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Abstract— Yield improvement through exploiting fault-free 
sections of defective chips is a well-known technique [1][2]. The 
idea is to partition the circuitry of a chip in a way that fault-
free sections can function independently. Many fault tolerant 
techniques for improving the yield of processors with a cache 
memory have been proposed [3][4][5]. In this paper, we 
propose a defect-aware code placement technique which offsets 
the performance degradation of a processor with a defective 
cache memory. To the best of our knowledge, this is the first 
compiler-based technique which offsets the performance 
degradation due to cache defects. Experiments demonstrate 
that the technique can compensate the performance 
degradation even when 5% of cache lines are faulty. In some 
cases the technique was able to offset the impact even in 
presence of 25% faulty cache-lines. 

I. INTRODUCTION 
Most of today’s microprocessors including embedded 

ones employ one or more on-chip caches. Currently in most 
chips, caches occupy a large percentage of the area and the 
percentage is expected to increase in future. For example in 
StrongARM SA-110 processor, one half of the total chip 
area is devoted to the two 16KB caches [6]. Since cache 
arrays are designed with the tightest feature and scaling rules 
available in a given technology, they are more susceptible to 
faults compared to logic blocks [7][8]. Thus, the yield of 
microprocessors with on-chip caches can be enhanced 
considerably if cache defects are tolerated without noticeable 
performance degradation. Many techniques have been 
proposed for disabling faulty cache blocks in partially good 
chips [3][4][5][9]. Since using a smaller cache memory does 
not affect the correct operation of a processor, the processor 
can still be used after some changes even if the cache 
contains manufacturing defects. Therefore, the most 
straightforward solution to fix a chip with a faulty cache is to 
disable the entire cache. For set-associative caches, a 
possible solution is to disable the cache-way which contains 
the defect [9]. A more sophisticated way is disabling only the 
defective cache-line because the existence of a defect in a 
cache-line does not affect other cache lines. This can be done 
by using an extra bit added to the flag bits associated with 
each block and using the added bit for marking a faulty 
cache block [10]. If the bit is one, the corresponding cache 

block will not be used for replacement in case of a cache 
miss. Thus, accessing the block will always cause a cache 
miss. Otherwise, the block is non-faulty and will be used. In 
this paper, we refer to the extra bit as FT-bit (Fault-
Tolerance bit) [11]. Other names used in literature are: 
availability bit [3], the second valid bit [4] and purge bit [5]. 
The idea of adding the FT-bit was initially proposed in [10]. 

In this paper, we propose a defect-aware code placement 
technique which reduces the performance degradation of a 
processor with a partially good cache memory. We used FT-
bits in our technique. Our approach is to modify the 
placement of basic blocks or functions in the address space 
so that the number of cache misses is minimized for a given 
defective cache. To the best of our knowledge, this is the 
first compiler technique which reduces the performance 
degradation of a partially good cache memory. 

The rest of the paper is organized as follows. In Section 2, 
we summarize previous work and our approach. The 
definition of the problem and our algorithm for solving it are 
presented in Section 3. Section 4 presents experimental 
results. The paper concludes in Section 5. 

II. PREVIOUS WORK AND OUR APPROACH 

A.  Techniques for Recovering Cache Performance 
A replacement technique called the Memory Reliability 

Enhancement Peripheral (MREP) is presented in [12]. The 
idea is to have several spare words in a small set associative 
cache which may replace faulty words in the main memory. 
A technique similar to MREP is presented for on-chip caches 
in [13]. A very small fully associative spare cache is added to 
a direct-mapped cache and is used as a spare for the disabled 
faulty blocks. The experimental results in [13] show that one 
or two spare blocks are sufficient to avoid most of the extra 
misses caused by a few (less than 5%) faulty blocks. 
However, for a large number of faults, a few spare blocks 
will not be sufficient. 

Sohi [3] investigated the application of a Single Error 
Correcting and Double Error Detecting (SEC-DED) 
Hamming code in an on-chip cache memory. The idea of the 
SEC-DED approach is to use extra bits per word to store an 



error correcting code and correcting data if a single error is 
detected [14]. The approach is effective for a single bit error 
per word (e.g., a single defect on a bit line) only. 

Shirvani et al. proposed a new cache architecture called 
PADded cache [11] which requires neither spare blocks nor 
error correcting bits. The idea is to recover the performance 
degradation due to faulty cache lines by mapping them to 
existing non-faulty cache lines. This is made possible by the 
use of programmable address decoder. Consider the direct 
mapped cache shown in Figure 1. 

f0

f0 a0

f1

+ f1

f2

f3

Cache-Line 0

Cache-Line 1

Cache-Line 2

Cache-Line 3

f1 a0 + f0

f2 a0 + f3

f3 a0 + f2

a1 T0

T1

T2

T3

a1

FT-bit

TAG DATA

TAG DATA

TAG DATA

TAG DATA  
Figure 1.  Programmable Address Decoder (PAD) 

The number of sets is 4. Let a1a0 be the cache-line 
address. If a1a0 = 00, cache-line 0 is selected. If a1a0 = 01, 
cache-line 1 is selected, and so forth. Assume that cache-line 
0 is faulty. The gates of transistors T0 and T1 are controlled 
using the FT-bit such that when cache-line 0 is marked faulty, 
T0 is always off and T1 is always on. As a result, all 
references to cache-line 0 are re-mapped to cache-line 1. 
Therefore, the addresses mapped to cache-line 0 are still 
cached, but they will have conflict misses with cache-line 1. 
By adding another FT-bit to the cache-line, it can be 
indicated whether both cache-line 0 and cache-line 1 are 
faulty. Thus, the second level of the decoder can be 
controlled and cache-line 0 and 1 can be mapped to 2 and 3 
or vice-versa. The approach can be extended for set 
associative caches. Note the fault tolerance is achieved at the 
cost of higher complexity for the decoder which makes the 
cache-line access slower. Furthermore, there is a large area 
overhead due to adding FT-bits to each block. Note that FT-
bits must be implemented using flip-flops. One way to avoid 
adding extra bits is using the unused combination of the 
already available flag bits (e.g., valid bit = 0 and lock bit = 1) 
to indicate a fault in the cache-line. The lock bit is used to 
lock some or all contents of the cache in place. This feature 
is available on several commercial processors including 
PowerPC 604e, 405 and 440 families [22][23], Intel-960, 
some Intel x86 processors, ARM 10 family [24], NEC 
V830R processor [25] and so on. However, this results in 
performance degradation because it requires one extra cycle 
to read the FT-bits from the tag memory and configuring the 
address mapping. 

Unlike previous approaches, our approach needs neither 
any spare memory blocks nor error correcting codes. 

Furthermore, no complicated hardware support like a 
Programmable Address Decoder (PAD) is required. 

B. Conventional Code Placement 
We first explain the idea behind the conventional code 

placement technique. Consider a direct-mapped cache of size 
C ( = 2m words) whose cache line size is L words, i.e., L 
consecutive words are fetched from the main memory on a 
cache read miss. In a direct-mapped cache, the cache line 
containing a word located at memory address M can be 
calculated by (⎣M/L⎦ mod C/L). Therefore, two memory 
locations Mi and Mj will be mapped onto the same cache line 
if the following condition holds, 
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Several code placement techniques have used the above 
formula [16][17][18][19][20][21]. 
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Figure 2.  An Example of Code Placement 

Assume a direct mapped cache with 4 cache-lines, where 
each cache-line is 32 bytes. Functions A, B, C and D are 
placed in the main memory as shown in the left side of 
Figure 2. If functions A, B, and D are accessed in a loop, 
conflict misses occur because A and D are mapped onto the 
same cache line. If the locations of C and D are swapped as 
shown in the right side of Figure 2, the cache conflict is 
resolved. Code placement modifies the placement of basic 
blocks or functions in the address space so that the total 
number of cache conflict misses is minimized. 

C. Our Approach 
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Figure 3.  Compiler Optimization Flow 



An overview of our approach is depicted in Figure 3. 
First, we detect the locations of defects in a cache memory. 
Next, our code placement technique generates the object 
code such that the number of cache misses will be lower than 
a given number. Therefore, we perform recompilation only if 
the original object code does not satisfy the required 
performance for a specific chip. If the original object code or 
an object code previously generated for another defect can 
satisfy the required performance, we use it. Every time the 
chip is turned on, it executes an initialization step during 
which based on the information collected during test, faulty 
cache-lines are marked using lock and valid bits. Then the 
chip executes the compiled code. 

Our approach exploits an unused combination of existing 
flag bits (i.e., valid bit=0 and lock bit=1) to indicate a fault in 
a specific cache-line. Assuming a 4-way set associative 
cache with lock and valid bits, if the lock bit of the way1 in 
the 5th cache-set is “1” as shown in Figure 4, the 
corresponding cache-line will not be used for replacement in 
case of a cache miss. If the valid bit of way1 in the 5th cache-
set is “0”, accessing to the corresponding block will always 
cause a cache miss. Therefore, this mechanism guarantees 
the correctness of the processor operation even in presence 
of defects in tag or data memory. 
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Figure 4.  Cache Locking Function 

Although most existing commercial processors do not 
allow to set the lock bit for an invalid cache-line (i.e., valid 
bit=0 and lock bit=1 is not a valid combination), supporting 
this combination is possible by a minor modification of the 
cache control circuitry. Note that for a set associative cache, 
the associativity of the cache-set which includes the faulty 
cache-lines is reduced by one. In a direct mapped cache, 
every access to the cache-set which includes the faulty 
cache-line will cause a cache miss. Our method modifies the 
placement of functions in the address space so as to 
compensate the increased number of cache misses due to 
faulty cache-lines. The most important feature of our 
approach is that it does not have any hardware overhead if 
the target processor has the cache lock function. 

III. PROBREM DEFINITION 

A. Cache Miss Calculation 
We first generate an instruction trace corresponding to an 

execution of the application program as follows,  

(o0, o1, o3, o5, o6, o7, o3, o5, o7, o3, o5, o6, o7, o3)    (2) 

where oi represents the ith instruction of the original 
object code. Assume ai represents the address of oi. Each 
instruction oi is mapped to a memory block whose address is 
⎣ai/L⎦. From the instruction trace we generate the trace of 
memory block addresses accessed, TMB = (b1, b1, b2, b3, …) 

We define X(bi) as, 
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where S and Ws are the number of cache-sets and the number 
of  non-faulty cache-lines in the sth cache-set, respectively. 
The total number of misses can be calculated by, 

∑
∈∀

=
TMBib 

itotal bXM )( .              (3) 

The above formula, which takes into account the effect of 
faulty cache-lines, is an extension of the formulae derived in 
[18]. Although the approach [18] results in many gaps in the 
object code (i.e., the memory requirement increases), our 
approach does not increase the size of object code. 

B. Trace Compaction 
For a given trace, it is usually possible to generate a 

shorter trace which results in the same number of misses, but 
can be processed faster.  
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Figure 5.  An Example of a Self-Conflict Miss 

Consider a function whose size is smaller than the cache 
size as shown in Figure 5. Left shows a direct mapped cache 
with four 32-byte lines. If a function whose size is 104 bytes 
is placed in the main memory, cache conflict misses occur in 
the cache-line 1 because the first and last words of the 
function are mapped onto the same cache-line. If the size of 
the function is 100 bytes, no self-conflict miss will occur no 
matter where in the address space the function is placed. 
Therefore, the condition for the self-conflict free function is 
as follows, 

The size of the function ≤ L×(S−1) + I      (4), 

where L, S, an I represent cache-line size in byte, the number 
of cache-sets and instruction word size in byte, respectively. 



If a function satisfies the condition (4), two instructions oi 
and oj of the function will never evict each other no matter 
where in the address space the function is placed. As a result, 
when a loop is executed if all instructions in the loop belongs 
to the function and the loop is executed n times, n−1 
instances can be deleted from the trace. 

C. Problem Formulation 
We summarize notations used in the problem formulation 

as follows, 
S:  The number of cache-sets. 
L:  Cache-line size in byte. 
Wi: The number of non-faulty cache-ways in the ith 

cache-set. 
Tc: The compacted trace of memory block addresses 

accessed. 
F: The list of functions in the target program sorted in 

descending order of their execution counts. 
Mtotal: The total number of cache misses. 
Mbound: The upper bound of the number of cache misses. 

This parameter is given by the user. 

The problem can be formally defined as follows:  

“For a given S, L, a set of Wis, Tc, F, and Mbound, find an 
order of functions, for which Mtotal is less than Mbound.” 

D. Algorithm 
Procedure Defect_Aware_Code_Placement 
Input: S, L, a set of Wis, Tc, F and Mbound 
Output: order of functions in the optimized object code 

Mmin = infinity; 
repeat 

for (t=0; t<|F|; t++) do 
p = F[t];     BESTlocation = p; 
for each p’ ∈ F and p’≠ p do 

Insert function p in the place of p’; 
Update Tc according to the locations of functions; 
Calculate Mtotal using (3); 
if (Mtotal ≤ Mmin) then 

Mmin = Mtotal; 
BESTlocation = p’; 

end if 
end for 
Put function p in the place of BESTlocation 

end for 
until (Mmin < Mbound or Mmin stops decreasing) 
Output order of functions 

end Procedure 

Our algorithm starts from an original object code and 
finds the optimal location of each function of the application 
program in the address space. This is done by changing the 
order of placing functions in the address space and finding 
the best ordering. For each ordering, the algorithm updates 
the trace of memory block addresses executed (Tc) according 
to the locations of functions and calculates the total number 
of cache misses (Mtotal) using (3). The ordering which yields 

the minimum number of cache misses is selected. The 
algorithm continues as long as the number of cache misses 
reduces and is no less than Mbound. The computation time of 
the algorithm is quadratic in terms of the number of 
functions in the application program. 

IV. EXPERIMENTAL RESULTS 
We used three benchmark programs; Compress version 

4.0, JPEG encoder version 6b, and MPEG2 encoder version 
1.2. All programs are compiled with “−O3” option. We used 
GNU C compiler and debugger for ARMv4T architecture to 
generate address traces. Table I shows the number of 
functions, basic blocks and instructions for each benchmark 
program. The trace of each benchmark program is one 
million instructions long. 

TABLE I.  SPECIFICATION OF BENCHMARK PROGRAMS 

 # Functions  # Basic blocks # Instructions
Compress 160 2,281 10,716 
JPEG_enc 353 6,451 30,867 
MPEG2enc 256 6,428 33,850 

 

Figure 6 shows the cache access statistics for JPEG 
encoder. The y-axis shows the number of accesses to each 
cache-set. We used a 32Kb direct mapped cache. The 
number of cache-sets and cache-line size are 128 and 32 
bytes, respectively. As one can see, accesses are not evenly 
distributed. Therefore, the increase in the number of cache 
misses depends on the location of defects. If a frequently 
accessed cache-set contains the defect, cache performance 
will degrade substantially. To take this into account, we 
considered three scenarios as follows, 
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Figure 6.  Cache Access Statistics of JPEG encoder 

• Best Case 
In this case, the number of accesses of any faulty cache-
set is smaller than or equal to that of any non-faulty 
cache-set. 

• Worst Case 
The number of accesses of any faulty cache-set is larger 
than or equal to that of any non-faulty cache-set. 

• Average Case 
A defect may be in any cache-set with equal provability. 

 

We first performed conventional code placement for a 
given application program. The conventional code placement 
technique tries to minimize the number of cache misses 
without considering cache defects. Then we analyzed the 



above mentioned three cases. Solid lines in Figures 7-9 
represent the results. Black dots represent results of our 
defect-aware code placement. We used the following four 
types of cache memories: 

[Cache-1] A 32Kb direct mapped cache with 128 cache-
sets whose cache-line size is 32 bytes. 

[Cache-2] A 32Kb 2-way set-associative cache with 64 
cache-sets whose cache-line size is 32 bytes. 

[Cache-3] A 32Kb 4-way set-associative cache with 32 
cache-sets whose cache line size is 32 bytes. 

[Cache-4] A 16Kb 2-way set-associative cache with 32 
cache-sets whose cache line size is 32 bytes. 

 

In this experiment, we randomly chose faulty cache-lines. 
After that, we applied our defect-aware code placement. We 
regarded a chip whose cache miss rate is less than 1.1 times 
of the original miss rate (i.e., the miss rate of a defect-free 
cache) as an acceptable chip in this work. Therefore, our 
algorithm modifies object code such that the cache miss rate 
becomes less than 1.1x of the original cache miss rate. We 
tried 480 different patterns of faulty cache-lines for each 
benchmark program. Figures 7, 8, and 9 show the results for 
Compress, JPEG encoder, and MPEG2 encoder, 
respectively. Note that the solid graph for the best-case 
results is on the x-axis in Figure 7.  
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Figure 7.  Results for Compress 

The results show that our technique can compensate the 
performance degradation even when 25% of total cache lines 
are faulty. In the case of Compress, faulty cache-lines are 
tolerated by our code placement technique without 
noticeable performance degradation when less than 10% of 
total cache lines are faulty. The results for MPEG2 encoder 
demonstrate that our results are almost equal to or better than 
the results of the best-case scenario. This is due to the fact 
that our approach performs code placement after knowing 
the locations of faulty cache-lines. In this case our technique 
can offset degradations of miss rates for all types of caches 
when less than 10% of total cache lines are faulty. 
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Figure 8.  Results for JPEG encoder 
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Figure 9.  Results for MPEG2 encoder 

In practice, the number of defects in a cache is small. 
Otherwise, other parts of the chip will contain defects and 
the chip will not work. Therefore, we assumed a single faulty 
cache-line in the cache. The following Figures show results 
in this case. Figures 10-11, 12-13, and 14-15 show results for 
Compress, JPEG encoder and MPEG2 encoder, respectively. 
The x- and y-axis represent the location of the faulty cache-
line and cache miss rate, respectively. In all cases, our 
approach reduced the cache miss rate compared to the 
conventional code placement. Especially for the direct 
mapped cache, our approach drastically reduced the cache 
miss rate (see Figures 10, 12, and 14). Since we assumed the 
conventional code placement technique is not aware of the 
faulty cache-line, the number of cache misses increases 
drastically if a defect exists on a frequently accessed cache-
line. We assumed that a cache whose miss rate is less than 



1.1x of the original cache miss rate is acceptable. Under this 
assumption, our algorithm recovered all chips with a 2-way 
set associative cache having a single faulty line (See Figure 
11, 13, and 15). Supposing Compress as the target 
application executed on a processor with a direct mapped 
cache, 98% of chips with the single faulty cache-line are 
recovered by our code placement technique (See Figure 10). 
For JPEG encoder and MPEG2 encoder, our approach 
recovered all chips with defective direct mapped cache (See 
Figure 12 and 14). 
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Figure 10.  Results for Compress (Cache-1) 
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Figure 11.  Results for Compress (Cache-2) 
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Figure 12.  Results for JPEG Encoder (Cache-1) 
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Figure 13.  Results for JPEG Encoder (Cache-2) 
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Figure 14.  Results for MPEG2 Encoder (Cache-1) 
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Figure 15.  Results for MPEG2 Encoder (Cache-2) 

Assuming a single fault in the cache, we need at most N 
different object codes, where N represents the number of 
cache-sets (note an object code generated for a chip with a 
fault on line i may be good for a chip with a fault on line j as 
well). For small values of N, it is possible to pre-compile the 
code for all possible cases and store the object codes. For 
each chip, depending on the actual location of the fault, one 
of the object codes can be selected and programmed in the 
chip. 

Table II shows the average compilation time (in seconds) 
assuming a single fault. We ran the defect-aware code 
placement algorithm on an UltraSPARC-II dual CPU 
workstation running Solaris8 at 450MHz with 2GB of 
memory. We regarded a chip whose cache miss rate is less 
than 1.1x of the original cache miss rate as an acceptable 
chip. For example in MPEG2 encoder, the original cache 
miss rate (i.e., the miss rate of a defect-free cache) was 0.3%. 
Therefore, chips whose cache miss rates were less than 
0.33% were accepted as good chips. Assuming 30 cycles for 
cache miss penalty, the performance degradation of the 
defective chip will be only 0.83% compared to the 
performance of a defect-free chip. Similarly, our approach 
may degrade the performance of processors by 0.07% and 
0.43% for Compress and JPEG encoder, respectively. 

TABLE II.  CPU-TIME FOR DEFECT-AWARE CODE PLACEMENT 
(SECOND) 

 Direct map 2-way cache 4-way cache
Compress 10.20 6.45 4.03
JPEG encoder 233.19 109.45 85.81
MPEG2 encoder 518.51 450.52 163.59

 
Since behavior of a program depends on its input value, 

an object code optimized for a specific input value is not 
necessarily optimal for the other input values. To see the 
effect of input value on the cache behavior, we measured 
cache miss counts for different input values. Figure 16 shows 
the results for six different input values for each benchmark 
program. The vertical axis represents the log of the cache 
miss rate. The object code was optimized for Data0. We 
measured the cache miss rate for three different cases as 
follows: 

1. an object code without considering cache defects 
(i.e., defect-unaware code) and ran on a processor 
with a defect-free cache (black bars in Figure 16). 



2. the defect-unaware object code ran on a processor 
with a defective cache(gray bars). 

3. a defect-aware code generated using our algorithm 
and ran on the processor with a defective cache 
(dark gray bars). 

We used a direct mapped cache with 128 sets for JPEG 
encoder and MPEG2 encoder and a direct mapped cache 
with 32 sets for Compress (since the direct mapped cache 
with 128 sets is too large for Compress to see the effect of 
changing input values). We assumed two faulty cache-lines 
in each cache memory. As one can see, the object code 
optimized for Data0 achieves very good results for other 
input values too. 
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Figure 16.  Input Data Dependency 

V. CONCLUSION 
In this paper, we proposed a defect-aware code 

placement technique. Experiments demonstrated that our 
code placement technique offset the impact of faults on 
performance in most cases when less than 5% of cache lines 
are faulty. In some cases the technique was able to offset the 
impact even in presence of 25% faulty cache-lines. We plan 
to extend our technique to handle data caches. 
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