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ABSTRACT
Placement migration is a critical step to address a variety of post-
placement design closure issues, such as timing, routing conges-
tion, signal integrity, and heat distribution. To fix a design problem,
one would like to perturb the design as little as possible while pre-
serving the integrity of the original placement. This work presents a
novel computational geometry based placement migration method,
and a new stability metric to more accurately measure the “similar-
ity” between two placements. It has two stages, a bin-based spread-
ing at coarse scale and a Delaunay triangulation based spreading at
finer grain. It has clear advantage over conventional legalization al-
gorithms such that the neighborhood characteristics of the original
placement are preserved. Thus, the placement migration is much
more stable, which is important to maintain. Applying this tech-
nique to placement legalization demonstrates significant improve-
ments in wire length and stability compared to other popular legal-
ization algorithms.

1. INTRODUCTION
In modern placement and physical synthesis of VLSI circuits,

one is increasingly faced with the placement migration problem,
which is to take an existing placement, fix some design violations
and re-legalize it. For example, during physical synthesis or En-
gineering Change Order (ECO) optimization, many buffers may
be inserted and gates resized, creating a lot of overlapping cells.
These cells need to be legalized, but one should avoid disturbing
the previous placement too much to achieve design convergence.
Also another example, post routing congestion analysis may iden-
tify severe hot spots (e.g., congestion, noise, power, thermal), and
placement migration is needed to smoothly spread out cells in these
hot spots [1]. Due to the complexity of modern nanometer designs,
it is unlikely to design one placement algorithm that meets the
multi-objective design closure target in a single run. More often,
a placement flow involves multiple placement-improvement itera-
tions. So a stable placement migration algorithm is crucial for the
multi-objective design closure.

These tasks share a common theme of starting with an initial
placement that is “good” and perturbing it so that it is improved in
some way while still preserving the essential characteristics (cell
ordering, wirelength, etc.) of the original placement. Ideally, the
later placement iteration should be able to preserve previous fixes
and accumulate additional improvements to achieve the design clo-
sure. Therefore, the stability of the placement algorithm is very im-
portant. Obviously, we do not want each placement iteration gener-
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ates entirely different result and destroys all previous optimization
efforts.

Among various placement migration applications, legalization is
probably the most common one. Therefore, the remainder of the
paper will discuss our placement migration algorithm in this con-
text. Existing legalization techniques for legalization include net-
work flow [2] [3], dynamic programming [4][5], heuristic ripple
cell movement [6], and single row optimization [7] [8]. The net-
work flow approach [3] uses minimum cost flows to minimize the
weighted sum of (squared) cell movements. The dynamic program-
ming based approach [4] solves the optimal assignment of cells to
placement sites under the constraint of cell ordering. Mongrel [6]
uses a greedy heuristic to move cells from overflowed bins to under
capacity bins in a ripple fashion based on total wire length (TWL)
gain. The single row optimization techniques [7] [8] use dynamic
programming to optimally place cells in a single circuit row.

While there are many existing legalization algorithms, there are
very few works directly targeting incremental and stable placement
migration.1 In this paper, we develop a novel technique for sta-
ble placement migration based on thecomputational geometry. We
also propose a new placement stabilitymetric which can be used
to measure the placement migration stability. Our algorithm has
two key steps: bin-based cell spreading and Delaunay triangula-
tion based overlap reduction. The algorithm takes advantage of the
computational geometry property of the existing placement. Thus
it captures the relative cell order nicely during placement migra-
tion. Our experimental results compared to other widely used legal-
ization algorithms clearly demonstrate the superiority of our algo-
rithm, with over 10% wire length reduction and significantly better
stability score.

The rest of the paper is organized as follows. Section 2 presents
the bin based spreading algorithm. Section 3 presents the Delau-
nay based overlap reduction procedure. The complete computa-
tional geometry based legalization algorithm is given in section 4.
Section 5 proposes a new placement stability metric suitable for
placement migration. Very promising experimental results are ob-
tained in section 6, followed by conclusion in section 7.

2. BIN BASED SPREADING
A placement is close to legal if all that is required to legalize

the placement is to snap cells to rows or perhaps perform minor
cell sliding in order to fit the cells. Assuming the chip layout is
divided into equal sized bins, the placement is considered close to

1The most recent work on diffusion-based placement [7]simulates
the placement spreading using the physical diffusion equation. It
shares some common theme with this work, but using very differ-
ent approaches. See Section 6 for more discussion on these two
approaches.



legal if the area density of every bin is less than or equal toDmax
(e.g.,Dmax= 1). For all bins with density greater thanDmax, cells
must be migrated to other bins. Therefore the goal of our migration
algorithm is to reduce the density of each bin to no more thanDmax
while avoiding moving these cells far from their original locations
thus preserving the original placement characteristics.

Bin based spreading is a geometric approach to evenly reduce
cell density on the congested regions. Suppose we divide the entire
placement region intoK*L square bins, there will be (K +1)*(L+
1) bin corners. The idea is to move those bin corners such that
the resulting bin capacity would satisfy the density constraints, and
then move cells accordingly. By stretching the bin corners, we pre-
serve the relative order of neighboring bins; meanwhile by inter-
polating cells relative to its bin corners, we preserve the relative
order of cells inside the bin. We perform the bin stretching and cell
interpolation iteratively until all the bins are under the maximum
densityDmax.

2.1 Bin Stretching
At each iteration, we first compute the bin densityDk,l (n) (the

nth iteration), then compute the amount of stretching needed for
each bin. For those overpopulated bins, the idea is to expand that
bin such that the density of the new bin is equal toDmax. At the
same time, to accelerate the spreading process, we allow the adja-
cent bins to shrink such that their densities equal toDmax as well.
The amount of stretching for bin(k, l) on both horizontal and ver-
tical directions can be written as:

εx
k,l = (

√
Dk,l (n)
Dmax

−1)W

εy
k,l = (

√
Dk,l (n)
Dmax

−1)H (1)

whereW andH are the bin width and height, respectively.
Stretching each bin itself would generate overlaps between ad-

jacent bins. Therefore we stretch the bin corners of adjacent bins
instead of bins itself. Let(px

k,l (n), py
k,l (n)) denotes the coordinates

of an inner bin corner, which is shared by four neighboring bins, de-
noted as(k−1, l−1), (k−1, l),(k, l−1), and(k, l). We can use (1)
to compute the amount of horizontal and vertical stretching needed
for each one of the four bins, which will give us four stretched cor-
ner positions, and then compute the combined number of these four
as the corner position for next iteration,(px

k,l (n+1), py
k,l (n+1)),

px
k,l (n+1) = px

k,l (n)+0.5(εx
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k,l−1− εx

k,l )
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Because the stretching is uniform on both bin corners on the same
bin edge, we only take half the stretching value given by (1). If any
neighboring bin is on the chip boundary, we take the 0.5 factor off.
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Figure 1: Illustration of bin and corner stretching

Figure 1 is an illustration of the movement of the corner point
p4,4 under accumulated stretching from all four surrounding bins.
Bin (3,3), (4,3), and(4,4) are over the maximum density, there-
fore we expand them, while bin(3,4) is under the maximum den-
sity, thus we compact it. We will have four new corner positions of

this corner for each bin. Such process is iterated as needed. After
computing coordinates of all points, cells inside the bin will move
within the distorted bin as explained in next section.

2.2 Cell Interpolation
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Figure 2: Cell location interpolation on stretched bin

The computation of new cell coordinates is a linear interpolation
process, which maps all cells from the original bin into the new bin
at the same relative positions. As shown in Figure 2, the four corner
coordinates of the bin arepk−1,l−1(n), pk,l−1(n), pk−1,l (n), and
pk,l (n) . Their coordinates after bin stretching are:pk−1,l−1(n+1),
pk,l−1(n+1), pk−1,l (n+1), andpk,l (n+1). For a cell(x(n),y(n))
within the bin, the new coordinatesx(n+ 1) andy(n+ 1) can be
computed by the following equations.

x(n+1) = γx +β(ξx− γx)
y(n+1) = γy +α(ξy− γy) (3)

where
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px
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(4)

2.3 Bin Based Spreading Algorithm
At each iteration of the bin based spreading algorithm, it first

stretches the bin corner to make congested bin larger, then interpo-
lates cell locations accordingly. It then restores all the bin boundary
and starts an new iteration. The new iteration recomputes the bin
density and repeats all above procedures. The process stops once
that all the bin densities are lower than the maximum densityDmax.

To avoid over expansion in non-congested region, we only change
the bin corners of those bins aboveDmax during bin stretching. It
assures that cells are pushed from high density area to low density
area steadily and smoothly. It also reduces unnecessary oscillation
and computations.

The stability of the migration process is affected by the bin size
(area) as well. The ideal initial bin size is depending on the size
of the circuits. If the bin size is too large, the internal density dis-
tribution inside the bin might still violate the density constraints
even if the bin as a whole is underDmax. However, if the bin size
is too small, oscillation will appear and bin boundary distortion
may impact the smoothness of spreading. We may see cells tend



to cluster in some areas. This problem is solved by a hierarchical
addition to our original formulation. The idea is straightforward. It
uses big bin sizes from at the beginning, then recursively cuts big
bins into smaller bins, and adjusts the internal density distribution.
The hierarchical technique is necessary to handle fixed macros. At
the time the bin size is smaller enough, bin edges be close to macro
boundaries. Cells will move along the boundary, they will not move
toward the macros. The complete bin based spreading algorithm is
given by Algorithm 1.

Algorithm 1 Computational Geometry Bin Based Spreading
1: Procedure: BIN
2: Input: cell placementxi ,yi , bin areaAB = W ·H, maximum

bin densityDmax
3: Output: new placement̂xi , ŷi
4: begin
5: Initialize bin densityDk,l ;
6: if AB is too smallthen return;
7: while anyDk,l > Dmax
8: for each bin with Dk,l > Dmax

9: Compute bin expansionεx
k,l , εy

k,l with (1);
10: end for
11: Compute bin cornerpk,l (n+1) with (2);
12: Interpolate cell locationsxi(n+1),yi(n+1) with (3);
13: Restore all bin corners, updateDk,l ;
14: n = n+1;
15: end while
16: Updatex̂i = xi(n), ŷi = yi(n);
17: Reduce bin areaAB = AB/2;
18: Recursively call BIN(x̂i , ŷi , AB, Dmax);
19: end

Note that our approach is different from the grid warping [9]
and cell shifting [10]. At each partition step, grid warping slices
the region into 2 x 2 or 4 x 4 equal “volume” quadrilateral grids,
transforming the grid (and cells) back to equal shape rectangles to
form the subproblems. The elastic grids in grid warping are the
equivalence to Gordian’s min-cut partition [11], both purpose is for
partition, while our bins are used for spreading directly. We re-
shape each bin individually at each step and rely on iterations to
flow cells out eventually. The cell shifting [10] technique is an one
dimensional greedy shifting, which is used to generate the spread-
ing forces for the global placer. It is the quadratic solver that does
the actual spreading; while our approach is a two dimensional ap-
proach, and it spreads out cells directly.

3. DELAUNAY TRIANGLE BASED OVER-
LAPPING REMOVING

Bin based spreading is good for coarse level spreading. However,
to further remove overlapping between cells, we need to use more
fine-grained migration techniques. In this section, we will present
the Delaunay triangulation based algorithm to effectively remove
cell overlap while preserving placement stability.

3.1 Delaunay Triangulation
The Delaunay triangulation is the dual of the Voronoi diagram

– one of the most fundamental data structures in computational
geometry [12]. The Voronoi diagram for a collection of geomet-
ric objects is a partition of space such that each of them consists
of the points closer to one particular object than to any others. It
contains a straight-line edge connecting two sites in the plane if

and only if their Voronoi regions share a common edge. The De-
launay triangle edges of an object essentially captures its relative
proximity relationship with other objects.

Figure 3 shows an example of the Voronoi diagram and its cor-
responding Delaunay triangulation. For a given VLSI placement to
be migrated smoothly to another solution due to legalization need,
congestion or noise mitigation, we can compute the Delaunay trian-
gulation for all cells efficiently. Based on this Delaunay triangula-
tion that captures the “preferred” proximity relationships among all
fixed and placeable objects, we can perform stable placement mi-
gration, to spread cells smoothly from congested area, as illustrated
in Figure 3.

Voronoi edge

Delaunay 
triangle

Congested
Voronoi edge

Delaunay 
triangle

Congested

Figure 3: Delaunay triangulation captures the relative order,
which can be used to spread cells during placement.

Delaunay triangulation is an important topic in computational
geometry and has wide applications in varies field, such as visu-
alization, finite element analysis, and discrete wireless networks.
There are quite a few mature Delaunay triangulation algorithms de-
veloped, with the computational complexity ranges from O(nlogn)
to O(n2). The reader is referred to [12] for a comprehensive survey
of Delaunay triangulation and Voronoi diagram.

Given a placement, we can construct the Delaunay triangula-
tion of all the cells using its center locations as triangle nodes.
Then the placement plane becomes a planar graphG= (V,E), with
V = {v1,v2, ...,vn} corresponding cells andE = {e1,e2, ...em} tri-
angle edges. The boundary of the graph are fixed pads. We only
move non-boundary or non-fixed cells. Figureo 4 shows a Delau-
nay triangulated placement region.

Figure 4: Delaunay triangulation of a placement region

3.2 Fine-grain Overlapping Reduction
Because Delaunay triangulation helps to identify all close neigh-

bors of one cell, such detailed information is valuable for fine-grain
adjustments. We use the Delaunay triangulation to do further cell
spreading, where the bin based spreading is not applicable. The
Delaunay triangulation based cell overlapping reduction works as
follows.



To iterate through cells in the placement order, we build a tree
structure on the delaunay triangulated placement. One cell in the
center of the placement is selected as the tree root, and all cells
connecting to the root by Delaunay edges are added into the tree
as the second level tree nodes. Then all cells connecting to second
level nodes are added as the third level tree nodes. Note that one
cell may connect to two second level tree nodes by Delaunay edges.
The cell is added to one tree node as the child only. The criteria of
where to add the cell is to keep the number of child of each tree
node balanced. Similarly, the tree keeps growing until all cells in
the placement are added. Figure 5 illustrats the steps to build the
tree on a delaunay triangulated region. Cells with the same color
are tree node the same level.

……

Figure 5: Tree structure for Delaunay edge traversing

Starts from the root, the algorithm traverses the tree in breadth-
first manner. For every tree node - celli, all Delaunay edges con-
necting celli with the same or next level nodes are inspected. Let
ei, j be the Delaunay edge between celli and cell j. From the De-
launay triangle properties, we know thati and j are the nearest
neighbor to each other. If celli does not overlap with cellj, we do
nothing and move on to the next Delaunay triangle edge. If celli
overlaps with cellj, the overlap distances on x and y directions are
measured and cells will be pushed away accordingly. Let4x

i, j and

4y
i, j be the x and y direction overlapping betweeni and j, respec-

tively. If 4x
i, j >4y

i, j , a repelling force is generated between celli
and cell j on x direction. We try to make minimum movement to
remove the overlapping. So the force is inversely proportional to
the cell sizes with weight to push the cell away from congestion.
Let f x

i−> j denote the repelling force from celli to cell j.

f x
i−> j =4x

i, j
w j

wi +w j
(5)

wherewi andw j are the widths of cellsi and j. If 4x
i, j <4y

i, j , the
fource will be in the y-direction, i.e.,

f y
i−> j =4x

i, j
h j

hi +h j
(6)

wherehi andh j are the heights of cellsi and j.
If a movable celli is connected with multiple neighbors by De-

launay edges, the total forceFx
i on celli is the superposition of all

overlapped neighboring cells

Fx
i = ∑

j∈Neighbor(i)
f x
j−>i (7)

whereNeighbor(i) denotes the set of cells overlapped with celli.
Figure 6 is an example to illustrate how forces are added to the

overlapping cells. As shown in Figure 6, assume cell A, B, C are
within one Delaunay triangle. We can see that B and C are over-
lapped, and the overlapping in x direction is smaller, i.e.4x

B,C <

4y
B,C. Then the y-directional forcef y

B−>C and f y
C−>B will be ap-

plied on cells C and B, respectively. In the case that a cell overlaps
with many surrounding neighbors, the total force tends to cancel
each other. This usually happens at the center of congested area,
and we can set certain density threshold to avoid redundant compu-
tation. The cells close to whitespace will move first and pull cells
inside congested areas out smoothly.
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Figure 6: Delaunay force to reduce overlapping

The Delaunay triangulation based overlapping reduction process
is outlined in Algorithm 2.

Algorithm 2 Delaunay Based Overlapping Reduction
1: Procedure: DELT
2: Input: cell placementxi ,yi
3: Output: new placement̂xi , ŷi
4: begin
5: while stopping criteria is not satisfied
6: if redo Delaunay condition is satisfiedthen
7: T = {V,E} ← (xi ,yi)
8: end if
9: BFS (T)

10: for eachedgesei, j connect with celli
11: check connected cellsi and j
12: if i does not overlap withj then continue;
13: if 4x

i, j <4y
i, j

14: computef x
i→ j

15: else
16: computef y

i→ j
17: end if
18: for eachcell i in T
19: move all cells on force
20: end BFS
21: sum up forces and update coordinates of cell
22: end for
23: end while
24: end

4. COMPUTATIONAL GEOMETRY BASED
LEGALIZATION

Our algorithm consists of two major steps: bin based spreading
and Delauney Triangle based overlap reduction. As described ear-
lier, bin based spreading reduces the bin density overflow quickly
at coarse level, and the Delaunay Triangle based overlap reduc-
tion step works at fine-gained level to reduce the overlap between
adjacent cells. After bin based spreading and Delaunay Triangle
based overlap reduction, the placement should have a max den-
sity of Dmax and is roughly legal. We will run a final legalization
step to put cells onto circuit rows without overlap,which takes very
small effort since the density constraint is satisfied at fine granu-



larity level. The emphasis is to study the impact of our compu-
tational geometry placement migration algorithms comparing with
other methods, such as the greedy and the flow, thus we just use a
standard legalizer to generate the final legal placement. In fact, it
is almost trivial after our migration. The complete computational
geometry based legalization (CGL) algorithm is given in Algorithm
3). Note that the combined bin based spreading and Delauney Tri-
angle algorithm gives the best result. For comparison purpose, we
test the bin based spreading algorithm alone for legalization. It is
referred to asCGLB.

Algorithm 3 Computational Geometry Legalization Algorithm
1: Procedure: CGL
2: Input: A cell placementxi ,yi
3: Output: A new placement̂xi , ŷi
4: Parameters: Initial bin area:AB, max bin densityDmax
5: begin
6: Call bin based spreading algorithm (Algorithm 1):
7: (x̂i , ŷi)= BIN( xi , yi , AB, Dmax);
8: Call Delauney Triangle based algorithm (Algorithm 2):
9: (x̂i , ŷi)=DELT(x̂i , ŷi);

10: Put cell onto circuit row and remove remaining overlaps;
11: return x̂i , ŷi
12: end

5. GEOMETRIC PLACEMENT STABILITY
METRICS

During placement migration one often needs to compare the dif-
ference of the original (golden) placement with a new placement
generated by placement migration. It can be measured by the place-
ment stability metrics. In the existing literature [13], two placement
stability metrics are used: one measures the average cell movement
between two placements, and the other measures the change of net
clusters. During placement migration, however, it is possible that a
large number of cells are shifted, all with a small amount. Thus all
nets between cells have very small changes (like in our Delaunay
triangulation spreading). For such scenario, theabsolutecell move-
ment metric is not a good metric [13]. The net cluster metric [13]
is good to capture global placement stability where one big cluster
can be moved to another part of the chip. But it is not very suit-
able for placement migration applications where most changes are
small. During placement migration, it is desired to keep the relative
geometric order and punish the most disruptive changes. Therefore
we propose the following geometric stability metric.

Suppose we are given two placements: a golden placementA and
a new placementB generated by placement migration. Our idea is

Figure 7: Relative distance of celli.

to measure the change of cell placementrelative to its neighboring
cells and sum up the most significant changes to capture the dif-
ference of these two placements. Both placements have the same
number of cells. The coordinates of celli are(xi ,yi) and(x̂i , ŷi) for
placementA andB, respectively. We select a group of cells adja-
cent to celli in placementA, and compute thegeometriccenters
(GC) of this group in both placementA andB as (xGC

i ,yGC
i ) and

(x̂GC
i , ŷGC

i ) as follows.

xGC
i =

max(x j )+min(x j )
2

yGC
i =

max(y j )+min(y j )
2

x̂GC
i =

max(x̂ j )+min(x̂ j )
2

ŷGC
i =

max(ŷ j )+min(ŷ j )
2

(8)

where j refers to cells within a certain Euclidian distance to celli
in placementA. We can then define therelativemovement of a cell
i from placementA to B as the squared Euclidian distance of the
relative positions of celli to (xGC

i ,yGC
i )and(x̂GC

i , ŷGC
i ), as shown in

following equation:

Ri = [(x̂i − x̂GC
i )− (xi −xGC

i ]2

+[(ŷi − ŷGC
i )− (yi −yGC

i )]2 (9)

The new placement stability metricRi for each celli essentially
captures the relative change w.r.t. to its geometric neighborhood.
Figure 7 shows two placements of celli and its adjacent cells in the
left placement, assuming the left placement is the original place-
ment and the right one is after placement migration. Suppose origi-
nally cell i is placed at(4,8) and the geometric center of its adjacent
cells is at(6,6). After placement migration, celli is moved to(4,6)
while all of its original neighbors are shifted to upper right corner
with a center at(18,20). The relative positions of celli to the center
of its adjacent cells are shown as vectors in Figure 7. Although the
absolute location of celli does not change much, the relative dis-
tance actually changes a lot,Ri = [(4−18)−(4−6)]2+[(6−20)−
(8−6)]2 = 400as given by Eqn. (9), which can not be captured by
the absolute cell movement between both placements. Note that we
use squared distance to emphasize the impact of larger moves, since
wiring delay is a quadratic function of wirelength. Larger moves
will have higher possibility to degrade the overall timing closure.

Naively one may sum upRi for all cells to measure the total
geometric stability. However, it is the most disruptive changes of
the relative order that have the biggest impact on the placement
migration quality. Therefore, we set some filter and only count the
top percent of cells in terms ofRi , e.g., top 1% cells. So, the overall
geometry stability metricSG can be written as

SG =
∑ j∈C1%

Rj

N
(10)

whereC1% is the set of top 1% cells with the largestRj values and
N is the number of cells inC1%. BiggerSG value means placement
B is less similar to the original placementA, and more cells are
placed away from their original affinity logics, thus more vulnera-
ble to performance degradation.



Table 1: TWL Comparison (scaled)
testcases GREEDY FLOW CGLB CGL
ibm01 1.282 1.314 1.192 1.191
ibm02 1.056 1.064 1.013 1.013
ibm03 1.101 1.096 1.058 1.061
ibm04 1.165 1.195 1.096 1.100
ibm05 1.016 1.018 1.014 1.014
ibm06 1.111 1.123 1.036 1.035
ibm07 1.141 1.139 1.040 1.039
ibm08 1.154 1.153 1.043 1.042
ibm09 1.211 1.221 1.071 1.069
ibm10 1.180 1.181 1.032 1.030
ibm11 1.193 1.187 1.054 1.056
ibm12 1.162 1.167 1.051 1.050
ibm13 1.229 1.233 1.064 1.059
ibm14 1.239 1.235 1.049 1.047
ibm15 1.274 1.273 1.067 1.065
ibm16 1.313 1.318 1.041 1.040
ibm17 1.267 1.285 1.043 1.040
ibm18 1.296 1.318 1.055 1.054

Average 1.188 1.197 1.057 1.056

6. EXPERIMENTAL RESULTS
We implemented the computational geometry placement migra-

tion algorithms in C++ on a 3.4 GHZ Xeon Linux box, and use
the modifiedISPD02benchmark [14] to test it. All the testcases of
this benchmark place cells with equal density (95%) over the entire
chip. To make it similar to the real industry placement after phys-
ical synthesis, we first linearly scale down each cell such that the
entire chip density for each testcase is reduced to80%. We then run
a detailed placement algorithm to reduce the wirelength. After that,
the placement is no longer equally distributed. To test the legaliza-
tion algorithm, we generate the overlaps by expanding cells in the
center of the chip. We linearly expand15% of cells in the center
by 67%. So after expansion, the overall chip density is increased to
90%and this original placement is no longer legal.

We compare the computational geometry based legalizer (CGL
andCGLB) to an industry greedy legalizer (GREEDY) which uses
slide-and-spiral techniques to place cells onto their nearest legal
locations and to an industry network flow legalizer (FLOW) which
uses min-cost flow algorithm to direct cell movements.FLOW is
an industrial strength legalizer similar to [3]: first, cells are roughly
spread out by the min-cost flow algorithm; then, they are moved to
their final positions such that all overlaps are removed.GREEDY
sorts all the cells and place them sequentially. It first tries to place a
cell at the original location. If that location is occupied, it performs
a spiral search starting from the original location. During a spiral
search, it could slide other placed cells a little bit in order to fit in.

Table 1 reports the TWL results of these legalizers. The TWL
numbers are scaled to the TWL of the original illegal placement.
Both CGLB andCGL get much better TWL thanGREEDYand
FLOW. The improvement is over10%on average.

Table 2 shows the geometric stability scores of these legalizers.
Both CGLB andCGL get order of magnitude better scores than
FLOW andGREEDY. AndCGLcan further reduce it by16%than
CGLB due to the Delaunay triangle based overlap removal.

To further understand the difference of geometric stability result
of these approaches, Figure 8 and 9 show the relative distance his-
togram after legalization onibm01. Figure 9 is a zoom-in view
of the top1% cells in Figure 8 to make it difference clear.CGL

Table 2: SG Comparison
testcases GREEDY FLOW CGLB CGL
ibm01 52199 37785 12685 11349
ibm02 44735 24126 5225 5172
ibm03 58375 52356 41099 26081
ibm04 119647 58967 52199 39039
ibm05 55040 65344 53387 49538
ibm06 60242 48890 4555 4750
ibm07 131024 119809 5232 5764
ibm08 153395 119758 3610 3750
ibm09 168791 154334 20743 16126
ibm10 302222 238185 5057 4740
ibm11 224925 190321 32519 50898
ibm12 361702 331289 5270 5088
ibm13 370440 349016 177377 117833
ibm14 557898 456627 4581 4364
ibm15 698634 746372 130784 123811
ibm16 937453 746372 4435 4129
ibm17 1169281 1087672 14648 11019
ibm18 1116867 985042 3224 3267

Average 365715 334406 31855 26858

Figure 8: Histogram of Ri from three legalizers onibm01.

has less larger relative distances thanFLOW andGREEDY, which
meansCGL would keep cells closer to their original neighbors,
preserving the relative order. On the other hand,GREEDYand
FLOW have less number of smaller relative distances thanCGL,
which meansCGL tends to move more cells a smaller distance to
avoid bigger moves. For placement migration applications, one of-
ten wants to limit the bigger moves but not care too much about
the smaller moves, thereforeCGL is well targeted for those appli-
cations.

The runtime comparison of is reported in Table 3. We can see
CGL is much faster thanGREEDYandFLOW (over 10x speedup
for bigger circuits). Therefore, it is both effective and fast.

We also implemented the diffusion-based legalization algorithm
[15] for the academic benchmarks. Our initial experience is that
the diffusion algorithm produces slightly better result while com-
putational geometry based algorithm is faster. However, it is not
straightforward to make a fair comparison between them at this
stage, because the results depend on the tuning. In general both
algorithms share a common smooth spreading nature and generate
comparable results.
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Table 3: CPU Time Comparison (s)
testcases GREEDY FLOW CGL
ibm01 11 10 10
ibm02 23 25 23
ibm03 28 26 25
ibm04 62 29 30
ibm05 33 37 40
ibm06 69 53 35
ibm07 162 150 55
ibm08 307 242 65
ibm09 325 289 75
ibm10 806 575 89
ibm11 617 490 95
ibm12 1299 807 121
ibm13 939 734 134
ibm14 3654 2240 231
ibm15 5210 3643 430
ibm16 9927 6280 511
ibm17 11363 8280 558
ibm18 12724 9160 661

7. CONCLUSIONS
The incremental nature of design optimization demands smooth

and stable placement mitigation techniques. They must be capa-
ble of spreading cells to satisfy design constrains such as image
space, routing congestion, signal integrity and heat distribution,
while keeping the original relative order. To address these chal-
lenging tasks, we propose a novel computational geometry based
placement migration framework. Our experimental results on le-
galization problem have demonstrated significant improvements on
wire length and stability. To the best of our knowledge, this is the
first attempt using Delaunay triangulation to perform placement
spreading. We believe there is still a lot of room to improve and
other effects such as timing and wirelength to be incorporated.
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