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Abstract— Typical nonlinear model order reduction ap-
proaches need to address two issues: reducing the order of
the model, and approximating the vector field. In this paper
we focus exclusively on the second issue, and present results
characterizing the repercussions at the system level of vector field
approximations. The error assessment problem is formulated
as the L2 gain upper bounding problem of a scaled feedback
interconnection. Applying the small gain theorem in the proposed
setup, we prove that the L2 gain of the error system is upper
bounded by the L2 gain of the vector field approximation
error, provided it is small. In addition, the paper also presents
a numerical procedure, based on the IQC/LMI approach, to
perform the error estimation task with less conservatism. A
numerical example is given in this paper to demonstrate the
practical implications of the presented results.

I. INTRODUCTION

A growing number of results can be found in the literature
addressing the problem of nonlinear model order reduction.
For example, [1]-[6] employ Volterra series and moment
matching techniques to solve the “weakly nonlinear” model
order reduction problem. Another class of methods based on
piecewise approximations address strongly nonlinear prob-
lems [7]-[13]. Most of such methods can be viewed as a
two steps procedure: first some projection is performed, and
then (optionally) the reduced nonlinear vector field is further
approximated to facilitate simulation of the reduced model.
However, to the best of our knowledge, there has been no
published result on the approximation quality of the second
step above. This paper presents an effort in this direction for
some specific dynamical system settings. Specifically, consider
the following system:

(1)
yt) =

where A € R9%4, Bc R?7*!, C ¢ R1*7 and ®: RY +— RY is a
general “reduced” vector field. For example, ®(-) = V'®/(V-)
for some projection matrix V € R"*9 (e.g. see [14]) and @ :
R" +— R" is the original (full order i.e., n >> ¢) nonlinear vector
field. As mentioned before, when the reduced nonlinear vector
field @ is replaced by an approximation @, the system (1)
becomes

Ax(t) — D (x(¢)) + Bu(t)
Cx(r)
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Ax(t) — @ (x(t)) + Bu(t)
Cx(1).

x() =
yr) =

The objective of this paper is to relate the error between
nonlinear functions ® and ®, to the error between systems (1)
and (2), in the sense of the worst case system output difference
when both systems are subjected to the same input.

)

A. A motivating application

This subsection presents a specific (but more restrictive)
application to illustrate why an approximation such as (2) is
useful, and why it would be interesting to provide a bound for
the induced system error. Consider the more specific setup

i) = Ax(t)—V'®s(Vx(t))+Bu(r) 3
W) = Cx(o) )
where A € RI¥4, V € R™4, B € R, C e R,
(I)f . Rn — Rn .
Qr(v)=1[ 0r(v1) 0r(n) o) ]

where ¢ : R +— R is any nonlinear function. Note that system
(3) has repeated nonlinearities, and it can model for instance
any circuit with repeated nonlinear elements, such as the diode
transmission line to be discussed in Section VI. Furthermore,
the method in this example can be modified by appending
the nonlinear function ®; with different nonlinearities, at the
expense of a more complicated derivation and computation.
However, it should be emphasized that the mentioned restric-
tion in system (3) pertains only to this example, and not to
the main result of this paper.

System (3) can be considered as the result of applying
for instance a congruence transformation on a model of
order n using projection matrix V, where n and ¢ are the
orders of the full and reduced models respectively, n > g. A
common complaint about the applicability of such a model
is that when using the model in simulation, the nonlinear
function ¢ must be evaluated n times for every reduced vector
field evaluation. Therefore finding an approximation function
g :R?7— Y, such that g(w) ~ V'®(Vw), Yw € R?, with an
evaluation cost much cheaper than O(n), would be of great
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interest for most nonlinear model order reduction techniques.
A few results can be found about this topic. For example, [15]
investigated the possibility of using Kernel methods for such
a construction, while [16], [17] proposed methods based on
polynomial (Taylor series) approximation of V/® (V).

However, when considering the special case (3), it would
be much more convenient to find an approximation to the
scalar nonlinear function ¢, instead of the entire vector field.
For example, if ¢ is approximated by a scalar polynomial of
degree d,

%@%@@—éﬂﬁ )
and accordingly
or (v1)
a0~y = | )
8 ()

then the corresponding vector field approximation is a g-
variate polynomial of degree d

V'@ (Vx) = V'dp(Vx) = ZCB)CB, (6)
B

where B € Z9,8 = (B1,B2,....By), 2B < d, cg € R? and xP
J
is shorthand for Hx?j . The approximated system becomes
J

Ax(t) = V'®; (Vx(t)) + Bu(t)
Cx(1)

X(r) =

y(e) =

The above polynomial approximation scheme has the fol-
lowing benefits:

)

1) Approximating a scalar nonlinear function ¢y is much
easier than approximating the vector-valued nonlinear
function V'@ (V).

2) It can be verified that the coefficient vectors cg can be
computed efficiently.

3) The Jacobian of the approximated vector field is

(dor  ddy
A-V'd i A i | 74
If A is symmetric and Hurwitz, the Jacobian can be
constrained to be Hurwitz simply by constraining the

®)

univariate polynomial %f to be nonnegative, which is
true if and only if it is a sum of squares of polynomials,
and this condition can in turn be efficiently enforced
using linear matrix inequalities (LMI) [18].

However, there are two issues that are worth considering:

o Estimating and controlling the cost of evaluating the
polynomial approximated vector field.

« Providing precise statements about the accuracy of the
approximation quality in terms of quantifiable system
measures such as the L2 gain of the difference of systems
(3) and (7).

The answer to the first question depends on the specific
application. The computation cost for evaluating nonlinear
vector field V'®¢(V-) is O <q< q;'l—d
is independent of n, and since typically n > max{q,d},
computation efficiency is greatlS improved. However, as also

. Since such cost

q+d
d
number even for not excessively large g and d. Measures

should be taken to control computational complexity, but this
will not be discussed here, as it is not the main focus of this
paper.

Instead, this paper presents results that address the second
issue: providing statements about the accuracy of the approxi-
mation. In particular, under the assumptions that system (3) has
finite incremental L2 gain from u to y, and stability, it will be
shown that the L2 gain from input u to the difference of output
y of systems (3) and (7) is bounded by a linear function of
the L2 gain of the difference of the scalar nonlinear functions
0f() — (), if the difference is small enough. It should be
emphasized that the result is true regardless of whether (T)f
is polynomial or not. In addition, the paper also presents a
framework for numerically calculating an a priori (i.e. before
simulation) error bound of the L2 gain of the difference
system, again based on the L2 gain of ¢7(-) — (). Finally,
it should be noted that the results of this paper are valid for a
more general framework (1) than discussed in this motivating
application subsection. Namely, the system error is presented
in terms of (1) and (2), and the vector field approximation
error is between ® and .

pointed out in [15], is admittedly still a large

B. The organization of the paper

The rest of the paper is organized as follows: Section
II summarizes background results. In Section III the small
gain theorem, the main theoretical apparatus in the paper, is
employed, and a framework is proposed to broaden its use
for the specific problem considered. Section IV presents the
main theoretical contribution: under some assumptions, the
L2 gain of the error system is upper bounded by the L2
gain of ®(-) — ®(-) with a positive multiplicative constant.
Section V applies again the small gain theorem, and proposes
a numerical procedure for computing an upper bound of the
L2 gain of the error system (tighter than the theoretical bound
in Section IV) based on the L2 gain of ®(-) — ®(-). In Section
V, the numerical procedure from Section V is applied to
some nonlinear system model reduction problem to validate
the statements.

II. BACKGROUND

A. L2 gain of a memoryless nonlinearity

Let u € R" and y € R” be the input and output to a
memoryless nonlinearity F. That is y = F(u). The L2 gain
Yr > 0 of a memoryless nonlinearity F is defined as

0
u7#0 ‘I/l|

©)
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Fig. 1. Feedback interconnection of a nominal plant G and disturbance A.

B. L2 gain of a dynamical system
Let u: Ry — R™ and y: Ry — R? denote the input and
output of a dynamical system. The L2 gain Y > 0 of a system
is defined as
T
y= inf r: / (Plu(r)P = [y(x)2) dt > —eo.
0

r>0,7>0

(10)

for all valid input/output pairs (u,y). For the rest of the paper,
unless noted otherwise, L2 gain related integrals inequalities
are assumed to hold for a/l valid input/output pairs. Also, for
ease of notion, the upper limit of L2 gain related integral such
as (10) will be shorthanded by oo, even though what we
really mean with such notation is the infimum with respect to
T as in (10).

Intuitively, finiteness of the L2 gain of a system means
that the output energy is no more than a constant times the
input energy, and hence the L2 gain can serve as a notion for
stability. In addition, if the L2 gain is small, then the system
can be considered “small”, in the sense that it needs a very
strong input to excite any non-negligible output. In particular,
it is desirable that an error system has very small L2 gain.

C. Incremental L2 gain of a system

Let (u,y) be any input/output pair of a system. Then the
system has a finite incremental L2 gain if 3y>0:

[0 (100 e @P) ~ (i)~ r2(0F) e 20, a1y

for every (u1,y1) and (up,y>) satisfying

/Ow\ul(‘c)fuz(‘c)|2d‘t<oo.

Incremental L2 gain of a system can be used to quantify
the sensitivity of the output to a perturbation in the input.
In particular, having a finite incremental L2 gain means that
distinct inputs will produce distinct outputs.

12)

D. Small gain theorem

The small gain theorem is a collection of statements bound-
ing the L2 gain of the feedback interconnection of a nominal
model G and a disturbance A, using the L2 gains of the
individual constituents. See for example [19], for a more
detailed account of these statements. The statement relevant
to the discussion of the paper is the following.

Theorem 2.1: Consider the feedback connection in Fig-
ure 1. Let Y be the L2 gain of G (from [w;u] to [y;e]), and
Ya be the L2 gain of A (from y to w). If Ygya < 1 then the L2

gain of the feedback connection (from u to e) is less than or
equal to Yg.

See, for example [19], for a proof. The small gain theorem
is the fundamental tool upon which the main results of the
paper are based. The discussion of how to apply the theorem
in the context of the paper will be presented in Section III.

III. APPLICATION OF THE SMALL GAIN THEOREM

This section first setups the L2 gain error bound problem
as the L2 gain upper bounding problem of the difference
system. The difference system is formulated as a feedback
connection between a “nominal” plant that does not contain
any approximation vector field, and the “disturbance” part
consisting of the error of the vector fields. Then the first
contribution of the paper is presented: a scaling parameter
is introduced in the feedback loop to allow a more general
use of the small gain theorem. Finally the ramification of the
reformulations will be discussed.

A. Feedback interconnection of the difference system

One way to characterize the error between systems (1) and
(2) is to upper bound the L2 gain of the difference system
(from u to e)

X] = Ax;+®(x;)+Bu
Xy = Axa+®(xp)+ Bu (13)
e = Cx1—x).
System (13) can equivalently be written as
X1 = Ax;+®(x;)+Bu
X2 = Axx+®(x2)+Butw
e = C(x1—x) (14)
y = x
wo= D(y)—d(y).

It can be seen that system (14) fits in the small gain theorem
framework in Figure 1. In particular, system G in the figure
corresponds to the part of system (14) with input/output [w; u]
and [y;e] and the disturbance in the figure being A(y) =
®(y) — @(y). Unfortunately the small gain theorem cannot be
readily applied because the assumption ygya < 1 might not be
satisfied. More importantly, even if the assumption Ygya < 1 is
satisfied, the L2 gain upper bound y of the feedback connection
(14) is lower bounded by g, which is independent of yA. In
reality, it would be desirable if limy, oY= 0, since the L2 gain
of the difference of two identical systems should be zero. This
latter difficulty can be resolved through the use of a scaling
parameter discussed in the next subsection.

B. Small gain theorem applied to a scaled feedback

Consider Figure 2, which is equivalent to Figure 1. For the
rest of the paper a is assumed to be nonnegative. System G,
in the figure has the form

X1 = Ax1+®(x;)+Bu
X2 = Ax+®(x2)+Bu+/aw (15)
e = Cxj—x)

= \/EXQ.
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Fig. 2. Feedback interconnection of a nominal plant G and disturbance A with
self-cancelling parameter /a and ﬁ G, is the original plant parameterized
by the scalar a.

The statement of the small gain theorem becomes the fol-
lowing. Let g, be the L2 gain of system (15) (from [u;w]
to [e;y]). If % < 1, then the L2 gain of the feedback
interconnection (14), from u to e, is Y < Yg,.

As will be shown in Section IV, under some assumptions,

Je¢>0:95, <cva, Va<l, (16)

On the other hand, yg, increases with a since if g, is the
infimum:

[ @ (WP + (@) ~ (@) +e(D)P)) > ==

then Vr € (0,1),

I <v%; (M - u(r>|2> — (PhP+ e<r>|2>) dT> —e=,

which means that Y, > YG, whenever a > @ and this in turn
shows that yg, increases with a. The nonlinear functional
dependency of Y, on a has the following ramifications:

o If a > 1, then inequality (16) does not hold, hence in this
case unfortunately the theory proposed does not guarantee
the application of the small gain theorem.

o If a <1, inequality (16) holds, it would be desirable (as
guided by the small gain theorem) that a be as small as
possible for the purpose of obtaining the tightest upper
bound for the L2 gain of the error system. However,
since it can only be established that Y, < cv/a (in fact,
it is reasonable that lelin Y% = o), the upper bound C\/Y%
goes to infinity as a — 0. Therefore it cannot be certified
whether % < 1 holds, and the small gain theorem fails
to apply. Therefore, the minimum error system L2 gain

upper bound that can be asserted is

YGo YA

Yo, :a= info: <1 17)

o>0
In other words, there is a tradeoff between making a small
to get tighter L2 gain upper bound, and making a large
enough so that small gain theorem still applies.
e« When a =0, system G, in (15) has zero L2 gain as it is
the difference of two identical systems. Additionally, in
the extreme case where Yo =0 (or ® = @), the infimum

o in (17) is 0. Hence the upper bound for the L2 gain of
the error system is as expected zero.
The arguments given in this section can be summarized to
formulate the main theorem in the next section.

IV. A THEORETICAL LINEAR ERROR BOUND IN THE LIMIT

This section presents the paper’s main contribution: a re-
lation between the L2 gain of the error in nonlinear vector
field approximation, and the L2 gain of the error system. The
development of the result can be divided into two parts: first,
under some assumptions, the inequality

HCZO:YGagc\/E, Va<l1 (18)

will be proved. Then the main theorem is given as a direct
consequence of (18).

A. A preliminary lemma

To prove the first part, consider the system with input g and
output z

Ax+®@(x)+ g
Cx,

X

D (19)

where the matrices and functions are as defined in (13), except
for the arbitrary function g. Define

Y1 as the incremental L2 gain of (19) from g to z,
Y2 as L2 gain of (19) from [u;w] to x when g = Bu+w,
(20)
Lemma 4.1: Let y; and v, be the quantities defined in (20).
Denote Y, as the L2 gain of system G, (15), from [u;w] to
[e;y].
If y1 < oo and Y, < oo, then

Y6, < V2amax{y;,1»}, Vace [0,1] 21)

Proof: First let
g1 = BZZ,
g :=Bi+Ww

be two inputs to system (19) and z; and z; be the correspond-
ing outputs. y; < oo implies that for the system

X1 = Ax —l—q)(xl)—l—Bl:i
Xy = Axp+®(x)+Bi+w
¢ = Cxi—x)

the following integral inequality holds
/ (vi|Bii — Bii —w|* — [¢*) dt > —oo,
0

which implies, Va > 0,

| (mﬁ <|zz2+ éw) - |5|2> dt> —oo,
/0‘” (avt (|u]* + |w|?) = |e*) dT > —oo,

when u =i, w= ﬁw, and e = é. That shows that the system

or
(22)

X1 = Ax1+®(x;)+Bu
X, = Axa+®(x2)+Bu+/aw
e = C(xi—x)
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has L2 gain from [u;w] to e less than or equal to v/ay;. This
means that system G, (15) has L2 gain from [u;w] to e is less
than or equal to /ay;.

Secondly, for system (19), let g = Bii +Ww. Then 72 < oo
implies in the following system

X1 = Axg +®(X1) + Bii
X2 = Axn+®(x2)+Bi+w
y = x

the following inequality holds
| CB (aR +13) =[5 dr > =

which implies, Va € (0,1],

Aw<m60m2+éwﬁ>—ﬂﬂﬁdr>—w, (23)

Note that the fact that % > 1 for a <1 was indeed used. Rewrite
the signals in (23) in terms of the signals in (15). That is,
u=1ia, w= ﬁw and y = /ay. This results in the following
inequality:

| (@B (P ) = ) dr > =,

which means that the L2 gain of system G, in (15) from [u;w]
to y has L2 gain less than or equal to /ay,.

(22) together with (24) implies that, in terms of the quanti-
ties associated with G, in (15), the following integral

| Catmax (n. )2 (P +)P) = (b +1eP)) de (25

is bounded from below for all input/output pair of G, and this
proves (21) Va € (0, 1]. For the case of a =0, y; < e implies
YG.la=0 =0, so (21) also holds in this case.

(24

Q.ED.

B. The main result
Using Lemma 4.1, the main result is now presented.

Theorem 4.1: Lety; and ¥, be the quantities defined in (20).
Also let Y, be the L2 gain of ® — ® in (14). That is,

s P =00
v#0 ‘v|

Denote y as the L2 gain from u to e in system (13).
If y1 < o0, Y2 < oo and v2max{y;,y>}ya < 1, then

Y < 2(max{y1,72})" 7a. (26)
Proof: If yo = 0, then by the finiteness of y;, Y= 0 and hence
(26) holds. Now consider the case when yx > 0, the small gain
theorem states that

Y<%YG,, Va: %gl.

Therefore,

vy< min 227)

YGa YA
a.Tgl

YGa :

Denote ¢ := \/fmax{yl,yz}. Since y; < e and Y2 < o by
statement assumption, Lemma 4.1 states that Va € (0, 1],

Y6, < cv/a and hence Y64 VA
a

< Va
Since ¢ya < 1 by statement assumption, the set [cYa,1] # 0.
Jda € [cya, 1]

(ea)* <a<1

and hence §
1> YA > YGaYA'
Va a
Therefore,
y< min Y, < min cya = c*ya.
a:%<l a>c? A

Q.ED.

Intuitively, Theorem 4.1 asserts that if ya, the L2 gain of
the difference ® — ® (and also ¢ — ) is sufficiently small,
then the approximation quality in terms of the L2 gain of
the error system (13 is also small. In particular, it provides a
guideline for designing the approximation system (2). It states
that searching for a  that is close to ¢ in L2 gain sense, should
be a reasonable choice, as opposed to other methods such as
Taylor Series, for which the accuracy has not been rigorously
established. In addition, the linear error bound (27) can be
used to guide the design of the vector field approximation in
the following sense:

« Pick a desired system error €.

o Choose any available vector field approximation tech-
nique (not discussed in this paper).

« Obtain an approximated reduced system; compute the
vector field L2 gain error, and the error system L2 gain,
denoted as €x and €; respectively.

o If £ < & then the desired approximated reduced system
has already been obtained. Otherwise, obtain a better ap-
proximated system (e.g. by increasing polynomial order)
so that the new vector field L2 gain error is less than
%l‘c’, then under the assumptions of Theorem 4.1, the
new reduced model will satisfy the desired system error
tolerance.

However, it should also be noted that Theorem 4.1 is
somewhat conservative in the sense that (26) is not universally
true for all ya. Therefore, it would be interesting to see if there
exists a less restrictive statement or a numerical procedure to
compute a tighter bound. The result in the next section is an
attempt to do so.

V. A NUMERICAL ERROR BOUND WITH IQC

This section presents a numerical result for the following
problem: given a system in the form of (1) and given any
approximation @ for the nonlinear vector field, find an upper
bound 7y for the L2 gain of the difference system (13). This
problem can partially be addressed by Theorem 4.1 in Section
IV, provided that the coefficient in (26) can be estimated. How-
ever, the linear error bound obtained there can be conservative

883



because of the use of inequality (21). Therefore, a numerical
result that can potentially provide a tighter upper bound is of
interest.

The numerical procedure proposed in this section is also
based on the application of the small gain theorem described
in Subsection III-B. The idea is straightforward: instead of
using inequality (21), we try to find a tighter upper bound
for the L2 gain of G, (15) using an IQC analysis procedure
(35) to be discussed. The rest of this section is organized as
follows: first the standard IQC analysis procedure is reviewed
in Subsection V-A. Then the proposed numerical procedure is
described in Subsection V-B.

A. Nonlinear system L2 gain upper bounding using integral
quadratic constraints (IQC)

It should be noted that the materials in this subsection are
standard. However, they have been modified as appropriate for
the problem in the paper, and they are presented here in this
subsection, instead of Section II, in order to maintain the flow
of the paper.

Consider the system in (1). If 3y > 0 and a continuously
differentiable function W : R? — R : W (x) > 0,Vx € R? and
the following inequality holds

Plu = y> = (VW) >0, V(xu) €RIXR,
then VT >0

[ PP P ez W () W (x0) > =, €9

and therefore v is an upper bound for the L2 gain of system (1)
and W is a certificate for proving the L2 gain upper bound. A
class of nonnegative functions W (x) that is particularly useful
is the quadratic function W(x) = x’Px for some symmetric
positive semidefinite matrix P € R9*9. Quadratic certificate
is interesting because the search of matrix P > 0 can be
performed (in principle) efficiently through the use of LMI
optimization. That is, if W(x) = x’Px then (28) becomes

(28)

Ylul* —|Cx|* —2x'P (Ax— V'w+ Bu) >0, (30)

required to be true V(x,u) € R xR and w = ®(Vx). For
a general nonlinear vector field ®, showing the existence of
P >0 and v that satisfy inequality (30) is difficult. However,
the technique of integral quadratic constraints [20] can be em-
ployed here: first we introduce a quadratic functional G(x,w)

that satisfies the following property
X .
}{ }20 ifw=®d(Vx),
w

"Tsy =
con=[ 1] 5 3
(31)

%)
then we remove the constraint w = ®(Vx) in (30) and solve
instead the following:

Plul* —|Cx > —2x'P (Ax —V'w+ Bu) —o(x,w) >0, Vx,w,u

(32)
Note that if y and P satisfy (32) then they automatically
satisfy (30) by the definition of ¢ (31). But the converse is
not necessarily true, therefore searching for y and P through

(32) results in fewer options. However, (32) has the advantage
that it is equivalent to the following LMI feasibility problem
(with respect to P and r := %)

—C'C—PA—-A'P-%,, PV'-05%, -PB
VP — 0.52/12 —2n 0 > 0.
-B'P 0 rl
(33)
More generally, if there exist more quadratic functionals
G1,02,... such that

w=®(Vx) = ci(x,w) >0, Vi,
then optimizing the LMI problem (with decision variables
Pr,1;i > 0)

Vlu|? — |Cx|? — 2x'P (Ax — V'w+ Bu) — ¥, 1,0:(x,w) > 0,
Vx,w,u
(34)
would result in a less conservative search than (32) because if
(r, P) satisfy (32) then they also satisfy (34), simply by picking
T; = 0,j > 2. However, the converse is not necessarily true.
Note also that (34) is more restrictive than (30) for the same
reason mentioned in the case of a single G.
In summary, in order to find an upper bound of the L2 gain
of a system of the form (1). The following procedure can be
used: first collect characterizations of the nonlinearity @ in the

form of IQCs 61,02,..., then setup and solve the following
LMI o
minimize r
rP1;>0
subject to LMI (34) (35)
r>0
P=P >0.

Note that the L2 gain upper bound provided by such a
procedure can be strictly greater than the true L2 gain because
the class of certificates is restricted to quadratic (which is gen-
erally not rich enough except for the LTI case). Furthermore,
inequalities such as (34) do not allow all the options (in terms
of r and P) that satisfy (30). Nevertheless, this is a practical
method for nonlinear system L2 gain upper bounding because
of its tractability.

B. The numerical procedure

Our proposed numerical procedure is as follows.

« For a discrete set of {aj,as,...} (e.g. ax := 107%), use
IQC analysis to find v, 72, . .. as the L2 gain upper bounds
for the parameterized systems G, ,Ga,,. ..

« For any approximation vector field ®, evaluate the L2
gain of ® — ®. Denote it as 5. Find the index i such that

i = argminay : ¥¥a <1
k ak
o v; is returned as the upper bound of the L2 gain of the
difference system (13).
Since the order of system G, (15) is 2q and ¢ is assumed to
be small, solving the LMIs to obtain L2 gain upper bounds 7k
for all ay is relatively cheap. Once the L2 gain upper bounds
Y1,7Y2,- .- have been found, the numerical procedure requires a
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Fig. 3.

trivial amount of time to analyse the system L2 gain error for
all @ such that Ya is small enough. As a final note, it should
be pointed out that since the numerical procedure is based on
the small gain theorem, it is possible that when A is large,
the procedure fails to return any conclusive result.

VI. NUMERICAL EXPERIMENT

In this section the numerical procedure described in Section
V is applied to analyze the L2 gain of the error system due to
approximation of the nonlinear vector field. The specific appli-
cation example is a transmission line with diodes described in
[14] and shown in Figure 3. Using nodal analysis, the model
of the diode line has the form

X = Agxy —M/q)(MXf) +Bfu
yro = Crxp,
with
Af c RNXN,ME RNXN,Bf c RNXI,Cf c RlxN7
@(v) =diag(0(v1),0(v2),...) and ¢(v) =e k-1,
with M being a sparse matrix relating branch voltages to node
voltages. Suppose there exists a projection matrix V € RV*4

(e.g. dominant singular vectors of some matrix stacked by
columns of trajectories), then the “reduced” model is

X = Ax—V®\V,x)+Bu
y = Crx;

with A, =V'AsV, V, =MV, B, =V'B and C, = CV. System
(36) is of the form of (1), hence the numerical procedure
described in Section V can be applied. Y, and % are plotted
in Figure 4 for a range of values of a.

In this figure, the uppermost line (dots) is Yg,|a=11/a and
represents a theoretical upper bound in the spirit of (26). The
middle line (circles) is g, that is used as the upper bound for
the L2 gain of error system (13). The bottom line (triangles)
is the quantity % used in determining the minimum a, for a

(36)

specific Ya, such that % <1 (hence the small gain theorem
applies).

As an example to illustrate how Figure 4 can be applied, let
the desired system level error be 1% or less. By the small gain
theorem, if Y5, < 1% then the accuracy is achieved. According
to Figure 4, the maximum allowable a for the small gain
theorem to be applicable is about 2 x 107> (the x coordinate
where horizontal y = 1072 intersects the middle line). For
a=2x 107, the corresponding value of % is about 1073,

Fig. 4. Transmission line example. The uppermost line (dots) is the
theoretical upper bound (26). The middle line (circles) is the numerical upper
bound for the L2 gain of the error system. The lower line (triangles) is the
minimum allowable a such that WTG" < 1, and hence the small gain theorem
still applies. For instance, if we want the system L2 gain error to be less
than 1072, then a should be at most 2 x 10~>, corresponding to a maximum
allowable vector field error Y, of about 1073,

which means that the vector field L2 gain error Y5 should be
at most 1073,

VII. CONCLUSION

This paper investigates the estimation of the L2 gain system
error produced by the approximation of the nonlinear vector
field within any nonlinear model order reduction algorithm for
systems in the form of (1). This problem is formulated as an
L2 gain upper bounding problem of a feedback interconnection
of a “nominal” plant and a “disturbance” (i.e. vector field
error). The paper proposes a framework for broadening the use
of the small gain theorem by introducing the self-cancelling
gains \/a and ia in the feedback loop. While this modification
fails exactly when the small gain theorem fails to apply, it is
nevertheless able to tighten the L2 gain upper bound (by the
use of Yg,), and the bound is asymptotically tight. Based on
the scaled feedback setup, we have shown that the error system
L2 gain 7y is upper bounded by a linear function of the vector
field difference L2 gain ya, provided ya is sufficiently small.
In an attempt to fight the conservatism of the bound, the paper
also proposes a numerical procedure that combines IQC/LMI
techniques and small gain theorem. Although the numerical
procedure still does not apply for large errors in the vector
field, it does produce a tighter bound than the theoretical linear
bound. Finally, a numerical example was given to demonstrate
the use of our numerical procedure.
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