 
between the source and destination based on the designer’s long-
path timing constraints and the relevant clock-path delays. The 
goal of this work is to implement a design with connection delays 
that lead to the satisfaction of (10). 

4 Algorithm Description 
We attack the simultaneous short- and long-path timing 

optimization problem in two phases. First, we use a new slack 
allocation algorithm to convert the path-based timing constraints 
of (10) into connection-based delay-budget constraints. Second, 
we develop a new FPGA routing algorithm, which is guided by a 



combination of these delay budgets and connection slacks, to 
meet the circuit timing constraints.  

4.1 Short-Path and Long-Path Slack Allocation 
The new slack allocation algorithm extends [4], [5], and [6] to 

consider short-path timing constraints as well as long-path timing 
constraints. It produces minimum delay budgets in addition to 
maximum delay budgets and introduces upper delay bounds to 
complement lower delay bounds. These upper delay bounds 
result in the algorithm producing better maximum delay budgets, 
and are essential to computing reasonable minimum delay 
budgets. These minimum and maximum delay budgets can be 
used to guide an optimization algorithm to satisfy all short-path 
and long-path timing constraints. While implementing each 
connection with a delay between its minimum and maximum 
delay budgets is a sufficient condition for meeting all timing 
constraints, it is not a necessary one. All short-path and long-path 
timing constraints can be satisfied with some connections 
violating their minimum and maximum budgets, as long as other 
connections achieve “sufficient margin”. 

For each connection from a block output to a block input, c, 
minimum and maximum delay budgets, DBUDGET_MIN and 
DBUDGET_MAX, are determined that satisfy the following condition: 
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Both lower and upper delay bounds, DBOUND_LOWER and 
DBOUND_UPPER, are useful for modeling limits on achievable 
delays. For example, there may be a lower bound on a connection 
delay because the FPGA floorplan prevents two blocks from 
getting closer than a certain distance. There may be an upper 
bound on a connection delay because the router needs to use a 
dedicated resource to route a connection – in this case, the lower 
and upper bounds will be equal. Both delay bounds are important 
to provide achievable delay budgets and to avoid “wasting slack”. 
If the maximum delay budget exceeds the upper delay bound for 
a connection, the slack allocated above the upper delay bound is 
wasted in the sense that the connection can not be implemented 
with that delay. It would have been better to allocate that slack to 
another connection; in general, the larger the separation between 
minimum and maximum delay budgets, the more flexibility an 
optimization algorithm has to satisfy timing.  

4.1.1 Basic Algorithm 
Figure 2 summarizes the short-path and long-path slack 

allocation algorithm. This algorithm calls both short-path and 
long-path Static Timing Analyses (STA). DBOUND_LOWER{C} 
represents the set of lower-bound delays for connections in the 
circuit, and so on. 

The algorithm starts with “temporary delays”, DTEMP, equal to 
the lower delay bounds. The maximum delay budget iterations 
allocate positive long-path slack, adjusting DTEMP appropriately. 
When the iterations complete, the maximum delay budgets are set 
to DTEMP. Note that the final maximum budgets of all connections 
that initially have non-positive slacks will be equal to 
DBOUND_LOWER because only positive slack is allocated; therefore, 
the algorithm tries to minimize the magnitude of any unavoidable 
long-path violations.  

Next the minimum delay budget iterations begin. Since only 
positive short-path slack is allocated, DTEMP for each connection 
will never increase. This guarantees that DBUDGET_MIN will be less 
than or equal to DBUDGET_MAX. By keeping DTEMP above 

DBOUND_LOWER, the algorithm permits short-path slack to be 
allocated only to connections that can achieve lower delays. 
 
Input: Long-path and short-path timing 

constraints, DBOUND_LOWER{C}, and DBOUND_UPPER{C}. 
Output: DBUDGET_MIN{C} and DBUDGET_MAX{C}.  

DTEMP{C} = DBOUND_LOWER{C} 

/* perform maximum delay budget iterations */ 
iterate until stopping condition met { 
  perform long-path STA using DTEMP{C} 
  allocate positive long-path slacks using 

Minimax-PERT and update DTEMP{C} 
  DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})  
} 

DBUDGET_MAX{C} = DTEMP{C} 

/* perform minimum delay budget iterations */ 
iterate until stopping condition met { 
  perform short-path STA using DTEMP{C} 
  allocate positive short-path slacks using 

Minimax-PERT and update DTEMP{C} 
  DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})  
} 

DBUDGET_MIN{C} = DTEMP{C} 

Figure 2 Basic Short-Path and Long-Path Slack Allocation 

Two weighting schemes were tested. The first was a unit 
weighting scheme. The second was a weighting scheme, similar 
to that used in [6], which favours adding (or removing) delay to 
connections that are further from their respective upper (or lower) 
delay bounds; those connections can better accommodate the 
delay change. Both schemes produced comparable final results.  

The stopping condition in Figure 2 consists of two parts. First, 
there is an absolute limit on the number of iterations. The 
absolute limit ensures the algorithm has linear-time complexity in 
connection count – which is important for today’s large designs. 
We found that the number of maximum delay budget iterations 
can be limited to 20 and the number of minimum delay budget 
iterations can be limited to 5 without affecting result quality. 
Second, the largest DTEMP change in any connection is measured 
each iteration. When it drops below 200 ps, the iterations 
terminate because very little progress is being made. Stopping 
iterations when either of these two conditions is satisfied reduces 
the run-time for slack allocation by nearly 50% vs. using the first 
stopping condition alone, without affecting result quality. 
Consequently, slack allocation consumes less than 2% of the 
placement and routing time, on average. 

4.1.2 Algorithm Enhancements 
The basic algorithm does not take short-path timing into 

account when it determines DBUDGET_MAX. Since DBUDGET_MIN is 
less than DBUDGET_MAX, for each connection, the basic algorithm 
can fail to find DBUDGET_MIN values large enough to meet all short-
path timing constraints, even if a solution exists. 

Figure 3 illustrates a situation where the basic algorithm will 
fail to find a set of delay budgets that can satisfy the timing 
constraints. With the indicated lower-bound delays, the path 
delay from IO to Register A must be increased by at least 1.1 ns 
to satisfy the short-path constraint, THOLD = 0. Unfortunately, the 
logic cell and Register A are connected via a constant delay 
resource. The connection from the IO to the logic cell, c', is the 
only connection to which the slack allocator can add delay. This 
connection has only 2 ns of long-path slack because of the TSETUP 
requirement of 3 ns. That means 55% of the long-path slack 
needs to be allocated when determining DBUDGET_MAX(c') or the 



algorithm will later not be able to create a sufficiently large 
DBUDGET_MIN(c'). Since there are 8 connections to which the long-
path slack can be distributed, it is highly unlikely that sufficient 
slack will be allocated to c'. In fact, if the algorithm of Figure 2 is 
applied to this circuit, the final worst-case slacks achieved are 
668 ps (TSETUP) and -738 ps (THOLD) – a timing violation. 
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Figure 3 Example illustrating failure of the basic algorithm. 

To improve the basic algorithm, we add a pre-processing step 
that iterates between short- and long-path slack allocation to 
modify the initial DTEMP values. The pseudo-code in Figure 4 
replaces the DTEMP{C} = DBOUND_LOWER{C} line in Figure 2 to 
improve robustness: 
/* start of basic algorithm */ 

DTEMP{C} = DBOUND_LOWER{C} 

iterate until stopping condition met { 
  perform short-path STA using DTEMP{C} 
  allocate negative short-path slack using 

Minimax-PERT and update DTEMP{C} 
  DTEMP{C} = min (DTEMP{C}, DBOUND_UPPER{C})  
 
  perform long-path STA using DTEMP{C}  
  allocate negative long-path slack using 

Minimax-PERT and update DTEMP{C} 
  DTEMP{C} = max (DTEMP{C}, DBOUND_LOWER{C})  
} 

/* continue basic algorithm */ 

Figure 4 DTEMP pre-processing algorithm. 

By iterating between allocating short-path and long-path 
negative slack, the pre-processor adjusts DTEMP{C} so that 
connections that need more delay, for short-path timing, have 
more delay before long-path positive slack allocation (in Figure 
2). Notice there is only one iteration loop in Figure 4; that is, 
short-path negative slack may not fully allocated before long-path 
negative slack allocation is performed. It is unnecessary to fully 
allocate short-path negative slack before long-path negative slack 
allocation because only an adjustment of the delay starting point 
represented by DTEMP{C} is needed each iteration, not perfect 
convergence. In practice, the single loop in Figure 4 is enough to 
lead to good delay budgets for the routing algorithm described in 
4.2; this is because the routing algorithm tries to achieve margin 
when satisfying the delay budgets so perfect delay-budget 
convergence is not essential. The stopping criteria for Figure 4 is 
similar to that described for the algorithm of Figure 2. The 
stopping condition is satisfied when either 10 iterations have 
been performed or the maximum DTEMP change of all connections 
is less than 5 ps in some iteration. The iteration count restriction 
ensures this pre-processing algorithm also has linear-time 
complexity in connection count. Also, in practice, the pre-
processing algorithm converges quickly and the run-time impact 
is negligible compared to the rest of slack allocation. Going back 
to the Figure 3 example, with this DTEMP pre-processing step, the 

worst-case slacks achieved are 817 ps (TSETUP) and 179 ps 
(THOLD) – both constraints are satisfied. 

4.2 Using Delay Budgets to Guide Routing 
With a few exceptions (described in Section 4.3), we found 

that effective optimization of short-path timing constraints can be 
achieved by modifying the routing algorithm alone, leaving 
synthesis and placement only aware of long-path timing 
constraints. That is, even though earlier phases make decisions 
that the router can not reverse, the router can almost always find 
an appropriate place to add delay to solve short-path violations. 
The router benefits from the fact that all other phases of 
optimization are finished, so it can model delays very accurately. 
Furthermore, short-path optimization in an FPGA router is 
effective because modern FPGA routing fabrics are relatively 
flexible and routing delay is a large fraction of total delay.  

All elements in the FPGA general-purpose routing fabric can 
be used to “slow down” connections; most connections can be 
“slowed” dramatically (provided congestion is not a problem) by 
selecting spirals of routing resources. Resources, such as IO 
delay chains, if properly represented in the routing fabric graph, 
can also be selected and configured by the router to help “slow 
down” connections.  

We use a negotiated congestion router with a modified delay 
cost and look-ahead function to achieve desirable routing delays. 

4.2.1 Delay Portion of the Routing Cost 
The delay budgets produced by the slack allocation algorithm 

described in Section 4.1 are used to augment the delay portion of 
the partial routing path cost. To generate these delay budgets, the 
slack allocation algorithm needs lower and upper delay bounds. 
An initial minimum-delay routing of all connections, ignoring 
congestion, provides the lower bound delays needed. The delay 
upper bounds for connections forced to use dedicated resources 
are set to the dedicated resource delays. The delay upper bounds, 
for other connections, are set to a very large delay (100 ns).  

The delay portion of the routing cost is illustrated in Figure 5. 
The cost vs. total estimated routing path delay profile looks like a 
valley with a gently sloping bottom and steep sides. This 
similarity led to the algorithm’s name – Routing Cost Valleys 
(RCV). 
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Figure 5 Illustration of the delay portion of the routing cost. 

The minimum delay cost is achieved when the router achieves 
the “target” delay, DTARGET, of a connection: 
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The algorithm is restricted from always aiming for the middle 
of the delay budget window to avoid adding excessive delay to 
connections with large maximum delay budgets – in practice, a 
restriction of 1 ns above the minimum delay budget is sufficient. 
Choosing the target delay in this manner avoids wasting routing 
resources, which speeds up routing convergence both by limiting 
the scope of the graph search and by reducing congestion 
(preventing excessive wire use). Limiting routing resource usage 
also avoids unnecessary power consumption.1 

When the anticipated total connection delay is within the 
delay budgets, only linear costs are seen. The slope of the line to 
the right of the target delay is the long-path connection criticality 
(between 0 and 1). We determine CRITLONG-PATH(c) from a 
generalized version of (3) that handles the variety of timing 
constraints available in commercial CAD tools. The magnitude of 
the slope of the line to the left of the target delay is the short-path 
connection criticality: 
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CRITSHORT-PATH grows larger as more delay must be added 
above the lower-bound connection delay. β (> 0) is used to 
control how much extra emphasis the router should place on 
connections that need a significant amount of delay added. Larger 
values of β lead the router to focus more heavily on a smaller 
number of connections – those that need large percentage 
increases in delay. We found experimentally that a value of 0.5 
produces good results, indicating it is best to consider most 
connections that need delay increase to be short-path critical.  

For delays outside the delay budgets, a quadratic cost is 
added, on top of the linear cost, to heavily penalize such routing 
paths. Since costs are used to penalize delay budget violations, 
the delay budgets will be enforced unless there is significant 
congestion; in that case, congestion is resolved while sacrificing 
timing quality as little as possible.  

The new delay cost (which replaces (2)) of a partial routing 
path, r, for connection, c, can be summarized as: 
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The 100 ps denominators normalize the quadratic costs 
relative to the linear costs. 100 ps was selected since it 
corresponds roughly with the smallest delay increment that can 
be reliably achieved in the FPGA routing fabric. 

It should be noted that the delay cost formulation just 
described is not used for all connections. The short-path linear 
and quadratic costs are removed for connections that have a 
short-path slack of at least 1 ns with lower-bound delays. This 
prevents the addition of delay to achieve unnecessary short-path 
margin at the expense of long-path margin and CPU time. 

                                                 
1 To this end, the long-path criticality is also restricted to be >= 0.1. 

4.2.2 Routing Look-ahead Function 
This modified router places more stringent accuracy 

requirements on the routing look-ahead function. In traditional 
negotiated congestion routers, a look-ahead function that 
conservatively (and systematically) underestimates delay is 
typical – underestimating delay increases CPU time but facilitates 
the search for the best routing path because the router is trying to 
minimize connection delay [9]. In RCV, however, there are many 
potential routing paths which will have similar delay cost, since 
we are not searching for the minimal delay routing path, but 
rather a routing path with a “target” delay that may be well above 
the minimum achievable. Therefore, for RCV, the look-ahead 
function must accurately estimate delays. If the function 
underestimates delay, the router will add delay close to the 
connection source, anticipating quick routing paths to the sink. 
Closer to the sink, however, the router will find it can not meet 
DTARGET, because it added too much delay earlier. This will force 
the router to backtrack to explore lower delay paths from the 
source – increasing routing time. Conversely, if the look-ahead 
function overestimates delay, the router will pick a low-delay 
routing path near the source anticipating a large delay increase 
closer to the destination. Close to the destination, the router will 
realize it has arrived there using too little delay and will use a lot 
of resources around the sink to achieve DTARGET. This increases 
the likelihood of congestion around the sink, which may force the 
router to backtrack to explore higher delay paths from the source. 

We use a look-ahead function that anticipates a minimum 
delay routing to the destination (ignoring congestion) – the FPGA 
routing fabric is pre-buffered and is regular enough that 
minimum delay routes can be accurately predicted. For long-path 
critical connections, as mentioned earlier, the “optimistic” look-
ahead function facilitates the search for the best routing path. For 
short-path critical connections, the function encourages the router 
to add enough delay to meet short-path constraints close to the 
connection source. If congestion prevents the acquisition of 
additional resources close to the source, the router will grab the 
additional resources opportunistically before it reaches the sink – 
minimizing the need for backtracking. 

4.3 Dedicated Resource Avoidance 
Sometimes synthesis or placement decisions can force certain 

connections to be routed using dedicated resources, which have a 
fixed delay. Examples of such dedicated resources are the carry 
chain circuitry and the dedicated look-up table to register routing 
in Stratix™ FPGAs [12]. When synthesis or placement forces the 
use of such a dedicated connection, the router has no ability to 
change the connection delay and, hence, no ability to solve short-
path timing violations using that connection.  

We modified the FPGA placement algorithm to ensure that all 
short-path critical paths have at least one connection to which 
delay can be added. This is achieved by identifying connections 
that: (a) are part of paths that could violate short-path timing; (b) 
could tolerate additional delay, without violating a long-path 
timing constraint; and (c) might be forced to use dedicated 
routing resources in some placements. After enumerating all such 
connections, the placer forbids any placement in which dedicated 
routing must be used for any of those connections. 

5 Experimental Results 
The experimental results from two sets of designs will be 

presented. The first set consists of 100 representative FPGA 
designs gathered from Altera customers – with all user 



constraints (timing, placement, and routing) removed to avoid 
ambiguity in what is being measured. These designs have 3,264 
to 67,311 logic elements (median of 12,072 logic elements) and 
target a range of Altera Stratix devices and packages [12]. The 
second set consists of 72 master-target 66-MHz PCI cores 
compiled into a range of Altera Stratix devices and packages 
[12], for the two fastest speed grades. Half of these cores contain 
only timing constraints while the other half contain timing and 
locked-IO constraints. These cores have 1,171 to 1,878 logic 
elements (median of 1,353 logic elements). PCI cores are 
measured because they are representative of typical FPGA 
customer designs with challenging IO timing. 

All the experiments were run with version 4.0 of Altera’s 
Quartus II Software [1] on 3.066 GHz Intel Pentium 4 machines. 
Without RCV, the Quartus II software only attempts to meet 
long-path constraints through most of the CAD flow. The 
Quartus II software only tries to address short-path constraints by 
setting the delay chains in the IO cells appropriately; however, as 
described in 2.1, this technique is not very powerful. With RCV, 
the Quartus II software simultaneously optimizes long-path and 
short-path timing during routing; the remainder of the CAD flow 
is unchanged, so placement is only aware of long-path constraints 
and “intelligent” IO delay chain setting is still performed. 

No routing failures were observed while conducting the 
experiments below – this despite the limited routing available in 
an FPGA. This routing success rate is achieved because costs are 
used to enforce delay budgets rather than hard limits. RCV 
applies “pressure” to find a good routing solution for timing; 
however, if a design is facing routing difficulty, increasing 
congestion penalization gracefully “pushes” the router to 
sacrifice timing quality to achieve a routing solution. 

5.1 Customer Design Benchmarks 
5.1.1 Long-Path Results 

This experiment measures the improvement in long-path 
results that can be achieved by replacing the traditional delay cost 
of a negotiated congestion router with that of the RCV algorithm. 
For this experiment, the Quartus II Software was instructed to 
optimize only clock frequency, FMAX (measured by the frequency 
of the slowest clock in circuits with multiple clocks). Figure 6 
summarizes the results. There is an average FMAX improvement of 
3.9%, at a run-time cost of a 35.6% extra router time, and a total 
placement-and-routing CPU time increase of 9.3% – including 
the time needed to compute delay budgets. There was an 
additional cost of 2.8% extra wire use; however, since no routing 
failures were observed, this shows that the router can leverage 
“available wire” in devices to achieve better timing. 

An upper bound on router FMAX performance can be computed 
from a minimum delay routing solution that ignores congestion 
(allowing shorts). Before RCV, the final FMAX was, on average, 
12.3% worse than this FMAX bound. With RCV, the final FMAX is, 
on average, only 8.3% below this bound. 

The RCV delay cost is the key to these excellent results. 
Traditional negotiated congestion assigns a fixed criticality, or 
cost, per unit of delay, for each connection. The result is that non-
critical connections often pay so little attention to delay that they 
become critical and slow the circuit. In RCV, however, once the 
delay of a connection goes beyond DBUDGET_MAX, the router knows 
that this connection could now limit the speed of the circuit, and 
aggressively tries to avoid further delay increases. At the same 
time, RCV is more sophisticated than routers that simply try to 
route each connection in less delay than its maximum delay 

budget (such as [6]). In designs that are pushing the limits of 
FPGA speeds (for example, the design spec is “as fast as 
possible”), it is almost inevitable that some connections can not 
be routed within their delay budgets. Often, RCV is able to cover 
the violation of a connection delay budget by achieving delays 
less than DBUDGET_MAX on other connections. This is achieved 
using the long-path criticality term in (14), which encourages 
delay reduction beyond that required by DBUDGET_MAX, in 
proportion to the importance of a connection to the circuit timing. 

5.1.2 IO TSETUP and THOLD 
This experiment measures the effectiveness of the RCV 

algorithm on 100 real customer designs with artificial, but 
“typical of common usage”, timing constraints. The Quartus II 
Software was instructed to optimize three types of long-path 
timing constraints simultaneously: (i) maximize clock frequency 
(FMAX), (ii) meet a TSETUP constraint of 5.75 ns (this affects all 
primary input to register transfers), and (iii) meet a maximum 
TCLOCK-TO-OUTPUT constraint of 10 ns (this affects all register to 
primary output transfers). One type of short-path timing 
constraint was also set: meet a THOLD constraint of 0 (this affects 
all primary input to register transfers). 

Table 1 presents the overall results. RCV improves 
performance on all four types of timing constraints, at the cost of 
14% higher CPU time and 8.4% additional wire. 

5.1.3 Register-to-Register Internal THOLD 
This experiment measures how well the RCV algorithm solves 

THOLD violations internal to an FPGA on the set of 100 customer 
designs. For this experiment, the Quartus II Software was 
instructed to: (i) optimize clock frequency (FMAX) and (ii) attempt 
to prevent internal THOLD violations (between registers). 
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Figure 6 FMAX improvement with RCV. 

 

Table 1 Effect of RCV on 100 designs with FMAX and short-path/long-
path IO timing constraints. 

 Without RCV With RCV 
Average FMAX 87.52 MHz 91.34 MHz 

Average Worst TSETUP Slack 0.15 ns 0.39 ns 
Average Worst 

TCLOCK-TO-OUTPUT Slack 
-2.23 ns -1.94 ns 

Average Worst THOLD Slack -0.81 ns 0.27 ns 
Average Place and Route Time 741 seconds 846 seconds 



Of the 100 customer designs, 18 had internal THOLD violations 
without RCV. All these designs had complex clocking, such as 
gated clocks or locally routed clocks. With RCV, only 5 of the 
designs had internal THOLD violations. RCV managed to achieve a 
3.4% FMAX improvement despite also focusing on short-path 
timing, but there is a placement-and-routing time increase of 
20.9% and a 30.5% increase in wire used. Again, since no routing 
failures were observed, the router was using “available wire” to 
improve timing. Table 2 summarizes the internal THOLD results. 
Most of the small and moderate violations are repaired by RCV – 
only severe violations remain. 

5.2 PCI Cores 
PCI cores represent a highly challenging combined short- and 

long-path timing optimization problem, due to the many tight 
timing requirements on IO-to-register transfers in the PCI 
specification (the IO TSETUP and THOLD constraints). Figure 7 
shows that without RCV, the Quartus II software meets the short-
path (THOLD) constraints on only 19 of the 72 PCI cores tested, 
and it fails to meet the long-path (TSETUP) constraints on all of the 
cores. Figure 8 shows the comparable results with RCV enabled. 
All of the 72 PCI cores meet their short-path (THOLD) and long-
path (TSETUP) constraints – a vast improvement.  

The PCI specification also includes two more long-path 
constraints – a 66-MHz clock frequency requirement and 
maximum TCLOCK-TO-OUTPUT requirements that affect register to 
primary output paths. The Quartus II software meets these 
requirements with and without RCV. 

6 Conclusion 
This paper introduced RCV, the first published algorithm to 

simultaneously optimize short-path and long-path timing 
constraints in FPGAs. RCV comprises a new slack allocation 
algorithm and a new routing formulation. The slack allocation 
algorithm is the first to incorporate upper delay bounds and 
compute minimum delay budgets. The router incorporates a new 
delay cost formulation, using the delay budgets from slack 
allocation, to enable satisfaction of both short- and long-path 
timing constraints, without requiring any additional FPGA logic.  

Experimental results show that RCV outperforms earlier 
approaches used to satisfy short- and long-path timing 
constraints. Using only FPGA IO delay chains to solve short-path 
violations failed to meet the timing constraints on all 72 PCI 
cores tested, while RCV met the constraints on all of the cores. 
On a set of 100 benchmark circuits, with short- and long-path 
timing constraints, RCV improved the short-path THOLD and the 
long-path TSETUP timing, on average, by 1.08 ns and 0.24 ns, 
respectively. On a set of 100 benchmark circuits, with no short-
path timing constraints, RCV achieves 3.9% higher circuit speed 
than a traditional negotiated congestion router, indicating that 
RCV outperforms this highly successful algorithm, even on the 
well-studied long-path-only timing problem. 
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Table 2 Internal THOLD violation repair with RCV. 

Magnitude of Worst-case THOLD Violation 

Without 
RCV 

With RCV Without 
RCV 

With RCV 

0.086 ns No Violation 3.130 ns No Violation 
0.289 ns No Violation 3.301 ns 0.913 ns 
0.374 ns No Violation 3.562 ns No Violation 
0.403 ns No Violation 3.887 ns No Violation 
0.418 ns No Violation 4.009 ns No Violation 
1.103 ns No Violation 4.898 ns 4.916 ns 
1.633 ns No Violation 5.774 ns 5.971 ns 
1.862 ns No Violation 8.928 ns 8.500 ns 
2.207 ns No Violation 19.228 ns 18.647 ns 
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Figure 7 PCI core IO timing performance without RCV. 
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Figure 8 PCI core IO timing performance with RCV. 
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