
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Cache-Defect-Aware Code Placement Algorithm
for Improving the Performance of Processors

Ishihara, Tohru
Fujitsu Laboratories of America, Inc.

Fallah, Farzan
Fujitsu Laboratories of America, Inc.

https://hdl.handle.net/2324/6794484

出版情報：Proc. of International Conference on Computer Aided Design, pp.995-1001, 2005-11.
International Conference on Computer Aided Design
バージョン：
権利関係：

A Cache-Defect-Aware Code Placement Algorithm for
Improving the Performance of Processors

Tohru Ishihara and Farzan Fallah
Advanced CAD Technology

Fujitsu Laboratories of America, Inc.
Sunnyvale, California 94085, USA

Abstract— Yield improvement through exploiting fault-free
sections of defective chips is a well-known technique [1][2]. The
idea is to partition the circuitry of a chip in a way that fault-
free sections can function independently. Many fault tolerant
techniques for improving the yield of processors with a cache
memory have been proposed [3][4][5]. In this paper, we
propose a defect-aware code placement technique which offsets
the performance degradation of a processor with a defective
cache memory. To the best of our knowledge, this is the first
compiler-based technique which offsets the performance
degradation due to cache defects. Experiments demonstrate
that the technique can compensate the performance
degradation even when 5% of cache lines are faulty. In some
cases the technique was able to offset the impact even in
presence of 25% faulty cache-lines.

I. INTRODUCTION
Most of today’s microprocessors including embedded

ones employ one or more on-chip caches. Currently in most
chips, caches occupy a large percentage of the area and the
percentage is expected to increase in future. For example in
StrongARM SA-110 processor, one half of the total chip
area is devoted to the two 16KB caches [6]. Since cache
arrays are designed with the tightest feature and scaling rules
available in a given technology, they are more susceptible to
faults compared to logic blocks [7][8]. Thus, the yield of
microprocessors with on-chip caches can be enhanced
considerably if cache defects are tolerated without noticeable
performance degradation. Many techniques have been
proposed for disabling faulty cache blocks in partially good
chips [3][4][5][9]. Since using a smaller cache memory does
not affect the correct operation of a processor, the processor
can still be used after some changes even if the cache
contains manufacturing defects. Therefore, the most
straightforward solution to fix a chip with a faulty cache is to
disable the entire cache. For set-associative caches, a
possible solution is to disable the cache-way which contains
the defect [9]. A more sophisticated way is disabling only the
defective cache-line because the existence of a defect in a
cache-line does not affect other cache lines. This can be done
by using an extra bit added to the flag bits associated with
each block and using the added bit for marking a faulty
cache block [10]. If the bit is one, the corresponding cache

block will not be used for replacement in case of a cache
miss. Thus, accessing the block will always cause a cache
miss. Otherwise, the block is non-faulty and will be used. In
this paper, we refer to the extra bit as FT-bit (Fault-
Tolerance bit) [11]. Other names used in literature are:
availability bit [3], the second valid bit [4] and purge bit [5].
The idea of adding the FT-bit was initially proposed in [10].

In this paper, we propose a defect-aware code placement
technique which reduces the performance degradation of a
processor with a partially good cache memory. We used FT-
bits in our technique. Our approach is to modify the
placement of basic blocks or functions in the address space
so that the number of cache misses is minimized for a given
defective cache. To the best of our knowledge, this is the
first compiler technique which reduces the performance
degradation of a partially good cache memory.

The rest of the paper is organized as follows. In Section 2,
we summarize previous work and our approach. The
definition of the problem and our algorithm for solving it are
presented in Section 3. Section 4 presents experimental
results. The paper concludes in Section 5.

II. PREVIOUS WORK AND OUR APPROACH

A. Techniques for Recovering Cache Performance
A replacement technique called the Memory Reliability

Enhancement Peripheral (MREP) is presented in [12]. The
idea is to have several spare words in a small set associative
cache which may replace faulty words in the main memory.
A technique similar to MREP is presented for on-chip caches
in [13]. A very small fully associative spare cache is added to
a direct-mapped cache and is used as a spare for the disabled
faulty blocks. The experimental results in [13] show that one
or two spare blocks are sufficient to avoid most of the extra
misses caused by a few (less than 5%) faulty blocks.
However, for a large number of faults, a few spare blocks
will not be sufficient.

Sohi [3] investigated the application of a Single Error
Correcting and Double Error Detecting (SEC-DED)
Hamming code in an on-chip cache memory. The idea of the
SEC-DED approach is to use extra bits per word to store an

error correcting code and correcting data if a single error is
detected [14]. The approach is effective for a single bit error
per word (e.g., a single defect on a bit line) only.

Shirvani et al. proposed a new cache architecture called
PADded cache [11] which requires neither spare blocks nor
error correcting bits. The idea is to recover the performance
degradation due to faulty cache lines by mapping them to
existing non-faulty cache lines. This is made possible by the
use of programmable address decoder. Consider the direct
mapped cache shown in Figure 1.

f0

f0 a0

f1

+ f1

f2

f3

Cache-Line 0

Cache-Line 1

Cache-Line 2

Cache-Line 3

f1 a0 + f0

f2 a0 + f3

f3 a0 + f2

a1 T0

T1

T2

T3

a1

FT-bit

TAG DATA

TAG DATA

TAG DATA

TAG DATA
Figure 1. Programmable Address Decoder (PAD)

The number of sets is 4. Let a1a0 be the cache-line
address. If a1a0 = 00, cache-line 0 is selected. If a1a0 = 01,
cache-line 1 is selected, and so forth. Assume that cache-line
0 is faulty. The gates of transistors T0 and T1 are controlled
using the FT-bit such that when cache-line 0 is marked faulty,
T0 is always off and T1 is always on. As a result, all
references to cache-line 0 are re-mapped to cache-line 1.
Therefore, the addresses mapped to cache-line 0 are still
cached, but they will have conflict misses with cache-line 1.
By adding another FT-bit to the cache-line, it can be
indicated whether both cache-line 0 and cache-line 1 are
faulty. Thus, the second level of the decoder can be
controlled and cache-line 0 and 1 can be mapped to 2 and 3
or vice-versa. The approach can be extended for set
associative caches. Note the fault tolerance is achieved at the
cost of higher complexity for the decoder which makes the
cache-line access slower. Furthermore, there is a large area
overhead due to adding FT-bits to each block. Note that FT-
bits must be implemented using flip-flops. One way to avoid
adding extra bits is using the unused combination of the
already available flag bits (e.g., valid bit = 0 and lock bit = 1)
to indicate a fault in the cache-line. The lock bit is used to
lock some or all contents of the cache in place. This feature
is available on several commercial processors including
PowerPC 604e, 405 and 440 families [22][23], Intel-960,
some Intel x86 processors, ARM 10 family [24], NEC
V830R processor [25] and so on. However, this results in
performance degradation because it requires one extra cycle
to read the FT-bits from the tag memory and configuring the
address mapping.

Unlike previous approaches, our approach needs neither
any spare memory blocks nor error correcting codes.

Furthermore, no complicated hardware support like a
Programmable Address Decoder (PAD) is required.

B. Conventional Code Placement
We first explain the idea behind the conventional code

placement technique. Consider a direct-mapped cache of size
C (= 2m words) whose cache line size is L words, i.e., L
consecutive words are fetched from the main memory on a
cache read miss. In a direct-mapped cache, the cache line
containing a word located at memory address M can be
calculated by (⎣M/L⎦ mod C/L). Therefore, two memory
locations Mi and Mj will be mapped onto the same cache line
if the following condition holds,

0 mod =⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢

L
C

L
M

L
M ji (1)

Several code placement techniques have used the above
formula [16][17][18][19][20][21].

...

...

L=32 bytes

D

A

B
B B

main memoryI-cache

...

...

main memory

main loop

conflict misses
in cache-line 1

DC
C

AA

D

Figure 2. An Example of Code Placement

Assume a direct mapped cache with 4 cache-lines, where
each cache-line is 32 bytes. Functions A, B, C and D are
placed in the main memory as shown in the left side of
Figure 2. If functions A, B, and D are accessed in a loop,
conflict misses occur because A and D are mapped onto the
same cache line. If the locations of C and D are swapped as
shown in the right side of Figure 2, the cache conflict is
resolved. Code placement modifies the placement of basic
blocks or functions in the address space so that the total
number of cache conflict misses is minimized.

C. Our Approach

Mark faulty cache-lines

Execute object code

Generate a new object code or reuse
an object code previously generated

Fabricated Chip

Target Application Testing
 Phase

Compiling
 Phase

Booting
 Phase

Running
 Phase

Detect locations of defects

Figure 3. Compiler Optimization Flow

An overview of our approach is depicted in Figure 3.
First, we detect the locations of defects in a cache memory.
Next, our code placement technique generates the object
code such that the number of cache misses will be lower than
a given number. Therefore, we perform recompilation only if
the original object code does not satisfy the required
performance for a specific chip. If the original object code or
an object code previously generated for another defect can
satisfy the required performance, we use it. Every time the
chip is turned on, it executes an initialization step during
which based on the information collected during test, faulty
cache-lines are marked using lock and valid bits. Then the
chip executes the compiled code.

Our approach exploits an unused combination of existing
flag bits (i.e., valid bit=0 and lock bit=1) to indicate a fault in
a specific cache-line. Assuming a 4-way set associative
cache with lock and valid bits, if the lock bit of the way1 in
the 5th cache-set is “1” as shown in Figure 4, the
corresponding cache-line will not be used for replacement in
case of a cache miss. If the valid bit of way1 in the 5th cache-
set is “0”, accessing to the corresponding block will always
cause a cache miss. Therefore, this mechanism guarantees
the correctness of the processor operation even in presence
of defects in tag or data memory.

Tag0L V

L
0

0
1
2
3
4
5
6
7

1

0 1 0 1 0 1
1 0

1 0
1 0

1 0

1 0

0 1 0 1
V L V L V L V

Way0 Tag1L V Way1 Tag2L V Way2 Tag3L V Way3

Lock bit
Valid bit

Cache Replacement Flow

Manufacturing defect

Figure 4. Cache Locking Function

Although most existing commercial processors do not
allow to set the lock bit for an invalid cache-line (i.e., valid
bit=0 and lock bit=1 is not a valid combination), supporting
this combination is possible by a minor modification of the
cache control circuitry. Note that for a set associative cache,
the associativity of the cache-set which includes the faulty
cache-lines is reduced by one. In a direct mapped cache,
every access to the cache-set which includes the faulty
cache-line will cause a cache miss. Our method modifies the
placement of functions in the address space so as to
compensate the increased number of cache misses due to
faulty cache-lines. The most important feature of our
approach is that it does not have any hardware overhead if
the target processor has the cache lock function.

III. PROBREM DEFINITION

A. Cache Miss Calculation
We first generate an instruction trace corresponding to an

execution of the application program as follows,

(o0, o1, o3, o5, o6, o7, o3, o5, o7, o3, o5, o6, o7, o3) (2)

where oi represents the ith instruction of the original
object code. Assume ai represents the address of oi. Each
instruction oi is mapped to a memory block whose address is
⎣ai/L⎦. From the instruction trace we generate the trace of
memory block addresses accessed, TMB = (b1, b1, b2, b3, …)

We define X(bi) as,

⎪
⎪
⎩

⎪⎪
⎨

⎧
==

 otherwise. 0
 accessnext its and

 toaccess an between mod to
 accesses least at are thereif 1

)(
i

i

s

i
b

 S) (bs
W

bX

where S and Ws are the number of cache-sets and the number
of non-faulty cache-lines in the sth cache-set, respectively.
The total number of misses can be calculated by,

∑
∈∀

=
TMBib

itotal bXM)(. (3)

The above formula, which takes into account the effect of
faulty cache-lines, is an extension of the formulae derived in
[18]. Although the approach [18] results in many gaps in the
object code (i.e., the memory requirement increases), our
approach does not increase the size of object code.

B. Trace Compaction
For a given trace, it is usually possible to generate a

shorter trace which results in the same number of misses, but
can be processed faster.

...

...

cache line memory block
(32 bytes)

A function
(104 bytes)

(L=32 bytes)

S=4

main memoryI-cache

conflict misses
in cache-line 1
Figure 5. An Example of a Self-Conflict Miss

Consider a function whose size is smaller than the cache
size as shown in Figure 5. Left shows a direct mapped cache
with four 32-byte lines. If a function whose size is 104 bytes
is placed in the main memory, cache conflict misses occur in
the cache-line 1 because the first and last words of the
function are mapped onto the same cache-line. If the size of
the function is 100 bytes, no self-conflict miss will occur no
matter where in the address space the function is placed.
Therefore, the condition for the self-conflict free function is
as follows,

The size of the function ≤ L×(S−1) + I (4),

where L, S, an I represent cache-line size in byte, the number
of cache-sets and instruction word size in byte, respectively.

If a function satisfies the condition (4), two instructions oi
and oj of the function will never evict each other no matter
where in the address space the function is placed. As a result,
when a loop is executed if all instructions in the loop belongs
to the function and the loop is executed n times, n−1
instances can be deleted from the trace.

C. Problem Formulation
We summarize notations used in the problem formulation

as follows,
S: The number of cache-sets.
L: Cache-line size in byte.
Wi: The number of non-faulty cache-ways in the ith

cache-set.
Tc: The compacted trace of memory block addresses

accessed.
F: The list of functions in the target program sorted in

descending order of their execution counts.
Mtotal: The total number of cache misses.
Mbound: The upper bound of the number of cache misses.

This parameter is given by the user.

The problem can be formally defined as follows:

“For a given S, L, a set of Wis, Tc, F, and Mbound, find an
order of functions, for which Mtotal is less than Mbound.”

D. Algorithm
Procedure Defect_Aware_Code_Placement
Input: S, L, a set of Wis, Tc, F and Mbound
Output: order of functions in the optimized object code

Mmin = infinity;
repeat

for (t=0; t<|F|; t++) do
p = F[t]; BESTlocation = p;
for each p’ ∈ F and p’≠ p do

Insert function p in the place of p’;
Update Tc according to the locations of functions;
Calculate Mtotal using (3);
if (Mtotal ≤ Mmin) then

Mmin = Mtotal;
BESTlocation = p’;

end if
end for
Put function p in the place of BESTlocation

end for
until (Mmin < Mbound or Mmin stops decreasing)
Output order of functions

end Procedure

Our algorithm starts from an original object code and
finds the optimal location of each function of the application
program in the address space. This is done by changing the
order of placing functions in the address space and finding
the best ordering. For each ordering, the algorithm updates
the trace of memory block addresses executed (Tc) according
to the locations of functions and calculates the total number
of cache misses (Mtotal) using (3). The ordering which yields

the minimum number of cache misses is selected. The
algorithm continues as long as the number of cache misses
reduces and is no less than Mbound. The computation time of
the algorithm is quadratic in terms of the number of
functions in the application program.

IV. EXPERIMENTAL RESULTS
We used three benchmark programs; Compress version

4.0, JPEG encoder version 6b, and MPEG2 encoder version
1.2. All programs are compiled with “−O3” option. We used
GNU C compiler and debugger for ARMv4T architecture to
generate address traces. Table I shows the number of
functions, basic blocks and instructions for each benchmark
program. The trace of each benchmark program is one
million instructions long.

TABLE I. SPECIFICATION OF BENCHMARK PROGRAMS

 # Functions # Basic blocks # Instructions
Compress 160 2,281 10,716
JPEG_enc 353 6,451 30,867
MPEG2enc 256 6,428 33,850

Figure 6 shows the cache access statistics for JPEG
encoder. The y-axis shows the number of accesses to each
cache-set. We used a 32Kb direct mapped cache. The
number of cache-sets and cache-line size are 128 and 32
bytes, respectively. As one can see, accesses are not evenly
distributed. Therefore, the increase in the number of cache
misses depends on the location of defects. If a frequently
accessed cache-set contains the defect, cache performance
will degrade substantially. To take this into account, we
considered three scenarios as follows,

cache-set numberT
he

 n
um

be
r

of
 a

cc
es

se
s

0
10000
20000
30000
40000
50000
60000

1 128

Figure 6. Cache Access Statistics of JPEG encoder

• Best Case
In this case, the number of accesses of any faulty cache-
set is smaller than or equal to that of any non-faulty
cache-set.

• Worst Case
The number of accesses of any faulty cache-set is larger
than or equal to that of any non-faulty cache-set.

• Average Case
A defect may be in any cache-set with equal provability.

We first performed conventional code placement for a
given application program. The conventional code placement
technique tries to minimize the number of cache misses
without considering cache defects. Then we analyzed the

above mentioned three cases. Solid lines in Figures 7-9
represent the results. Black dots represent results of our
defect-aware code placement. We used the following four
types of cache memories:

[Cache-1] A 32Kb direct mapped cache with 128 cache-
sets whose cache-line size is 32 bytes.

[Cache-2] A 32Kb 2-way set-associative cache with 64
cache-sets whose cache-line size is 32 bytes.

[Cache-3] A 32Kb 4-way set-associative cache with 32
cache-sets whose cache line size is 32 bytes.

[Cache-4] A 16Kb 2-way set-associative cache with 32
cache-sets whose cache line size is 32 bytes.

In this experiment, we randomly chose faulty cache-lines.
After that, we applied our defect-aware code placement. We
regarded a chip whose cache miss rate is less than 1.1 times
of the original miss rate (i.e., the miss rate of a defect-free
cache) as an acceptable chip in this work. Therefore, our
algorithm modifies object code such that the cache miss rate
becomes less than 1.1x of the original cache miss rate. We
tried 480 different patterns of faulty cache-lines for each
benchmark program. Figures 7, 8, and 9 show the results for
Compress, JPEG encoder, and MPEG2 encoder,
respectively. Note that the solid graph for the best-case
results is on the x-axis in Figure 7.

Cache-2 (2-way, 32Kb)Cache-1 (1-way, 32Kb)

0 5 10 15 20 25
0

1

2

3

4

5

0 5 10 15 20 25
0

1

2

3

4

5

0 5 10 15 20 25
0

1

2

3

4

5

average case best case

Cache-3 (4-way, 32Kb)

C
ac

he
 M

is
s

R
at

e
(%

)
C

ac
he

 M
is

s
R

at
e

(%
)

Percentage of Faulty Cache-Lines (%)

Percentage of Faulty Cache-Lines (%)

Cache-4 (2-way, 16Kb)

0 5 10 15 20 25
0

1

2

3

4

5

w
or

st
 c

as
e

av
er

ag
e

ca
se

w
or

st
 c

as
e

w
or

st
 c

as
e

w
or

st
 c

as
e

av
era

ge
 ca

se

av
era

ge
 ca

se

Figure 7. Results for Compress

The results show that our technique can compensate the
performance degradation even when 25% of total cache lines
are faulty. In the case of Compress, faulty cache-lines are
tolerated by our code placement technique without
noticeable performance degradation when less than 10% of
total cache lines are faulty. The results for MPEG2 encoder
demonstrate that our results are almost equal to or better than
the results of the best-case scenario. This is due to the fact
that our approach performs code placement after knowing
the locations of faulty cache-lines. In this case our technique
can offset degradations of miss rates for all types of caches
when less than 10% of total cache lines are faulty.

Cache-2 (2-way, 32Kb)Cache-1 (1-way, 32Kb)

0 5 10 15 20 25
0

1

2

3

4

5

0 5 10 15 20 25
0

1

2

3

4

5

0 5 10 15 20 25
0

1

2

3

4

5

average case

best case

best case
best case

Cache-3 (4-way, 32Kb)

C
ac

he
 M

is
s

R
at

e
(%

)
C

ac
he

 M
is

s
R

at
e

(%
)

Percentage of Faulty Cache-Lines (%)

Percentage of Faulty Cache-Lines (%)

Cache-4 (2-way, 16Kb)

0 5 10 15 20 25
0

1

2

3

4

5

w
or

st
 c

as
e

av
er

ag
e

ca
se

w
or

st
 c

as
e

w
or

st
 c

as
e

w
or

st
 c

as
e

av
era

ge
 ca

se

av
era

ge
 ca

se

best case

Figure 8. Results for JPEG encoder

w
or

st
 c

as
e

Cache-2 (2-way, 32Kb)Cache-1 (1-way, 32Kb)

0 5 10 15 20 25
0

1

2

3

4

5

0 5 10 15 20 25
0

1

2

3

4

5

0 5 10 15 20 25
0

1

2

3

4

5

average case

best case

best case

Cache-3 (4-way, 32Kb)

C
ac

he
 M

is
s

R
at

e
(%

)
C

ac
he

 M
is

s
R

at
e

(%
)

Percentage of Faulty Cache-Lines (%)

Percentage of Faulty Cache-Lines (%)

Cache-4 (2-way, 16Kb)

0 5 10 15 20 25
0

1

2

3

4

5

av
er

ag
e

ca
se

w
or

st
 c

as
e

w
or

st
 c

as
e

w
or

st
 c

as
e

av
era

ge
 ca

se

av
era

ge
 ca

se

best case

best case

Figure 9. Results for MPEG2 encoder

In practice, the number of defects in a cache is small.
Otherwise, other parts of the chip will contain defects and
the chip will not work. Therefore, we assumed a single faulty
cache-line in the cache. The following Figures show results
in this case. Figures 10-11, 12-13, and 14-15 show results for
Compress, JPEG encoder and MPEG2 encoder, respectively.
The x- and y-axis represent the location of the faulty cache-
line and cache miss rate, respectively. In all cases, our
approach reduced the cache miss rate compared to the
conventional code placement. Especially for the direct
mapped cache, our approach drastically reduced the cache
miss rate (see Figures 10, 12, and 14). Since we assumed the
conventional code placement technique is not aware of the
faulty cache-line, the number of cache misses increases
drastically if a defect exists on a frequently accessed cache-
line. We assumed that a cache whose miss rate is less than

1.1x of the original cache miss rate is acceptable. Under this
assumption, our algorithm recovered all chips with a 2-way
set associative cache having a single faulty line (See Figure
11, 13, and 15). Supposing Compress as the target
application executed on a processor with a direct mapped
cache, 98% of chips with the single faulty cache-line are
recovered by our code placement technique (See Figure 10).
For JPEG encoder and MPEG2 encoder, our approach
recovered all chips with defective direct mapped cache (See
Figure 12 and 14).

Location of a faulty cache-line (cache-set number)

C
ac

he
 M

is
s

R
at

e
(%

)

0

0.04

0.08

0.12

0.16

0.02

1 128

Dots: Results of our approach

code placement
Line graph: Results of conventional

Figure 10. Results for Compress (Cache-1)

Location of a faulty cache-line (cache-set number)

C
ac

he
 M

is
s

R
at

e
(%

)

0

0.01

0.02

0.03

0.04

1 64

Dots: Results of our approach

Line graph: Results of conventional code placement

Miss rate of defect-free cache

Figure 11. Results for Compress (Cache-2)

Location of a faulty cache-line (cache-set number)

C
ac

he
 M

is
s

R
at

e
(%

)

0

0.3

0.6

0.9

1.2

1.5

1 128

Dots: Results of our approach
Line graph: Results of conventional code placement

Figure 12. Results for JPEG Encoder (Cache-1)

Location of a faulty cache-line (cache-set number)

C
ac

he
 M

is
s

R
at

e
(%

)

0

0.04

0.08

0.12

0.16

0.20

1 64

Dots: Results of our approach Miss rate of defect-fee cache

Line graph: Results of conventional code placement

Figure 13. Results for JPEG Encoder (Cache-2)

Location of a faulty cache-line (cache-set number)

C
ac

he
 M

is
s

R
at

e
(%

)

0

0.3

0.6

0.9

1.2

1.5

1 128

Dots: Results of our approach
Line graph: Results of conventional code placement

Figure 14. Results for MPEG2 Encoder (Cache-1)

Location of a faulty cache-line (cache-set number)

C
ac

he
 M

is
s

R
at

e
(%

)

0

0.1

0.2

0.3

0.4

1 64

Dots: Results of our approachMiss rate of defect-fee cache

Line graph: Results of conventional code placement

Figure 15. Results for MPEG2 Encoder (Cache-2)

Assuming a single fault in the cache, we need at most N
different object codes, where N represents the number of
cache-sets (note an object code generated for a chip with a
fault on line i may be good for a chip with a fault on line j as
well). For small values of N, it is possible to pre-compile the
code for all possible cases and store the object codes. For
each chip, depending on the actual location of the fault, one
of the object codes can be selected and programmed in the
chip.

Table II shows the average compilation time (in seconds)
assuming a single fault. We ran the defect-aware code
placement algorithm on an UltraSPARC-II dual CPU
workstation running Solaris8 at 450MHz with 2GB of
memory. We regarded a chip whose cache miss rate is less
than 1.1x of the original cache miss rate as an acceptable
chip. For example in MPEG2 encoder, the original cache
miss rate (i.e., the miss rate of a defect-free cache) was 0.3%.
Therefore, chips whose cache miss rates were less than
0.33% were accepted as good chips. Assuming 30 cycles for
cache miss penalty, the performance degradation of the
defective chip will be only 0.83% compared to the
performance of a defect-free chip. Similarly, our approach
may degrade the performance of processors by 0.07% and
0.43% for Compress and JPEG encoder, respectively.

TABLE II. CPU-TIME FOR DEFECT-AWARE CODE PLACEMENT
(SECOND)

 Direct map 2-way cache 4-way cache
Compress 10.20 6.45 4.03
JPEG encoder 233.19 109.45 85.81
MPEG2 encoder 518.51 450.52 163.59

Since behavior of a program depends on its input value,

an object code optimized for a specific input value is not
necessarily optimal for the other input values. To see the
effect of input value on the cache behavior, we measured
cache miss counts for different input values. Figure 16 shows
the results for six different input values for each benchmark
program. The vertical axis represents the log of the cache
miss rate. The object code was optimized for Data0. We
measured the cache miss rate for three different cases as
follows:

1. an object code without considering cache defects
(i.e., defect-unaware code) and ran on a processor
with a defect-free cache (black bars in Figure 16).

2. the defect-unaware object code ran on a processor
with a defective cache(gray bars).

3. a defect-aware code generated using our algorithm
and ran on the processor with a defective cache
(dark gray bars).

We used a direct mapped cache with 128 sets for JPEG
encoder and MPEG2 encoder and a direct mapped cache
with 32 sets for Compress (since the direct mapped cache
with 128 sets is too large for Compress to see the effect of
changing input values). We assumed two faulty cache-lines
in each cache memory. As one can see, the object code
optimized for Data0 achieves very good results for other
input values too.

0.1

1.0

10.0

D
at

a0

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

D
at

a0

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

D
at

a0

D
at

a1

D
at

a2

D
at

a3

D
at

a4

D
at

a5

Compress JPEG encoder MPEG2 encoder

defective cache + defect unaware code
defective cache + defect aware code

defect free cache + defect unaware code

C
ac

he
 M

is
s

R
at

e
(%

)

Figure 16. Input Data Dependency

V. CONCLUSION
In this paper, we proposed a defect-aware code

placement technique. Experiments demonstrated that our
code placement technique offset the impact of faults on
performance in most cases when less than 5% of cache lines
are faulty. In some cases the technique was able to offset the
impact even in presence of 25% faulty cache-lines. We plan
to extend our technique to handle data caches.

ACKNOWLEDGMENT
We would like to thank Tom Sidle, the VP of advanced

CAD Technology at Fujitsu Laboratories of America for
supporting this research.

REFERENCES

[1] I. Koren and A. D. Singh, “Fault Tolerance in VLSI Circuits”, IEEE

Computer, special issue in fault-tolerant sisytems, vol.23, pp.73-83,
July 1990.

[2] C. H. Stapper, A.N. McLaren and M. Dreckmann, “Yield Model for
Productivity Optimization of VLSI Memory Chips with Redundancy
and Partially Good Product”, IBM Journal of Research and
Development, vo.20, pp.398-409,1980.

[3] G. Sohi, “Cache Memory Organization to Enhance the Yield of High
Performance VLSI Processors”, IEEE Trans. on Computers, vol.38,
no.4, pp.484-492, April 1989.

[4] A. F. Pour and M. D. Hill, “Performance Implications of Tolerating
Cache Faults”, IEEE Trans. on Computers, vol.42, no.3, pp.257-267,
March 1993.

[5] X. Luo and J. C. Muzio, “A Fault-Tolerant Multiprocessor Cache
Memory”, Proc. IEEE Workshop on Memory Technology, Design
and Testing, pp.52-57, August 1994.

[6] J. Montanaro, et al., “A 160 MHz, 32b 0.5W CMOS RISC
Microprocessor”, In Proc. of Int’l Solid-State Circuits Conference,
February 1996.

[7] N. R. Saxena, et al., “Fault-Tolerant Features in the HaL Memory
Management Unit”, IEEE Trans. on Computers, vol.44, no.2, pp.170-
179, February 1995.

[8] M. G. Gallup, et al., “Testability Features of the 68040”, in Proc. of
Int’l Test Conference, pp.749-757, September 1990.

[9] Y. Ooi, M. Kashimura, H. Takeuchi and E. Kawamura, “Fault-
Tolerant Architecture in a Cache Memory Control LSI”, IEEE
Journal of Solid-State Circuits, vol.27, no.4, pp.507-514, April 1992.

[10] D. A. Patterson, et al., “Architecture of a VLSI instruction cache for a
RISC”, In Proc. 10th Annual Int’l Symposium on Computer
Architecture, vol. 11, no. 3, pp.108-116, June, 1983.

[11] P. P. Shirvani and E. J. McCluskey, “PADded Cache: A New Fault-
Tolerance Technique for Cache Memories”, In Proc. of 17th IEEE
VLSI Test Symposium, pp.440-445, April 1999.

[12] M. A. Lucente, C. H. Harris and R. M. Muir, “Memory System
Reliability Improvement Through Associative Cache Redundancy”,
In Proc. of IEEE Custom Integrated Circuits Conference, pp.19.6.1-
19.6.4, May 1990.

[13] H. T. Vergos and D. Nikolos, “Performance Recovery in Direct-
Mapped Faulty Caches via the Use of a Very Small Fully Associative
Spare Cache”, In Proc. of Int’l Computer Performance and
Dependability Symposium, pp.326-332, April 1995.

[14] H. T. Vergos and D. Nikolos, “Efficient Fault Tolerant Cache
Memory Design”, Microprocessing and Microprogramming Journal,
vol.41, no.2, pp.153-169, May 1995.

[15] H. Hill and A. J. Smith, “Evaluating Associativity in CPU Cache”,
IEEE Trans. on Computers, Vol. 38, No. 12, pp.1612-1630,
December, 1989.

[16] S. McFarling, “Program Optimization for Instruction Caches”, In
Proc. of Int’l Conference on Architecture Support for Programming
Languages and Operating Systems, pp.183-191, April 1989.

[17] W. W. Hwu and P. P. Chang, “Achieving High Instruction Cache
Performance with an Optimizing Compiler”, In Proc. of ISCA,
pp.242-251, May 1989.

[18] H. Tomiyama and H. Yasuura, “Optimal Code Placement of
Embedded Software for Instruction Caches”, In Proc. of European
Design and Test Conference, pp.96-101, March, 1996.

[19] P. Panda, N. Dutt, and A. Nicolau, “Memory Organization for
Improved Data Cache Performance in Embedded Processors”, In Proc.
of the 9th Int’l Symposium on System Synthesis, pp.90-95, November
1996.

[20] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient Procedure
Mapping Using Cache Line Coloring”, in Proc. of Programming
Language Design and Implementation, pp.171-182, June, 1997.

[21] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equations: A
Compiler Framework for Analyzing and Tuning Memory Behavior”,
ACM Trans. on Programming Languages and Systems, vol.21, no.4,
pp.703-746, July, 1999.

[22] Motorola Inc., “PowerPC 604e RISC Microprocessor Technical
Summary”, 1996.

[23] IBM Microelectronics Division, “The PowerPC 440 core”, 1999.
[24] S. Hill, “The ARM 10 Family of Embedded Advanced

Microprocessor Cores”, In Proc. of HOT-Chips 13, August 2001.
[25] K. Suzuki, T. Arai, N. Kouhei, and I. Kuroda, “V830R/AV:

Embedded Multimedia Superscalar RISC Processor”, IEEE Micro,
vol.18, no.2, pp.36-47, April 1998.

