
Automatic Generalized Phase Abstraction for

Formal Verification

Per Bjesse and James Kukula

Synopsys Inc.

Abstract— A standard approach to improving circuit perfor-
mance is to use an N -phase design style where combinational
logic is interspersed freely between level sensitive latches con-
trolled by separate clocks. Unfortunately, the use of an N -phase
design style will increase the number of state variables by a factor
of N , making formal verification many orders of magnitude
harder. Previous approaches to solving this problem restrict the
kind of designs that can be handled severely and construct
an abstracted netlist with fewer state variables by a syntactic
analysis that requires the user to identify clocks. We extend
the current state of the art by introducing a phase abstraction
algorithm that (1) poses no restrictions on the design style that
can be used, that (2) avoids an error prone syntactic analysis, that
(3) requires no input from users, and that (4) can be integrated
into any model checker without requiring HDL code analysis.

I. INTRODUCTION

There are many approaches possible for proving that a

design functions correctly. Ultimately they all rely on analysis

methods that are very sensitive to the number of gates and

registers in the formal model. For example, hard properties

are often resolved using some form of abstraction coupled

with fixpoint computation using Binary Decision Diagrams

(BDDs). It is well-known that BDDs can only reliably cope

with at most a hundred state bits or so in the abstraction of

the design under analysis. Moreover, many other algorithms

for exploring the state space of a circuit use satisfiability

checking—an analysis whose complexity is critically depen-

dent on the amount of logic in the circuit that is analyzed.

Today’s high performance design styles often complicate an

already hard verification problem by introducing extra gates

and registers that are functionally redundant but allow the cir-

cuit implementation to meet stringent performance constraints.

One such design style is multi-phase clocking, where several

state elements, each driven by a separate clock, implement

a single virtual state bit. While this increases robustness

and allows relaxed timing constraints, it complicates formal

verification considerably: In an N -phase design on the order

of N latches are used in place of every register. A budget

of a hundred state bits or so is hence likely to be eaten up

quickly. Moreover, multiphase clocking is used pervasively

in the industry as a performance improvement technique

across whole designs, so the state multiplication effect is not

localized. It is hence important to find some way to mitigate

the increased verification complexity.

As an example of multi-phase clocking, consider the design

style schematically represented in Figure 1. In this picture,

triangles denote combinational logic and rectangles denote

banks of state-holding elements. In the remainder of this paper

we will refer to this form of design as the rigid two-phase

design style.

φ
1

φ
2

I
0
… I

n
O
0
… O

m

Fig. 1. Rigid two-phase design style.

In the rigid two-phase design style there are two types of

state-holding elements, φ1 latches and φ2 latches, each fed

by a clock that does not overlap with the clock feeding the

other latch type. φ1 latches can only depend on inputs and φ2

latches, whereas φ2 latches can only depend on φ1 elements.

The outputs of a strict two-phase design is only allowed to

depend on φ2 elements.

Since a given multi-phase design is an implementation of

an ideal simpler single phase design, a natural approach to

improving the complexity behavior of our formal verification

algorithms is to attempt to extract an equivalent “full cycle”

model from the multi-phase design under analysis. The process

of deriving this simpler design is commonly referred to as

phase abstraction ([1], [2], [3]).

In the case of a strict two-phase design style, it is not

hard to show that the validity status of safety properties will

be preserved if the phase abstracted system is generated by

substituting either a short circuit or a multiplexor for one of

the latch layers, and flip flops for the other [2]. If there are as

many φ1 latches as φ2 latches, this means that the number of

state-holding elements in the abstracted design is reduced by

50%.

The standard approach to performing two-phase abstraction

for model checking proceeds as follows [2]:

1) The user identifies the points where the non-overlapping

clocks that drive the different layers of latches are

generated or injected, and their phase number.

2) The system propagates this information to identify as

many latches as possible as φ1 or φ2 elements.

3) Given this information, regions where a strict two-phase

design style is followed are identified.

4) For each such region, or Minimal Dependent Layer

(MDL) in the terminology of [2], either all the φ1 or

φ2 latches are removed by the appropriate substitution

while the other latches become flip flops.

0-7803-9254-X/05/$20.00 ©2005 IEEE. 1073

It is clear that phase abstraction can be a very powerful

abstraction technique. However, if it is going to be used outside

a controlled environment, there is a number of obstacles that

have to be overcome. First of all, in the standard approach

the user has to identify the different clocks and their phase

relationship. In a commercial formal verification tool, this is a

serious weakness—each new piece of data the user has to enter

increases the threshold to widespread adoption, and allows

room for human error. Second, standard two-phase abstraction

is restricted to a very strict design style. This does not pose a

problem if we can control the design methodology. However,

a tool aiming at a heterogeneous user group should assume as

little as possible about design rules.

Particular problems with the strict design style include the

following:

1) What if outputs have both φ1 and φ2 latches in their

support?

2) What if the design freely mixes φ1 and φ2 latches,

without following the strict two phase rules?

3) What if the design contains flip-flops freely interspersed

with latches?

4) What if clocks overlap?

5) What if clocks are gated?

Issues 1, 2, and 3 are obstacles that will separate a larger

group of logic and state elements into much smaller MDLs,

thus reducing the potential for subsequent reductions. This is

bad by itself. However, the show stoppers in many cases are

issues 4 and 5. Item 4 will cause trouble with a number of

systems, especially if there are multiple independently clocked

regions or more esoteric clocking schemes present. Item 5 is a

symptom of a much larger problem: The standard analysis is

completely syntactic in that it hinges on a pure graph theoretic

connectivity analysis that uses no semantics for the system

under analysis.

In this paper, we present a new approach to phase abstrac-

tion. Our analysis does not require any rules to be followed in

the design for a good result, and it does not require any extra

user input. In particular, it has the following advantages over

the standard approach:

• We do not require the user to identify clock generation

networks or phase relationships. However, if the user

chooses to provide some clocking information, we can

still make use of it.

• Our analysis does not require the user to follow any

special design rules. We allow outputs fed by arbitrary

state elements and we pose no restriction on how inputs

can be read.

• We allow clocks that overlap, and that have arbitrary

mutual relationships.

• We allow arbitrary logic in clock networks.

Moreover, our analysis is not tied to standard k-phase clocking;

any arbitrary mix of different clocking schemes is allowed.

Our analysis proceed in several steps. In the first pass, we

apply an automatic analysis to find as many clock generation

networks as possible. This information is then analyzed to

compute a probable number of phases to extract. Given the

computed clock information and the number of phases to

abstract, we transform the original system model into a new

design whose correctness we can relate to the correctness of

the original system.

II. PRELIMINARIES

In the remainder of the presentation, we will assume that

the initial representation that we start with is the standard

implicitly clocked synchronous model that comes out of the

front-end of a model checking tool. We thus assume that

all the standard semantics-preserving transformations such

as inclusion of environment models, clock modeling, latch

modeling, resolution of combinational loops, and resolution of

multiply driven nets have been done. The resulting model uses

simple stateholding elements with a single input and a single

output, triggered by an implicit global clock—level sensitive

behavior has been remodeled using bypass/hold logic, and

clock drivers have been folded into the data lines. This model

is complete, in the sense that no extraneous logic is necessary

for determining the status of properties. We also assume that

we have been given a computed reset state 1,0, or X for all

state-holding elements in our model. Furthermore, as the focus

of this paper is on the checking of safety properties, we assume

(without loss of generality) that we are interested in checking

whether a particular output O of our design is stuck at one.

These assumptions all hold for the problem descriptions

generated internally in our commercial model checker (and

all other commercial model checkers that we are aware of),

so we do not believe them overly restrictive.

III. IDENTIFICATION OF INTERNAL CLOCK GENERATION

NETWORKS

As our representation of the design under analysis is a

complete model, all the different clocks that are used to control

the update of state elements are generated somewhere in the

netlist under analysis. Our first task is to find the places where

derived clocks are generated. We will do this by attempting

to locate places in the design where some bit pattern will be

repeated indefinitely.

In order to get phase abstraction to work well, the method

used to find derived clocks must fulfill two criteria: First

of all, it must be very fast so as not to slow down the

model construction. In order to achieve this, we will opt for

a conservative but fast heuristic (failing to identify a clock

in our framework may impact size of the abstracted model,

but cannot affect the correctness of our abstraction). Second,

the method must generate enough information to make our

analysis useful. In our experience, the following algorithm

represents a good tradeoff between these criteria.

Let us make some definitions. A signal is said to be clock-

like if it can be generated by repeating some boolean signal

pattern, a generator, over and over again. Generators are not

unique—the generators [1, 0]∗ and [1, 0, 1, 0]∗ both generate

the clock-like signal 1, 0, 1, 0 Every clock-like signal has

an associated minperiod, which is the length of its shortest

1074

generators. The focus of our clock identification strategy is to

find as many state elements as possible that are clock-like, and

compute their minperiod generators.

In order to keep computation time to a minimum, we use

three valued simulation to identify clock-like signals. Our

cycle identification algorithm proceeds as follows:

1) Visited = [ResetState], s = ResetState

2) s′ = SimX(s)
3) If s′ /∈ Visited then append s′ to Visited, assign s′ to

s, and goto 2. Otherwise partition Visited into a stem

and a cycle part by splitting the sequence just before the

previous copy of s′, and then terminate.

In the algorithm we make use of the function SimX()
that computes the three valued next state resulting from the

application of Xs to each input from the given state. We also

use a list Visited to maintain the states seen in the three

valued simulation run so far.

The cycle identification algorithm necessarily terminates, as

the number of possible simulation steps is bounded by 3|Regs|

if we have |Regs| state-holding elements. While this is a very

large theoretical bound, we terminate quickly in practice as

the injection of Xs on all inputs in each simulation step will

make most state bits go to X quickly.

What information can we glean from the generated stem

and cycle information? Since the algorithm terminates when

we have reached a new state Sm that is equal to some

previous state Sn we know that Sm+1 must be equal to

Sn+1 as Sm+1 = SimX(Sm) = SimX(Sn) = Sn+1. By

repeated application of the same reasoning, it is easy to see

that the infinite state sequence that would be generated by

iterated application of SimX to ResetState can be formed

by concatenating the stem with infinitely many copies of the

cycle.

(1,0,X,0), (0,1,X,1), (1,0,X,X),(0,1,X,X)

Stem Cycle

Fig. 2. Stem plus cycle example.

Consider the example in Figure 2. The system under analy-

sis has four state bits, and the initial state is the vector

(1, 0, X, 0). After transitioning through the state (0, 1, X, 1),
the system will oscillate indefinitely between (1, 0, X, X) and

(0, 1, X, X).
As the three valued simulation run is performed from

the real initial state of the system, and the inputs applied

for each state transition all are Xs, we know that all the

information on concrete values for state elements at particular

time instances has to hold in every concrete run of the system.

As a consequence, by inspecting the stem in Figure 2, we know

that the first state bit in the second state of a run of the system

must always be 0. Furthermore, by looking at the stem and

cycle, it is easy to see that the behavior of the first state bit

can be generated by [1, 0]∗, and that the second state bit can

be generated by [0, 1]∗. These state bits are thus clock-like.

Given a stem and cycle, we compute minperiod generators

as follows:

1) Candidates = Regs, RepeatLength = 1

2) Remove all state elements from Candidates that as-

sume the value X at some time point in the stem or

cycle.

3) If RepeatLength does not divide the length of the cycle

evenly, then RepeatLength = RepeatLength + 1,

goto 3.

4) For each Cand ∈ Candidates, check if the stem plus

cycle for Cand shows that Cand can be generated by

a RepeatLength generator. If so, assign Cand this

generator, and remove Cand from further consideration.

5) RepeatLength = RepeatLength + 1. If the new

RepeatLength is larger than the length of the cycle

of the trace, terminate. Otherwise goto 3.

Note that our generator analysis may detect other looping

system signals in addition to the clock signals. However, as all

signal information we are detecting is valid data, our possible

subsequent use of this free extra information can only increase

the strength of our analysis. If clock annotations have been

provided by the user, we add the corresponding generators to

the computed set before proceeding to the next step of our

analysis.

IV. PICKING THE NUMBER OF PHASES

Given a set of extracted clock-like signal generators such

as G = {R0 = [0]∗, R1 = [1, 0]∗, R5 = [0, 1, 1]∗, R7 =
[1, 0, 1]∗}, our task is now to chose a number of phases

NumPhases to abstract and then normalize the generators by

(1) removing generators that can not be unrolled one or more

times to form length NumPhases generators, and (2) expanding

the remaining generators to length NumPhases.

In order to maximize the number of utilizable genera-

tors, we use the heuristic of choosing NumPhases to be

the smallest number less than or equal to eight that max-

imizes the number of usable generators. We have found

that this heuristic often allows us to keep a large frac-

tion of the generators, while not forcing an excessive num-

ber of circuit unfoldings in the abstraction step. Analyz-

ing G, we see that the optimal NumPhases is six, which

leaves us with a normalized set of generators Gexp =
{R0 = [0, 0, 0, 0, 0, 0]∗, R1 = [1, 0, 1, 0, 1, 0]∗, R5 =
[0, 1, 1, 0, 1, 1]∗, R7 = [1, 0, 1, 1, 0, 1]∗}.

V. CONSTRUCTION OF THE ABSTRACTED DESIGN

By analyzing the original design D, we have extracted

a heuristically picked number of phases NumPhases and a

number of expanded generators Gexp . Our job is now to

compute a reduced design.

Assume that D has a single output O and inputs I1 . . . In.

We will create a new design D′ that takes NumPhases time

steps at a time. Each time step in this transformed design

covers all of the different phases in the old design, so we

1075

will need NumPhases outputs to track the status of O in each

phase.

O
1

R
0

I
1
… I

3

R
1

R
2

R
3

R
4

C

Fig. 3. Two phase rewriting example.

Consider the transformation of the design in Figure 3 for

NumPhases = 2. The combinational logic C that computes

the output O and next state values Si+1 from the inputs and

current state values Si will become a new block C′. This block

differs from C in that it computes the register values Si+2 two

steps into the future rather than one. Moreover, (1) the output

O in the original design will become two new outputs O0, and

O1 that track the value of O in phases zero and one, and (2)

there will possibly be more than one instance of each original

input.

We compute the new block as follows:

1) Cascade NumPhases copies of C.

2) For each generator for a state variable Sx, force the first

value in the generator word on time instance 0 of Sx,

the second on time instance 1 and so on.

3) Apply a fast logical minimizer to propagate the forced

logical values and rewrite the cascaded logic block to as

compact a representation as possible.

4) Trace back recursively from the output signals in the

resulting C′ to find the gates that are in the cone of

influence. Remove everything else.

The transformed design D′ can now be generated by

reconnecting the surviving current states inputs to the next

state outputs through state holding elements. The reset state

for the new design is the projection of the original reset state

to the registers left in the new design.

O
10

O
11

Phase 0 Phase 1

0

I
10
… I

30 I
11
… I

31

R
1

1

R
3

R
4

1

0

C C

Fig. 4. Applying generator constants.

As an example, the two-phase abstraction of the five register

circuit in Figure 3 will proceed as follow. Assume that our

previous analysis steps have determined that R0 = [0, 1]∗

and that R2 = [1, 0]∗. After unwinding the design for two

time steps, we apply the generator constants to the appropriate

points as shown in Figure 4.

Next, the fast boolean minimizer is applied, and the cone of

influence of the outputs is found. After having removed gates

that do not occur in the cone of influence, we are left with

the circuit in Figure 5. As can be seen, I10, I20, and I31 was

O
10

O
11

Phase 0 Phase 1

I
30 I

11

R
1

R
3

C
red

C
red

I
21

Fig. 5. Final result.

not in the cone of influence, nor was the current state input

for R4. As a consequence, the two-phase abstraction leaves us

with a design with only two registers compared to the original

five. Moreover, we have a total of three inputs: one phase zero

input instance, and two phase one instances.

It is easy to relate the correctness of a phase abstracted

design with the correctness of the original design:

Theorem 1: Assume that we have abstracted a design with

N phases. The single original output O is then stuck at one

precisely if O0 . . .ON−1 are stuck at one.

Proof: (Sketch). The only transformation we have done is

to unwind the circuit several times, to simplify away constants

that we can safely assume, and to perform a cone of influence

reduction.

Given that we find a length one or longer input stimuli

sequence PhaseAbsCe that drives the phase k output to zero

on a phase abstracted system with N phases, we can transform

it to a stimuli sequence on the original system by performing

the following steps:

1) RealCe = []
2) InpStimuli = head(PhaseAbsCe)
3) If length(PhaseAbsCe) = 1, then LastPhase = k else

LastPhase = N − 1
4) For each phase p between 0 and LastPhase in order.

a) Extract all input valuations belonging to phase p
inputs from InpStimuli.

b) Insert these input valuations into a new stimuli

entry CurrStimuli

c) Append CurrStimuli to RealCe

5) PhaseAbsCe = tail(PhaseAbsCe)
6) If PhaseAbsCe is empty, return RealCe, otherwise

goto 2.

As an example, assume we have generated the length two

counterexample

[[I30 = 1, I11 = 0, I21 = 0], [I30 = 0, I11 = 0, I21 = 0]]

1076

for the D′ corresponding to the abstraction in Figure 5.

Furthermore, assume that this counterexample demonstrates

that output O10 is not to stuck at one. The length three stimuli

sequence

[[I3 = 1], [I1 = 0, I2 = 0], [I3 = 0]]

will then drive O1 to the value zero.

VI. THEORETICAL RESULTS

The effectiveness of phase abstraction can be determined

by observing the reduction in the number of state variables,

and comparing that to the increase (if any) in the amount of

combinational gates and inputs.

A categorical answer for how effective our analysis will be

is not easy to give, as we are relying on a quick heuristic for

identifying clock networks, and a fast but incomplete logic

simplifier. The worst case for our analysis occurs when no

clock-like signals are found or the post-unrolling simplification

provide very little reduction. In this case, although the new

system has at most as many state-holding elements as the

original system, it will have about N times as many logical

gates, and N times as many inputs and outputs. Our hope

is that after abstraction, the reduction will have led to a

system that has a comparable (or fewer) number of gates

to the original system, a comparable number of inputs, and

significantly fewer state-holding elements.

Let us look what the ideal results are. Assume that we

are processing a strict N phase design, and that we perform

perfect identification of clocking networks and optimal logic

minimization. In this case all the state elements that are not

active in phase 0 will be removed. The reason for this is

that our new system is unfolded so that values are registered

every N th cycle. As the only state-holding elements that

are nontransparent at time 0, N, 2N, 3N . . . are the phase 0

elements, the remaining elements will not be in the cone of

influence of the outputs. Moreover, as inputs are only read in

the first phase of the design, the phase abstracted design will

have at most as many inputs as the original design.

VII. EXPERIMENTAL RESULTS

When we introduced our implementation of the algorithms

in Sections III, IV, and V as an extra model reduction step

in our property checking tool, we found that the resulting

abstraction was instrumental in solving a number of previously

unsolvable problems at customer sites. In this section we will

study the detailed results on some of these examples. Our

implementation of the fast minimization pass uses Binary

Expression Diagrams (BEDs) [4]. No setup, manual clock

identification, or changes to our standard model checking flow

has been done in our experiments. All the examples are from

different sources, so no assumptions have been made about

coding styles. In fact, before the algorithm was run, we had

no idea of whether or not there were latches or flip-flops in

the design, whether there were more than one internal clock

used, or how internal clock signals (if any) were related.

Design Phases Size before Size after
(Regs/Inps/Gates) (Regs/Inps/Gates)

D1 2 139/53/3.5k 80/53/3.3k
D2 1 928/37/12k 667/37/8.9k
D3 6 1063/49/8.3k 595/53/8.8k
D4 2 1764/383/38k 1287/342/28k
D5 2 20k/20k/847k 7k/7k/40k

TABLE I

PHASE ABSTRACTION RESULTS

A. Size reduction

Before applying the phase abstraction pass, we compact the

circuits as far as we can using all the model compression tech-

nology we have at our disposal. Our baseline representation

is thus as small as we can get it.

As can be seen in Table I, the size of the original designs

range from a little bit more than a hundred state-holding

elements to more than twenty thousand registers. Our overall

result is a 41% reduction in the number of registers on average.

The longest abstraction time is a few minutes or so.

Consider the case of design D1, which starts out with 139

registers, 53 inputs, and about 3500 gates. We detect two phase

clocking, and after abstraction the resulting system contains

only 80 registers. By performing our abstraction we have

hence arrived at a system that does twice as much work in each

time cycle, but that uses only 60% of the original registers. Our

abstracted system has as many inputs as the original system,

and contain slightly fewer gates.

Although Table I uniformly shows powerful reductions

in the number of state variables, we are not guaranteed to

decrease the gate count or number of inputs. In the cases of

D3, we see a slight increase both in the number of inputs and

the number of gates. However, this is a very small price to pay

for the significant decrease in the number of registers. That is

not to say that we can not decrease the gate count significantly

in some cases. In the case of D5 the number of gates decrease

by a factor of 20, and we remove two thirds of the registers.

It is interesting to observe that we can gain a lot by our

analysis, even when we do not detect clock-like signals with

periods greater than one. Consider the case of D2. Here we

get rid of 250 registers by sequentially propagating signals

we detect are stuck at some constant in the three valued

simulation. Note that extracting this information is nontrivial

using standard methods—none of our standard compression

tricks could detect these constants. This is not surprising, as

we have to study the circuit behavior over seven time instances

to prove that these signals are stuck.

B. Effect on later analyses

Previous work has already established that phase abstraction

can increase the verification capacity of model checking by

several orders of magnitude [2]. However, there has been very

little analysis of where this increase in capacity comes from.

In our flow, we see positive synergies with many different

engines.

1077

First of all, as previously discussed, localization reduc-

tion [5] followed by the use of BDDs to do fixpoints is highly

sensitive to the number of registers in the abstraction. If we are

removing close to 50% of the registers, it is clear that many

properties that are out of reach may become tractable. As an

example, D4 can be solved in ten minutes using localization

reduction after abstraction but does not terminate without it.

Note, though, that the positive effect of phase abstraction on

localization reduction need not only come from reducing the

number of state bits that have to appear in abstractions—

another dimension is the reduction in choices for refinement

candidates. If a successful localization on a phase abstracted

system with N phases requires k registers, a localization on

the original design is likely to require on the order of N ∗ k
correctly made choices. The abstraction has thus dramatically

reduced the number of erroneous guesses possible.

Second, reducing the amount of redundancy in the de-

sign have positive effects on many analyses such as induc-

tion [6] and interpolation based model checking [7] that

prove properties without localization. To capitalize on this,

many approaches for making induction more powerful, such

as van Eijk’s algorithm [8] or the REVERSE approach to

verification of retimed designs [9], strengthen the property

under analysis with invariants about the design. Our analysis

can be viewed as the detection of cyclical signal invariants

which are incorporated directly into the model rather than as

a property strengthening. Moreover, the detection of sequential

constants in itself sometimes prove certain properties.

Third, even in the case of bughunting using Bounded

Model Checking (BMC) [10], the use of phase abstraction

is beneficial. This may not be obvious, as the number of state

variables in a given system is not as much of a bottleneck for

SAT as in the case of BDD-based analyses. However, consider

the fact that in a successfully abstracted N phase system, a

comparable amount of logic is used to cover multiple time

steps in the old system. As a result, the same amount of

search space can often be covered in much smaller time. As an

example, in the case of D3 only 362 cycles of bounded proof

can be done overnight for the original system, compared to

432 cycles for the abstracted version.

Fourth, there are also good synergies possible with other

transformations such as retiming [11]. Although design D1

is very small, all the 139 registers are necessary for a proof

so it is far from trivial to solve. Retiming interleaved with

combinational rewriting (as described in [12]) before phase

abstraction can not get rid of more than a few registers, due

to loops in the design locking in registers. After abstraction,

retiming can reduce the design to a 33 register machine that

can be solved by BDD fixpoints in a few seconds.

VIII. EXTENSIONS

A prime difference between our algorithm in the previous

sections, and the algorithms presented in [2] and [3], is that

Baumgartner’s method for processing an MDL can remove

latches from any phase. In the presentation in Section V, we

always keep the phase 0 latches, but we are in reality not

restricted to this choice: In Section V we compute a system

that transition from phase 0 in one clock sequence to phase 0

in the next clock sequence. By rotating the generators so that

we compute a system that instead transitions from phase i to

phase i for some i ∈ {1..N−1}, a different set of registers will

be non-transparent at the snapshot time. Note, though, that if

we choose i 6= 0, we have to perform a little bit of extra work.

First of all, to preserve soundness we have to check the status

of O in the first i − 1 time instances for the original system

separately. Second, as our system now starts in a phase i > 0,

we have to compute a symbolic initial state that encodes all

the possible values for these registers at time i in the original

design.

Phase abstraction with a different base phase than zero has

the potential to improve results significantly. However, in many

cases the size of the result does not vary very much based on

which phase we decide to keep—for D3 the number of final

state elements varies with less than 10 registers.

IX. RELATED WORK

As we have demonstrated, phase abstraction is a very pow-

erful technique. However, it has not been studied extensibly

in the literature, probably due to the previous reliance on

strict design styles. The first work we are aware of is that of

Hasteer et al. on the use of phase abstraction during sequential

hardware equivalence checking [1]. Baumgartner and cowork-

ers’ papers extends Hasteer’s work to the domain of general

property checking and adds some additional refinements ([2],

[3]). As outlined in Section I, the principal advantages of our

approach over the previously proposed methods is that our

algorithm

• does not rely on any knowledge of design styles

• is completely general in terms of the structure of designs

that can be abstracted, and the permitted clocking styles

• does not rely on weak syntactic analyses

• provides an automatic way to identify clocks and their re-

lationships but is not restricted to only use automatically

generated information

• can detect non-clock signals who can be used to further

simplify the design

In a later paper Baumgartner and coworkers considers the

abstraction of what they call C-slow designs—designs which

can be thought of as c copies of a basic design running on

independent problems at the same time ([11], [13]). Formally,

C-slow netlists are netlists comprised only of simple flip-flops

(FFs) and gates, whose gates and state holding elements can

be colored using some number c colors in such a way that

1) Each FF is assigned some color.

2) All FFs which have FFs of color i in their support have

color (i + 1) mod c.

3) All gates which have FFs of color i in their support have

color i.

Here, simple FFs are flip flops clocked by a single master clock

without clock gating. Note that the above definition allows

inputs to be read by more than one type of FF. The result of

1078

C-slow abstraction is a netlist that only maintains FFs of some

particular color.

At a first glance, C-slow reduction might seem like a

generalization of Baumgartner’s strict dual phase abstraction

algorithm to N phases with an added relaxation on how

inputs can be read. However, as discussed in [13] it is

not: C-slow reduction abstracts a design that is processing c
independent problems concurrently, whereas phase abstraction

transforms a netlist that is processing a single piece of data

over c clock cycles. The two analyses are thus completely

orthogonal. In fact, if a design contains multiple clocks or

clock gating, phase abstraction is a necessary precondition to

C-slow reduction. Moreover, note that our extensions to phase

abstraction are necessary to allow C-slow reduction of designs

with clock gating—Baumgartner’s phase abstraction algorithm

cannot deal with such circuits.

In [14], Albrecht and Hu presents a theory for reasoning

about register transformations in the presence of multiple

clock domains. Strict phase abstraction is one of a number

of particular transformation rules that can be derived in this

theory. Since our phase abstraction algorithm can not be

stated as a simple register removal rule, our approach can

not be viewed as a single similar derived rule. However, the

individual rewrite steps that are performed during our analysis

can be viewed as particular transformations in this theory.

X. FUTURE WORK

Baumgartner’s phase abstraction algorithm separates a de-

sign into MDLs, and each MDL is abstracted individually.

Partly, this is by necessity as only regions that match a very

specific design style can be processed. However, there are

some advantages to partitioning in general. Notably, Baum-

gartner’s algorithm gets to make the choice of removing φ1

or φ2 latches individually for each MDL. In contrast, our

algorithm requires a global choice even if a design can be

partitioned into multiple regions. While we have not seen

much benefit from choosing other base phases than zero for

abstraction, we are still interested in exploring ways to separate

a design into non-MDL regions, abstract each region individ-

ually, and stitching together the results into a design whose

size is smaller than the abstraction of the whole machine.

XI. CONCLUSIONS

In this paper, we have extended the previous state of

the art for phase abstraction as represented by Baumgartner

and coworkers work in [2] and [3] significantly. While the

original treatise on phase abstraction for model checking

showed that phase abstraction worked well in the context of a

design style mandated within IBM, and multiphase clocking

is used throughout the semiconductor industry, we are not

aware of any mainstream adoption in formal verification tools.

Our approach attempts to rectify this situation by extending

Baumgartner and coworkers’ work so that (1) the analysis

becomes completely automatic, (2) we avoid the reliance

on specific design styles, and (3) we bypass the syntactic

approach to classifying the type of different state elements.

Unlike the standard method, our algorithm can be integrated

into any model checker in any flow. Moreover, our analysis

is trivially correct as we are just performing a time transform

of the system under analysis and simplifying away sequential

constants.

Essentially our contribution is twofold: First of all, we have

extended the set of designs amenable to phase abstraction

significantly. Second, we have shown how to automate the

analysis further by detecting clocks without user intervention.

Note that while our clock identification strategy is not guaran-

teed to detect all clocks, our experimental results shows that

our approach is powerful enough to detect a sufficient number

of clocks to drastically reduce the complexity of testcases

from a wide variety of customers. Moreover, if a user is

unsatisfied with the automatic results and wants to manually

identify clocks, we have not precluded this in any part of this

presentation.

We hope that our work will make phase abstraction become

a staple reduction for model checkers.

REFERENCES

[1] G. Hasteer, A. Mathur, and P. Bannerjee, “A framework for equivalence
checking of multi-phase FSMs,” in Proc. High Level Design Validation

and Test Symp., 1997.
[2] J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz, “Model check-

ing the IBM gigahertz processor: An abstraction algorithm for high-
performance netlists,” in Proc. 11th Int. Conf. on Computer Aided

Verification, 1999.
[3] ——, “An abstraction algorithm for the verification of level-sensitive

latch-based netlists,” Formal Methods in System Design, vol. 23, pp.
39–65, 2003.

[4] H. R. Andersen and H. Huulgaard, “Boolean expression diagrams,” in
Proc. 12th IEEE Symp. on Logic in Computer Science, 1997.

[5] R. Kurshan, Computer Aided Verification of Coordinating Processes.
Princeton University Press, 1994.

[6] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties
using induction and a SAT-solver,” in Proc. FMCAD ’00, 2th Int. Conf.

on Formal Methods in Computer-Aided Design. Lecture Notes in
Computer Science, 2000.

[7] K. McMillan, “Interpolation and SAT-based model checking,” in Proc.

15th Int. Conf. on Computer Aided Verification. Lecture Notes in
Computer Science, 2003.

[8] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Proc. FMCAD ’00, 2th Int. Conf. on Formal Methods in

Computer-Aided Design. Lecture Notes in Computer Science, 2000.
[9] M. Mneimneh and K. Sakallah, “REVERSE: Efficient sequential verifi-

cation for retiming,” in Proc. Int. Workshop on Logic Synthesis, 2003.
[10] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic

model checking using SAT procedures instead of BDDs,” in Proc. 37th

Design Automation Conference, 1999.
[11] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorith-

mica, vol. 6, pp. 5–35, 1991.
[12] J. Baumgartner and A. Kuehlmann, “Min-area retiming on flexible cir-

cuit structures,” in Proc. 13th Int. Conf. on Computer Aided Verification.
Lecture Notes in Computer Science, 2001.

[13] J. Baumgartner, A. Tripp, A. Aziz, V. Singhal, and F. Andersen, “An
abstraction algorithm for the verification of generalized C-slow designs,”
in Proc. 12th Int. Conf. on Computer Aided Verification. Lecture Notes
in Computer Science, 2000.

[14] A. Albright and A. Hu, “Register transformations with multiple clock
domains,” in Proc. Correct Hardware Design and Verification Meth-

ods, 11th IFIP WG 10.5 Advanced Research Working ConferenceProc.

Lecture Notes in Computer Science, 2000.

1079

