Computational Geometry Based Placement Migration

Tao Luo', Haoxing Ren'*, Charles J. Alpert*, and David Z. Pan’
T Department of ECE, University of Texas at Austin, Austin TX 78712
IBM Corporation, 11400 Burnet Road, Austin TX 78758
{tluo, dpart @ece.utexas.ed@ihaoxing, alperf@us.ibm.com

ABSTRACT

Placement migration is a critical step to address a variety of post-
placement design closure issues, such as timing, routing conges
tion, signal integrity, and heat distribution. To fix a design problem,

one would like to perturb the design as little as possible while pre-

serving the integrity of the original placement. This work presents a
novel computational geometry based placement migration method,
and a new stability metric to more accurately measure the “similar-
ity” between two placements. It has two stages, a bin-based spread

ing at coarse scale and a Delaunay triangulation based spreading at/

ates entirely different result and destroys all previous optimization
efforts.

Among various placement migration applications, legalization is
probably the most common one. Therefore, the remainder of the
paper will discuss our placement migration algorithm in this con-
text. Existing legalization techniques for legalization include net-
work flow [2] [3], dynamic programming [4][5], heuristic ripple
cell movement [6], and single row optimization [7] [8]. The net-

work flow approach [3] uses minimum cost flows to minimize the

eighted sum of (squared) cell movements. The dynamic program-

finer grain. It has clear advantage over conventional legalization al- TN based approach [4] solves the optimal assignment of cells to

gorithms such that the neighborhood characteristics of the original
placement are preserved. Thus, the placement migration is muc
more stable, which is important to maintain. Applying this tech-

nique to placement legalization demonstrates significant improve-
ments in wire length and stability compared to other popular legal-
ization algorithms.

1. INTRODUCTION

In modern placement and physical synthesis of VLSI circuits,
one is increasingly faced with the placement migration problem,
which is to take an existing placement, fix some design violations
and re-legalize it. For example, during physical synthesis or En-
gineering Change Order (ECO) optimization, many buffers may
be inserted and gates resized, creating a lot of overlapping cells.
These cells need to be legalized, but one should avoid disturbing
the previous placement too much to achieve design convergence
Also another example, post routing congestion analysis may iden-

placement sites under the constraint of cell ordering. Mongrel [6]

puses a greedy heuristic to move cells from overflowed bins to under

capacity bins in a ripple fashion based on total wire length (TWL)
gain. The single row optimization techniques [7] [8] use dynamic
programming to optimally place cells in a single circuit row.

While there are many existing legalization algorithms, there are
very few works directly targeting incremental and stable placement
migration! In this paper, we develop a novel technique for sta-
ble placement migration based on twmnputational geometryVe
also propose a new placement stabilitgtric which can be used
to measure the placement migration stability. Our algorithm has
two key steps: bin-based cell spreading and Delaunay triangula-
tion based overlap reduction. The algorithm takes advantage of the
computational geometry property of the existing placement. Thus
it captures the relative cell order nicely during placement migra-
tion. Our experimental results compared to other widely used legal-
ization algorithms clearly demonstrate the superiority of our algo-

rithm, with over 10% wire length reduction and significantly better

tify severe hot spots (e.g., congestion, noise, power, thermal), andStability score.

placement migration is needed to smoothly spread out cells in these

hot spots [1]. Due to the complexity of modern nanometer designs,
it is unlikely to design one placement algorithm that meets the
multi-objective design closure target in a single run. More often,
a placement flow involves multiple placement-improvement itera-
tions. So a stable placement migration algorithm is crucial for the
multi-objective design closure.

These tasks share a common theme of starting with an initial
placement that is “good” and perturbing it so that it is improved in
some way while still preserving the essential characteristics (cell
ordering, wirelength, etc.) of the original placement. Ideally, the
later placement iteration should be able to preserve previous fixes
and accumulate additional improvements to achieve the design clo-
sure. Therefore, the stability of the placement algorithm is very im-
portant. Obviously, we do not want each placement iteration gener-

This work is supported in part by SRC under contract 2005-TJ-
1321, IBM Faculty Award, Sun, and equipment donations from In-
tel.

The rest of the paper is organized as follows. Section 2 presents
the bin based spreading algorithm. Section 3 presents the Delau-
nay based overlap reduction procedure. The complete computa-
tional geometry based legalization algorithm is given in section 4.
Section 5 proposes a new placement stability metric suitable for
placement migration. Very promising experimental results are ob-
tained in section 6, followed by conclusion in section 7.

2. BIN BASED SPREADING

A placement is close to legal if all that is required to legalize
the placement is to snap cells to rows or perhaps perform minor
cell sliding in order to fit the cells. Assuming the chip layout is
divided into equal sized bins, the placement is considered close to

1The most recent work on diffusion-based placement [7]simulates
the placement spreading using the physical diffusion equation. It
shares some common theme with this work, but using very differ-
ent approaches. See Section 6 for more discussion on these two
approaches.

legal if the area density of every bin is less than or equébix
(e.9.,Dmax=1). For all bins with density greater thdy,ay, cells

this corner for each bin. Such process is iterated as needed. After
computing coordinates of all points, cells inside the bin will move

must be migrated to other bins. Therefore the goal of our migration within the distorted bin as explained in next section.

algorithm is to reduce the density of each bin to no more Diagy
while avoiding moving these cells far from their original locations
thus preserving the original placement characteristics.

Bin based spreading is a geometric approach to evenly reduce

cell density on the congested regions. Suppose we divide the entire

placement region int&* L square bins, there will be<(+ 1)*(L +

1) bin corners. The idea is to move those bin corners such that
the resulting bin capacity would satisfy the density constraints, and
then move cells accordingly. By stretching the bin corners, we pre-
serve the relative order of neighboring bins; meanwhile by inter-
polating cells relative to its bin corners, we preserve the relative
order of cells inside the bin. We perform the bin stretching and cell
interpolation iteratively until all the bins are under the maximum
densityDmax.

2.1 Bin Stretching

At each iteration, we first compute the bin dendity, (n) (the
nth iteration), then compute the amount of stretching needed for

2.2 Cell Interpolation

Py (n+1)

Pr-1,(n) Pi,(n)

Pig,(n+1)

x(n).y(n) 3
----- o

1
1
i
1
1
-
.

B

Pr-g (N

Figure 2: Cell location interpolation on stretched bin

The computation of new cell coordinates is a linear interpolation
process, which maps all cells from the original bin into the new bin
at the same relative positions. As shown in Figure 2, the four corner

each bin. For those overpopulated bins, the idea is to expand thatcoordinates of the bin arp,_q_1(n), pij—1(n), Px_1,(n), and

bin such that the density of the new bin is equaDigax. At the

Pk, (n) . Their coordinates after bin stretching apg: 1,_1(n+1),

same time, to accelerate the spreading process, we allow the adjapy_1(n+1), py_1(n+1), andpy (n+1). For a cell(x(n),y(n))

cent bins to shrink such that their densities equdDgx as well.
The amount of stretching for bitk,) on both horizontal and ver-
tical directions can be written as:

D
I
o= (g &

whereW andH are the bin width and height, respectively.
Stretching each bin itself would generate overlaps between ad-

jacent bins. Therefore we stretch the bin corners of adjacent bins

instead of bins itself. Le(cpf;I (n), p{J (n)) denotes the coordinates

of an inner bin corner, which is shared by four neighboring bins, de-

noted agk—1,1 —1), (k—1,1),(k,1 —1), and(k,l). We can use (1)

to compute the amount of horizontal and vertical stretching needed

for each one of the four bins, which will give us four stretched cor-

ner positions, and then compute the combined number of these four

as the corner position for next iteratiamy;, (n+ 1), Py, (n+1)),
P (N+1) = pi; (n) +0.5(gk_1) 1 +€ 1) —&)-1— k1)
pﬁJ (n+1) = pg; (n) + O'S(SK—LI at EK,I AT EKJ) @

Because the stretching is uniform on both bin corners on the same
bin edge, we only take half the stretching value given by (1). If any
neighboring bin is on the chip boundary, we take the 0.5 factor off.

Figure 1: lllustration of bin and corner stretching

Figure 1 is an illustration of the movement of the corner point
pa,4 under accumulated stretching from all four surrounding bins.
Bin (3,3), (4,3), and(4,4) are over the maximum density, there-
fore we expand them, while bif8,4) is under the maximum den-
sity, thus we compact it. We will have four new corner positions of

within the bin, the new coordinategn -+ 1) andy(n+ 1) can be

computed by the following equations.

X(n+1) = w+BEx—W)

yin+1) = w+ay—w) 3
where
I R SV

Pli—1(M) = Pigy 1 (M)
y(n) — p{,“,l(n)

S ST S0
Y = P+ +alpg_g(n+1)—pqy_1(n+1))
x = Py (+1)+alpg(n+1)—pg g (n+1))

= pifl,lfl(n+1)+8(p{71,l (n+1)—pf 4y 4(n+1))
y = Pha(n+1)+B(p (n+1) —pYy_4(n+1)

@)
2.3 Bin Based Spreading Algorithm

At each iteration of the bin based spreading algorithm, it first
stretches the bin corner to make congested bin larger, then interpo-
lates cell locations accordingly. It then restores all the bin boundary
and starts an new iteration. The new iteration recomputes the bin
density and repeats all above procedures. The process stops once
that all the bin densities are lower than the maximum de it

To avoid over expansion in hon-congested region, we only change
the bin corners of those bins abolg,ax during bin stretching. It
assures that cells are pushed from high density area to low density
area steadily and smoothly. It also reduces unnecessary oscillation
and computations.

The stability of the migration process is affected by the bin size
(area) as well. The ideal initial bin size is depending on the size
of the circuits. If the bin size is too large, the internal density dis-
tribution inside the bin might still violate the density constraints
even if the bin as a whole is undBkax. However, if the bin size
is too small, oscillation will appear and bin boundary distortion
may impact the smoothness of spreading. We may see cells tend

to cluster in some areas. This problem is solved by a hierarchical and only if their Voronoi regions share a common edge. The De-

addition to our original formulation. The idea is straightforward. It launay triangle edges of an object essentially captures its relative
uses big bin sizes from at the beginning, then recursively cuts big proximity relationship with other objects.

bins into smaller bins, and adjusts the internal density distribution. Figure 3 shows an example of the Voronoi diagram and its cor-

The hierarchical technique is necessary to handle fixed macros. Atresponding Delaunay triangulation. For a given VLSI placement to

the time the bin size is smaller enough, bin edges be close to macrobe migrated smoothly to another solution due to legalization need,
boundaries. Cells will move along the boundary, they will not move congestion or noise mitigation, we can compute the Delaunay trian-

toward the macros. The complete bin based spreading algorithm isgulation for all cells efficiently. Based on this Delaunay triangula-

given by Algorithm 1.

Algorithm 1 Computational Geometry Bin Based Spreading

1: Procedure: BIN

2: Input: cell placement,y;, bin areaAg = W - H, maximum
bin densityDmax

3: Output: new placemeng;, Vi

4: begin

5: Initialize bin densityDy;
6: if Ag is too smallthen return;
7: while anyDy| > Dmax
8: for each bin with Dy | > Dmax
9: Compute bin expansiof |, g} | with (1);
10: end for S
11: Compute bin cornepy | (n+ 1) with (2);
12: Interpolate cell locations (n+1),yi(n-+ 1) with (3);
13: Restore all bin corners, upddig | ;
14: n=n+1;
15: end while
16: UpdateX =xi(n),%i =yi(n);
17: Reduce bin areag = Ag/2;
18: Recursively call BIN®;, i, Ag, Dmax);
19: end

Note that our approach is different from the grid warping [9]
and cell shifting [10]. At each partition step, grid warping slices
the region into 2 x 2 or 4 x 4 equal “volume” quadrilateral grids,
transforming the grid (and cells) back to equal shape rectangles to
form the subproblems. The elastic grids in grid warping are the
equivalence to Gordian’s min-cut partition [11], both purpose is for
partition, while our bins are used for spreading directly. We re-
shape each bin individually at each step and rely on iterations to
flow cells out eventually. The cell shifting [10] technique is an one
dimensional greedy shifting, which is used to generate the spread-
ing forces for the global placer. It is the quadratic solver that does
the actual spreading; while our approach is a two dimensional ap-
proach, and it spreads out cells directly.

3. DELAUNAY TRIANGLE BASED OVER-
LAPPING REMOVING

Bin based spreading is good for coarse level spreading. However,
to further remove overlapping between cells, we need to use more
fine-grained migration techniques. In this section, we will present
the Delaunay triangulation based algorithm to effectively remove
cell overlap while preserving placement stability.

3.1 Delaunay Triangulation
The Delaunay triangulation is the dual of the Voronoi diagram

tion that captures the “preferred” proximity relationships among all
fixed and placeable objects, we can perform stable placement mi-
gration, to spread cells smoothly from congested area, as illustrated
in Figure 3.

L

. |
~._ Congested

‘ "

Delaunay 4
triangle

Figure 3: Delaunay triangulation captures the relative order,
which can be used to spread cells during placement.

Delaunay triangulation is an important topic in computational
geometry and has wide applications in varies field, such as visu-
alization, finite element analysis, and discrete wireless networks.
There are quite a few mature Delaunay triangulation algorithms de-
veloped, with the computational complexity ranges froml@gn)
to O(n?). The reader is referred to [12] for a comprehensive survey
of Delaunay triangulation and Voronoi diagram.

Given a placement, we can construct the Delaunay triangula-
tion of all the cells using its center locations as triangle nodes.
Then the placement plane becomes a planar g&gghV, E), with

V = {v1,Vz,...,vn} corresponding cells anl = {e,&y,...em} tri-

angle edges. The boundary of the graph are fixed pads. We only
move non-boundary or non-fixed cells. Figureo 4 shows a Delau-
nay triangulated placement region.

'ﬁmﬂ ALY
W@h fguvaki_mm?m;q)
T D et
P e
A SR bR

Figure 4: Delaunay triangulation of a placement region

3.2 Fine-grain Overlapping Reduction
Because Delaunay triangulation helps to identify all close neigh-

— one of the most fundamental data structures in computational bors of one cell, such detailed information is valuable for fine-grain
geometry [12]. The Voronoi diagram for a collection of geomet- adjustments. We use the Delaunay triangulation to do further cell
ric objects is a partition of space such that each of them consists spreading, where the bin based spreading is not applicable. The
of the points closer to one particular object than to any others. It Delaunay triangulation based cell overlapping reduction works as
contains a straight-line edge connecting two sites in the plane if follows.

To iterate through cells in the placement order, we build a tree AY, . Then the y-directional forcé%__ . and f{__g will be ap-
structure on the delaunay triangulated placement. One cell in the plied on cells C and B, respectively. In the case that a cell overlaps
center of the placement is selected as the tree root, and all cellswith many surrounding neighbors, the total force tends to cancel
connecting to the root by Delaunay edges are added into the treeeach other. This usually happens at the center of congested area,
as the second level tree nodes. Then all cells connecting to secondand we can set certain density threshold to avoid redundant compu-
level nodes are added as the third level tree nodes. Note that ondation. The cells close to whitespace will move first and pull cells
cell may connect to two second level tree nodes by Delaunay edgesinside congested areas out smoothly.

The cell is added to one tree node as the child only. The criteria of
where to add the cell is to keep the number of child of each tree
node balanced. Similarly, the tree keeps growing until all cells in
the placement are added. Figure 5 illustrats the steps to build the B

tree on a delaunay triangulated region. Cells with the same color
are tree node the same level.

Repelling forces between cell B and C

Figure 6: Delaunay force to reduce overlapping

The Delaunay triangulation based overlapping reduction process
e is outlined in Algorithm 2.

Algorithm 2 Delaunay Based Overlapping Reduction
1: Procedure: DELT

2: Input: cell placemenk;, y;

3: Output: new placement;, V

4: begin

Figure 5: Tree structure for Delaunay edge traversing

Starts from the root, the algorithm traverses the tree in breadth-
first manner. For every tree node - celall Delaunay edges con-
necting celli with the same or next level nodes are inspected. Let

. . 5: while stopping criteria is not satisfied
6, be th? Delaunay ed_ge between ‘m*.‘d Ce”." From the De- 6: if redg%e?aunay condition is satisfigtten
launay triangle properties, we know thiatind j are the nearest 7 T = {V,E} — (%))
neighbor to each other. If cdlidoes not overlap with cefl, we do 8: end if ’ i
nothing and move on to the next Delaunay triangle edge. Ificell 91 BFS(T)
:)nv:arllsauprse(\j/v;trw]gil(lejl,léhv\e;iltl)\k/)((eerlap distances on x an_d y directions are 10: for each edgess; j connect with cell
pushed away accordingly.Agtand 11: check connected cellsand j
A} be the x and y direction overlapping betweieand j, respec- 12 if i does not overlap with then continue;
tlvely If AX > Ay- a repelling force is generated between cell 13: if AX < A
and cellj on X dlrectlon We try to make minimum movementto 14: computef
remove the overlapping. So the force is inversely proportional to 15: else
the cell sizes with weight to push the cell away from congestion. 16: computefH]
Let fi’i>j denote the repelling force from celto cell j. 17: end if
18: for eachcelliin T
X x W 19: move all cells on force
s = 24 Wi + W ®) 20: end BFS
y 21: sum up forces and update coordinates of cell
wherew; andw, are the widths of cellsandj. If AX <A i the 22: end for
fource will be in the y-direction, i.e., 23 end while
y . hj 24: end
. =N 6
—> 1, j hl + h] ()
whereh; andh; are the heights of celisand j.
If a movable celii is connected with multiple neighbors by De- 4. COMPUTATIONAL GEOMETRY BASED
launay edges, the total foré&* on cell; is the superposition of all LEGALIZATION
overlapped neighboring cells Our algorithm consists of two major steps: bin based spreading
and Delauney Triangle based overlap reduction. As described ear-
X X lier, bin based spreading reduces the bin density overflow quickly
F= > fi @)

at coarse level, and the Delaunay Triangle based overlap reduc-
tion step works at fine-gained level to reduce the overlap between
whereNeighbo(i) denotes the set of cells overlapped with cell adjacent cells. After bin based spreading and Delaunay Triangle
Figure 6 is an example to illustrate how forces are added to the based overlap reduction, the placement should have a max den-
overlapping cells. As shown in Figure 6, assume cell A, B, C are sity of Dpax and is roughly legal. We will run a final legalization
within one Delaunay triangle. We can see that B and C are over- step to put cells onto circuit rows without overlap,which takes very
lapped, and the overlapping in x direction is smaller, 'Z%,c < small effort since the density constraint is satisfied at fine granu-

jeNeighbox(i)

larity level. The emphasis is to study the impact of our compu- to measure the change of cell placemefativeto its neighboring
tational geometry placement migration algorithms comparing with cells and sum up the most significant changes to capture the dif-
other methods, such as the greedy and the flow, thus we just use derence of these two placements. Both placements have the same
standard legalizer to generate the final legal placement. In fact, it number of cells. The coordinates of cedire(x;,y;) and(%;, ;) for

is almost trivial after our migration. The complete computational placementA andB, respectively. We select a group of cells adja-

geometry based legalizatio@ GL) algorithm is given in Algorithm

3). Note that the combined bin based spreading and Delauney Tri-

cent to celli in placementA, and compute thgeometriccenters
(GC) of this group in both placemes andB as (x°¢,y¢) and

angle algorithm gives the best result. For comparison purpose, we (25€,9EC) as follows.

test the bin based spreading algorithm alone for legalization. It is
referred to a€GLg.

Algorithm 3 Computational Geometry Legalization Algorithm
: Procedure: CGL

2: Input: A cell placement;, y;

3: Output: A new placemeng;, V;

4: Parameters: Initial bin area:Ag, max bin densityPmax
5: begin
6
7
8

I

Call bin based spreading algorithm (Algorithm 1):
(%i, ¥i)= BIN(X, ¥i, Ag, Dmax);
Call Delauney Triangle based algorithm (Algorithm 2):

9 (%, ¥i)=DELT (X, %i);

10: Put cell onto circuit row and remove remaining overlaps;
11: return %,V
12: end

5. GEOMETRIC PLACEMENT STABILITY
METRICS

During placement migration one often needs to compare the dif-
ference of the original (golden) placement with a new placement

generated by placement migration. It can be measured by the place-

ment stability metrics. In the existing literature [13], two placement

stability metrics are used: one measures the average cell movement..
between two placements, and the other measures the change of nqt

clusters. During placement migration, however, it is possible that a
large number of cells are shifted, all with a small amount. Thus all

nets between cells have very small changes (like in our Delaunay

triangulation spreading). For such scenario,ghsolutecell move-
ment metric is not a good metric [13]. The net cluster metric [13]
is good to capture global placement stability where one big cluster
can be moved to another part of the chip. But it is not very suit-

able for placement migration applications where most changes are

small. During placement migration, it is desired to keep the relative

geometric order and punish the most disruptive changes. Therefore,

we propose the following geometric stability metric.
Suppose we are given two placements: a golden placefvesmnd
a new placemer generated by placement migration. Our idea is

/ .
.i (R,HF
R,/ !

¥
4.6

Figure 7: Relative distance of celi.

max(X;j) + min(x;)

xC = 5
sc _ maxyj)-+min(y;)
e = — %
2GC max(X;) +min(X;)
e
N maxy;) + min(y;
§ec XYi) ' (V) ®)

wherej refers to cells within a certain Euclidian distance to cell
in placemen®. We can then define threlativemovement of a cell

i from placementA to B as the squared Euclidian distance of the
relative positions of cellto (x°C, y*C)and (%€, y¢C), as shown in
following equation:

%) — (6 — x>

R l
) - (1 —yE)

(% —
+[(%

©

The new placement stability metri; for each celi essentially
aptures the relative change w.r.t. to its geometric neighborhood.
igure 7 shows two placements of dedind its adjacent cells in the
eft placement, assuming the left placement is the original place-
ment and the right one is after placement migration. Suppose origi-
nally celli is placed at4, 8) and the geometric center of its adjacent
cells is at(6, 6). After placement migration, celis moved to(4,6)
while all of its original neighbors are shifted to upper right corner
with a center af18, 20). The relative positions of cellto the center
of its adjacent cells are shown as vectors in Figure 7. Although the
absolute location of cell does not change much, the relative dis-
tance actually changes a 8%, = [(4—18) — (4—6)]?+[(6—20) —
(8—6)]% = 400as given by Eqn. (9), which can not be captured by
the absolute cell movement between both placements. Note that we
use squared distance to emphasize the impact of larger moves, since
wiring delay is a quadratic function of wirelength. Larger moves
will have higher possibility to degrade the overall timing closure.

Naively one may sum u for all cells to measure the total
geometric stability. However, it is the most disruptive changes of
the relative order that have the biggest impact on the placement
migration quality. Therefore, we set some filter and only count the
top percent of cells in terms &, e.g., top 1% cells. So, the overall
geometry stability metri&s can be written as

= YjcCuw Ri
N N
whereCy is the set of top 1% cells with the largd3j values and
N is the number of cells i€19,. BiggerSs value means placement
B is less similar to the original placemeAt and more cells are
placed away from their original affinity logics, thus more vulnera-
ble to performance degradation.

(10

Table 1: TWL Comparison (scaled) Table 2: S5 Comparison

testcases GREEDY | FLOW | CGLg | CGL testcases GREEDY | FLOW CGlLg CGL
ibm01 1.282 1.314 | 1.192 | 1.191 ibm01 52199 37785 | 12685 | 11349
ibm02 1.056 1.064 | 1.013 | 1.013 ibm02 44735 24126 5225 5172
ibm03 1.101 1.096 | 1.058 | 1.061 ibm03 58375 52356 | 41099 | 26081
ibm04 1.165 1.195 | 1.096 | 1.100 ibm04 119647 58967 | 52199 | 39039
ibm05 1.016 1.018 | 1.014 | 1.014 ibm05 55040 65344 | 53387 | 49538
ibm06 1111 1.123 | 1.036 | 1.035 ibm06 60242 48890 4555 4750
ibm07 1.141 1.139 | 1.040 | 1.039 ibm07 131024 | 119809 | 5232 5764
ibm08 1.154 1.153 | 1.043 | 1.042 ibm08 153395 | 119758 | 3610 3750
ibm09 1.211 1.221 | 1.071 | 1.069 ibm09 168791 | 154334 | 20743 | 16126
ibm10 1.180 1.181 | 1.032 | 1.030 ibm10 302222 | 238185 | 5057 4740
ibm11 1.193 1.187 | 1.054 | 1.056 ibm11 224925 | 190321 | 32519 | 50898
ibm12 1.162 1.167 | 1.051 | 1.050 ibm12 361702 | 331289 | 5270 5088
ibm13 1.229 1.233 | 1.064 | 1.059 ibm13 370440 | 349016 | 177377| 117833
ibm14 1.239 1.235 | 1.049 | 1.047 ibm14 557898 | 456627 | 4581 4364
ibm15 1.274 1.273 | 1.067 | 1.065 ibm15 698634 | 746372 | 130784 | 123811
ibm16 1.313 1.318 | 1.041 | 1.040 ibm16 937453 | 746372 | 4435 4129
ibm17 1.267 1.285 | 1.043 | 1.040 ibm17 1169281 | 1087672| 14648 | 11019
ibm18 1.296 1.318 | 1.055 | 1.054 ibm18 | 1116867 | 985042 | 3224 3267
Average 1.188 1.197 | 1.057 | 1.056 Average | 365715 | 334406 | 31855 | 26858
6. EXPERIMENTAL RESULTS 1000000 _—
We implemented the computational geometry placement migra- 100000
tion algorithms in C++ on a 3.4 GHZ Xeon Linux box, and use
the modified SPD02 benchmark [14] to test it. All the testcases of 10000
this benchmark place cells with equal dens@8$%o over the entire 1000

chip. To make it similar to the real industry placement after phys- =
ical synthesis, we first linearly scale down each cell such that the
entire chip density for each testcase is reduced0fh We then run 10
a detailed placement algorithm to reduce the wirelength. After that,
the placement is no longer equally distributed. To test the legaliza-
tion algorithm, we generate the overlaps by expanding cells in the 0.1
center of the chip. We linearly expard®% of cells in the center

by 67% So after expansion, the overall chip density is increased to

90%and this original placement is no longer legal. Figure 8: Histogram of R from three legalizers onibm01

We compare the computational geometry based legalZéit (
andCGLg) to an industry greedy legalizeGREEDY) which uses
slide-and-spiral techniques to place cells onto their nearest legal
locations and to an industry network flow legalizELOW) which
uses min-cost flow algorithm to direct cell movemerfd.OW is has less larger relative distances tirOW andGREE DY, which
an industrial strength legalizer similar to [3]: first, cells are roughly meansCGL would keep cells closer to their original neighbors,
spread out by the min-cost flow algorithm; then, they are moved to preserving the relative order. On the other haB&REEDY and
their final positions such that all overlaps are remov@&RE EDY FLOW have less number of smaller relative distances thét,
sorts all the cells and place them sequentially. Itfirst tries to place a which mean<CGL tends to move more cells a smaller distance to
cell at the original location. If that location is occupied, it performs avoid bigger moves. For placement migration applications, one of-
a spiral search starting from the original location. During a spiral ten wants to limit the bigger moves but not care too much about
search, it could slide other placed cells a little bit in order to fitin. the smaller moves, therefo@&GL is well targeted for those appli-

Table 1 reports the TWL results of these legalizers. The TWL cations.
numbers are scaled to the TWL of the original illegal placement. The runtime comparison of is reported in Table 3. We can see
Both CGLg andCGL get much better TWL thaGREEDY and CGL is much faster thaGREEDYandFLOW (over 10x speedup
FLOW. The improvement is ovet0%on average. for bigger circuits). Therefore, it is both effective and fast.

Table 2 shows the geometric stability scores of these legalizers. We also implemented the diffusion-based legalization algorithm
Both CGLg and CGL get order of magnitude better scores than [15] for the academic benchmarks. Our initial experience is that
FLOW andGREEDY. AndCGL can further reduce it b§6%than the diffusion algorithm produces slightly better result while com-
CGLg due to the Delaunay triangle based overlap removal. putational geometry based algorithm is faster. However, it is not

To further understand the difference of geometric stability result straightforward to make a fair comparison between them at this
of these approaches, Figure 8 and 9 show the relative distance hisstage, because the results depend on the tuning. In general both
togram after legalization oibm01. Figure 9 is a zoom-in view algorithms share a common smooth spreading nature and generate
of the top1% cells in Figure 8 to make it difference cleaCGL comparable results.

300000 7 GREEDY placement legalization by minimum cost flow and dynamic

250000 A programming,” inProc. Int. Symp. on Physical Design

pp. 2-9, 2004.
200000 1 [4] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur,
© 150000 - S. Ono, and P. H. Madden, “Fractional cut: improved
recursive bisection placement,” Rroc. Int. Conf. on
100000 FLow Computer Aided Desigmpp. 307-310, 2003.
50000 /_,/_f,/ [5] A.B. Kahng, I. L. Markov, and S. Reda, “On legalization of
oL row-based placements.,” CM Great Lakes Symposium on
0 VLS|, pp. 214-219, 2004.
"TS385EBINREFT SRS [6] S.W. Hur and J. Lilis, “Mongrel: hybrid techniques for
i standard cell placement,” iroc. Int. Conf. on Computer
Aided Designpp. 165-170, 2000.
Figure 9: Histogram of top 1% R from three legalizers on [7] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of
ibmOL linear placements for wirelength minimization with free
sites,” inProc. Asia and South Pacific Design Automation
Table 3: CPU Time Comparison (s) Conf, pp. 18-21, 1999.) .
tesicased GREEDY | ELOW | CGL [8] U. Brenner and J. Vygen, “Faster optimal single-row
. placement with fixed ordering,” iRroc. Design, Automation
:Emg; ;é ;g ;g and Test in Eurpogop. 117-121, 2000.
ibmo3 58 76 55 [9] Z. Xiu, J. D. Ma, S. M. Fowler, and R. A. Rutenbar,
ibmoa 60 29 30 “Large-s_cale placement by grid-warping,”roc. Design
bmo5 33 37 20 Automation Conf.pp. 351-356, 2004.
ibmo6 69 53 35 [10] N. Visyvanathan and C. C N. Chu,. “.Fast‘place‘: Efficient
bmo7 160 150 55 anglytlcal placement using cell shifting, iterative local
bmoa 307 542 65 reflne_‘ment and a hybrid net model,”Rroc. Int. Symp. on
M09 375 589 75 Physical Designpp. 26—33, 2004.
bm10 806 575 89 [11] J. Kleinhans, G. Sigl, F. M. Johannes, ar_1d K. Antreich,
bmil 617 290 95 “GORD!AN: VI__S_I pla_lcement by quadratic programming
bmiz 1299 807 o1 and _sllcmg optlmlzatlor_1,1E_EE Trans. on Computer-Aided
omi3 939 Y 134 Design of Integrated Circuits and Systemsl. CAD-10,
ibmi4 | 3654 | 2240 | 231 Pp. 356-365, Mar. 1991. . o
DS 5510 3643 T 430 [12] Fortune,_ Vqronon (_jlagrams and delaunay t_rl_angulatlons, in
- Computing in Euclidean Geometry, 2nd Edition, World
!bm16 9927 6280 | 511 Scientific, Lecture Notes Series on Computing — \dl992.
ibml7 | 11363 | 8280 | 558 [13] C. J. Alpert, G.-J. Nam, P. Villarrubia, and M. C. Yildiz,
ibm18 12724 9160 | 661 “Placement stability metrics,” ifroc. Asia and South Pacific
Design Automation ConfJan, 2005.
7. CONCLUSIONS [14] ‘I‘SPDZOQZBenchmarkModlfled,)
The incremental nature of design optimization demands smooth [5, F:]_ttg'e/fIgl?(;]';;V:tg'lc‘)fﬁi;?iegghﬁhwllérffgi:
and stable placement mitigation techniques. They must be capa- “Diffusion-based placement migration,” Proc. Design

ble of spreading cells to satisfy design constrains such as image Automation Conf.June, 2005.
space, routing congestion, signal integrity and heat distribution, '
while keeping the original relative order. To address these chal-

lenging tasks, we propose a novel computational geometry based

placement migration framework. Our experimental results on le-

galization problem have demonstrated significant improvements on

wire length and stability. To the best of our knowledge, this is the

first attempt using Delaunay triangulation to perform placement

spreading. We believe there is still a lot of room to improve and

other effects such as timing and wirelength to be incorporated.

8. REFERENCES

[1] H.Ren, D. Z. Pan, and P. Villarrubia, “True crosstalk aware
incremental placement with noise map,”Rmnoc. Int. Conf.
on Computer Aided Desigpp. 616619, 2004.

[2] F. M. J. Konrad Doll and K. J. Antreich, “Iterative placement
improvement by network flow methoddEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems
vol. 13(10), 1994.

[3] U. Brenner, A. Pauli, and J. Vygen, “Almost optimum

