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Abstract— This paper presents an adjustment-based modeling frame-

work for Statistical Static Timing Analysis (SSTA) when the dimension
of parameter variability is high. Instead of building a complex model

between the circuit timing and parameter variability, we build a model

which adjusts an approximate variation-aware timing into an accurate

one. The intuition is that it is simpler to build a model which adjusts an
approximate estimate into an accurate one. It is also more efficient to

obtain an approximate circuit timing model. The combination of these two

observations makes the use of an adjustment-based model a good choice
for SSTA with high dimension of parameter variability. To build the

adjustment model, we use a simulation-based approach, which is based

on Gaussian Process. Combined with intelligent sampling, we show that

an adjustment-based model can more effectively capture the nonlinearity
of the circuit timing with respect to parameter variability compared

to polynomial modeling. We also show that with only 200 samples of

the circuit timing and 42 independent parameter variations, adjustment-

based modeling obtains higher accuracy than direct SSTA using quadratic
modeling.

I. INTRODUCTION

In today’s sub-45nm era, we expect an increase in the dimension of

parameter variability as well as in their ranges [7], [5]. Consequently,

an efficient and accurate Statistical Static Timing Analysis (SSTA),

which can handle high dimension of variability, becomes a crucial

need. It might be necessary during the sign-off stage especially

when accurate interconnect and device parameter variability should

be incorporated. It can also be used to more effectively make

optimization decisions or to perform sensitivity analysis. The majority

of the existing SSTA techniques are based on polynomial model

of the circuit timing such as [3]-[4], [6], [10]-[12]. Many of them

experimented with only few number of parameter variabilities (for

example one global Vt, Leff , tox for all devices) and reported high

modeling accuracy. With the increase in the dimension of parameter

variability, we require complex polynomials to achieve the same

accuracy.

In this paper, we introduce a new SSTA technique which is useful

for high dimension of variability. We first study Gaussian Process

(GP) as an alternative to model the nonlinear dependencies of the

circuit timing as a function of parameter variability. GP models are

built using a simulation-driven approach in which the models are

constructed solely using the input-output behavior collected for a

limited number of intelligently chosen variation samples. We show

this type of modeling has a simpler form than high-order polynomials

but the modeling complexity depends on the number of samples.

We then introduce a novel adjustment-based modeling framework

for SSTA. Instead of building a complex model between the circuit

timing and the parameter variability, we build a simple model which

adjusts an approximate circuit timing into an accurate one. The

adjustment model is built using GP, which is simulation-driven.

However, we show that the number of required samples can be greatly

reduced for an adjustment-based model. This is because approximate

models have already captured some nonlinear dependencies in terms

of the input parameter variability.
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We introduce two ways to obtain approximate circuit timing. The

first one obtains the circuit timing from an extracted subcircuit which

is expected to be timing-critical. The second one is to use a cheap

linear SSTA. We then adjust these approximate timings into accurate

ones. Here, by accurate timing, we mean a timing that is obtained

using Monte Carlo (MC) simulation over the entire circuit. Our

simulation results show that an adjustment-based timing model can

achieve higher accuracy compared to a quadratic model of the circuit

timing, which is directly a function of parameter variables. We also

show that for 42 independent parameter variables, we only need

200 samples to build an adjustment-based model while fitting-based

quadratic modeling requires at least 10,000.

II. PREVIOUS WORKS AND SHORTCOMINGS

Previous SSTA works [3]-[4], [6], [10]-[12] always express the

gate delay and arrival times using polynomial model in terms of

variations in transistor or interconnect parameters. Particularly, [4],

[6], [12] used quadratic forms to express the circuit timing, in which

high modeling accuracy are reported. However, the dimension of the

parameter variability used for accuracy verification in all these works

is low.

With the scaling into sub-45nm era, the dimension of variability

will become high even after implementing efficient parameter order

reduction techniques. [7] and [5] reported 25 and 30 sources of

uncorrelated variations after reduction, respectively. In addition, as

illustrated in [2], low-order polynomial models become inaccurate

with the increase in the dimension and the range of the variabil-

ity. We also would like to note that quadratic model in this case also

have very high computation complexity. As an example, a quadratic

expression with 30 uncorrelated variables has over 400 terms if

cross-terms are not ignored. Therefore, existing polynomial-based

SSTA approaches need to be revisited. To address the aforementioned

problems, we propose to express the circuit timing using Gaussian

Process (GP) model, which is simpler than polynomial model and

can flexibly capture a large class of complex nonlinear relationships

[2], [9]. To further reduce the complexity of GP model, we propose

adjustment-based model in Section IV.

III. OVERVIEW OF GAUSS PROCESS MODEL

Given the input uncertainty vector x = {x1, x2, ..., xd} ∈ R
d, we

model the deterministic circuit timing as [9]:

y(x) = βf
T (x) + ǫ(x) =

n∑

i=0

βifi(x) + ǫ(x), (1)

where f(x) , {f1(x), ..., fn(x)} represents pre-specified functions,

which are typically a constant or a linear expression.

The ǫ(x) in Eq. (1) is a stationary Gaussian Process (GP) with

mean 0 and variance σ2. Its correlation structure defined between

any two input sample vectors x
(1) and x

(2) is typically modeled as

R(x(1)
,x

(2)) =

d∏

i=1

exp(−θi|x(1)
i − x

(2)
i |2), (2)

where x
(j)
i denotes the ith element of x

(j).
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Fig. 1. The flow of the adjustment-based modeling framework

In order to estimate the unknown parameters β in Eq. (1) as

well as θ = {θ1, . . . , θd} in Eq. (2) and σ2 which defines ǫ(x),

we first collect N input/output samples, and each sample refers to

the input parameter variations and their corresponding output circuit

timing. We denote the input/output of the ith sample by x(i) and y(i),

respectively. We also denote the unknowns after estimation as β̂, θ̂

and σ̂2, respectively.

As shown in [9], we can obtain the estimation θ̂ via:

max
θ

− 1

2

[
N logσ̂

2(θ) + log (det(R(θ))) + N
]
, (3)

where

σ̂
2(θ) ,

(y − Fβ̂)T R−1(θ)(y − Fβ̂)

N
, (4)

and R(θ) has its ijth entry R(x(i), x(j)) as defined in Eq. (2).

In Eq. (4), y is a column vector with its ith entry as the ith

observation (i.e., y(i)), F is a matrix with its ijth entry as fj(x(i)),

and β̂ is defined as

β̂ , (F
T

R
−1

F)−1
FR

−1
y. (5)

The optimization problem in Eq. (3) can be efficiently solved using

mlegp in “R” [1]. Using these estimated coefficients, we can compute

the circuit timing for any given input variation vector x⋆ using

y(x
⋆) = β̂f

T (x
⋆) + r̂R

−1(y − Fβ̂), (6)

where r̂ is a vector with its ith entry as R(x⋆, x(i)).

Complexity of GP Model: As illustrated in Eq. (3), the number of

unknowns to implement GP modeling is equal to d+n+1, where d

is the dimension of the variability and n is the number of fi(x) (n

is always very small). Note that these unknowns will maintain even

when the Probability Density Function (PDF) of x changes.

As illustrated in Eq. (6), to predict the circuit timing with dif-

ferent x
⋆ only requires the computation of f(x⋆) and r̂. All other

components such as R, F, and β̂ will not change, and thus can be

precomputed after GP modeling is complete. Note that the dimension

of r̂ is equal to the number of samples (i.e., N ) used in GP modeling.

Therefore, decreasing N becomes necessary, such that efficient Latin

Hypercube Design (LHD) is always used [9].

IV. PROPOSED ADJUSTMENT-BASED MODEL

As illustrated in Section III, we can utilize LHD to reduce N , the

required number of samples to obtain a desired modeling accuracy.

However, N might be still large, especially when the dimension

of variability is rather high. Moreover, larger N indicates higher

evaluation complexity. Therefore, in this paper, we propose a novel

adjustment-based model to characterize the circuit timing under high-

dimension of variability. This adjustment-based model has recently

been proposed in the statistics community and can significantly

reduce the number of collected samples [8]. To the best of our

knowledge, we are the first to introduce its usage and discuss its

benefits in the CAD area for SSTA.

A. Overview

Fig. 1 shows the flow of the adjustment-based modeling frame-

work. Instead of directly modeling the circuit timing with respect

to the process variations using GP model, we build a model which

can adjust an approximate circuit timing (subject to error) into an

accurate one. The intuition behind this modeling framework is the

following principle:

Principle of Accuracy: The approximate and accurate simulations

should generate different output values for the same input sample.

However, the approximate simulation can still reflect the relationship

between the inputs and their corresponding accurate outputs. This re-

flection is subject to error but is sufficient to capture the complexities

between the input and outputs to some extent.

After satisfying the above principle, building a model, which

adjusts an approximate circuit timing into an accurate one, becomes

a simpler task [8]. In other words, the task of building an adjustment-

based model requires much fewer samples than direct GP modeling,

which indicates the reduction of the evaluation complexity. Therefore,

the adjustment-based model can be more suitable for modeling in

presence of high dimension of variability and can perform much

better than GP model.

As shown in Fig. 1, in order to build an adjustment-based model,

apart from generating accurate reference samples for the circuit

timing, we also need to generate samples for approximate circuit

timing, which should be able to satisfy the principle of accuracy.

These approximate samples can be obtained, for example, based on

relaxing assumptions/models and can be generated much faster than

the accurate ones, as we further illustrate. Moreover, even though the

approximate samples are generated based on relaxed assumptions,

they can still capture some nonlinear relationship between the pa-

rameter variations and the actual circuit timing.

B. Adjustment-Based Modeling Process

In order to build the adjustment-based model, we first generate

a small number (i.e., Na) of input samples, and obtain their corre-

sponding approximate and accurate observations. For the convenience

of notations, we denote the approximate and accurate observations

by yI(x) and yA(x) for the input sample x, respectively. Then, we

utilize the GP modeling procedures introduced in Section III to build

the adjustment function between yI and yA:

yA(x) = ρ(x)yI(x) + δ0 + δ(x), (7)

where
ρ(x) = ρ0 +

d∑

i=1

ρixi, (8)

xi is the ith element of x ∈ R
d for i = 1, 2, . . . , d, and δ(·) is a

Gaussian Process with variance σ2
δ and θδ , as defined in Section III.

Note that the parameters σ2, θδ , ρi and δ0 in Eqs. (7) and (8) all

need to be estimated.

Eq. (7) resembles the GP model in Eq. (1) in the following way




fi(x) = yI(x), βi = ρ0, when i = 0
fi(x) = yI(x) · xi, βi = ρi, when i = 1, 2, . . . , d

fi(x) = 1, βi = δ0, when i = d + 1.

Consequently, we can similarly obtain the unknowns (i.e., σ2, θδ ,

ρi, δ0) by following the estimation procedures for GP in Section III.

We can then build the final adjustment-based model, and accurately

compute the output performance for any new input vector using

Eq. (6).

Remark: When Eq. (7) has all ρis equal to 0, it is equivalent to the

original GP form in Eq. (1), where fi is a constant. Therefore, we

can expect not to loose accuracy by applying our adjustment-based

model compared to building GP model based on accurate simulation.
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V. ADJUSTMENT-BASED MODEL FOR SSTA

We propose two methods to generate approximate variation-aware

static timing analysis efficiently. We obtain accurate samples using

Monte Carlo based SSTA on the Entire Circuit (MC-SSTA-EC).

A. Approximate Timing Using MC-SSTA-CS

The first way to obtain approximate circuit timing is to conduct

MC simulation over a Critical Subcircuit, which we refer to as MC-

SSTA-CS. In presence of process variations, the critical path will not

be a constant path. However, we still extract the top critical paths

of a circuit in the same way as under the nominal case. We first

traverse the circuit topologically from the POs towards the PIs. At

each gate, we consider the arrival times of all its fanins. Their arrival

times are computed under the nominal case. The fanin with maximum

arrival time is chosen to be part of the critical subtree. If the arrival

times of other fanins are close to this maximum arrival time by a

given threshold of t%, we also include these fanins in this critical

subtree. We apply Monte-Carlo based SSTA over the extracted critical

subcircuit and record these as the approximate observations.

According to the Principle of Accuracy, the circuit delays ob-

tained from MC-SSTA-CS should reflect the relationship between

the parameter variations and the accurate circuit timing. To illustrate

this principle, we selected circuit S35932 as an example. Fig. 2(a)

shows the similarity between the circuit timing obtained using MC-

SSTA-CS (i.e., Y-axis) and that using MC-SSTA-EC (i.e., X-axis).

These samples were generated for 42 parameter variation cases as

described in Section VI. We also plot the line y = x to indicate

the similarity between these two sets of circuit timing. As seen in

this figure, in some variation cases, the approximate circuit timing

is equal to accurate one (i.e. circuit timing is indeed determined by

the critical subcircuit extracted under the nominal case). However,

in other variation cases, the critical subcircuit does not determine

the circuit timing, but they still exhibit a correct pattern of increase

or decrease in the circuit timing. This is likely due to the common

(global) source of variations which result in identical increase or

decrease in the parameters of all the gates and interconnects for each

variation sample. Furthermore, different gate types have similar range

of sensitivities to different parameters.

B. Approximate Timing Using LG-SSTA

The second way to obtain approximate circuit timing, which can

follow the Principle of Accuracy, is to use Linear Gaussian SSTA

(i.e., LG-SSTA) [11]. In LG-SSTA, the arrival time at each gate

is approximated to have Gaussian distribution. These arrival times,

along with the individual gate delays are expressed as a linear com-

bination of Gaussian random variables representing different device

and interconnect parameter variations. Particularly, in computing the

arrival times in the circuit, two atomic operations, namely summation

and maximization should be computed. Summation operation is

computed exactly. However, maximum of Gaussian arrival times is

approximated as a Gaussian arrival time which can be represented

in the same linear form. This approximation is based on Clark’s

approach. Given two Gaussian arrival times X and Y , we define

Z as maximum of X and Y , and approximate it as:

Z , max(X, Y ) ≈ tX + (1 − t)Y + ∆, (9)

where t is the tightness probability defined as

t ,

∫ λ

−∞

1√
2π

exp
(
− x2

2

)
dx, (10)

and ∆ is an additional random variable to ensure that this approxi-

mation has the same mean and covariance as Z.
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Fig. 2. Illustrations of Principle of Accuracy (a): approximate timing using
MC-SSTA-CS; (b): approximate timing using LG-SSTA

In Eq. (10), λ is defined as
µX−Y

σX−Y
, where µX−Y and σX−Y

denote the mean and standard deviation of X −Y , respectively. The

Gaussian approximation in Eq. (9) makes maximum operation easy to

implement, but suffers from high error. The authors in [12] pointed

that the Clark’s approximation in LG-SSTA introduces high error

when X and Y have very similar mean but very different variances,

and when X and Y have very similar mean but highly negative

correlation. Also, LG-SSTA is based on moment matching technique

and can only guarantee the correctness of the statistical information,

such as mean and covariance at each maximization but the actual

circuit timing is under variations and subject to error.

Despite the intrinsic problems in LG-SSTA illustrated above, we

can still use LG-SSTA to obtain approximate circuit timing. First,

LG-SSTA is the fastest known SSTA with a complexity linear in the

number of gates in the circuit; for each node with multiple fanins, it

only needs to approximate the mean and variance of the maximum

of their arrival times. Therefore, using LG-SSTA for approximate

timing will not add much overhead for our modeling. Second, the LG-

SSTA is subject to error; for example, the mean of the circuit timing

obtained from LG-SSTA is proven to always be an underestimation of

the exact mean. However, LG-SSTA can still capture the output/input

relationship. Fig. 2(b) plots the circuit timing for S35932 using LG-

SSTA in Y-axis and that using MC-SSTA-EC in X-axis. For LG-

SSTA, we obtain the samples by doing Monte Carlo simulation on

the linear Gaussian expression of timing obtained using LG-SSTA.

Even though the circuit timing using LG-SSTA suffers from high

error, it can still reflect the output/input relationship compared to the

accurate simulation.

VI. SIMULATION RESULTS

We synthesized ISCAS89 and ITC99 benchmark suites with 90nm

TSMC library. Using the spatial correlation model in [5], we assumed

42 independent random variables (RVs) with Gaussian distribution

to represent parameter variations in channel length and zero-body

threshold voltage. All these RVs have their standard deviation to be

7% of their mean. We also assumed a linear gate delay model in

terms of these RVs.

Evaluation of Adjustment-Based SSTA Using Critical Subcircuit

Extraction: To evaluate the performance of our proposed adjustment-

based SSTA using critical subcircuit, we implemented 3 types of

SSTA, which are based on Quadratic model (QR), GP model, and

Adjustment-based model (ADJ), respectively. Note that by adjusting

t, we extracted a small critical subcircuit in ADJ. In all these SSTA

approaches, we first generated a large number of samples for the 42

RVs and their corresponding circuit timing. We then fitted the samples

to the model used in each approach to get a circuit timing expression

in terms of these RVs. Particularly, we considered 4 variations of

these 3 types of SSTA, which are listed as follows:
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CDF Percentile Error (%) Speedup

BENCH 5% 25% 50% 75% 95% MC−SSTA−EC

ADJ−CS−200

S35932 -1.554 -0.541 -1.159 -2.182 -3.795 23.50X

S38417 0.335 -0.567 -0.609 -0.551 -0.394 143.39X

S38584 -0.101 -0.207 -0.234 -0.283 -0.311 301.31X

b18 -1.504 -1.300 -1.167 -1.154 -1.136 11.72X

b20 2.000 2.221 2.573 2.611 2.273 38.31X

b21 1.049 1.149 1.186 1.202 1.093 62.43X

b22 -0.346 0.232 0.258 0.621 -2.289 31.62X

Ave |Err| 0.984 0.888 1.026 1.229 1.678 87.47X

TABLE I

CDF PERCENTILE ERROR COMPARED TO ACCURATE MONTE CARLO

1. QR model: We expressed the circuit timing as a quadratic function

of the 42 RVs, which does not have cross-terms. It indicates that

we only need to determine 85 coefficients (similar to [4]). Another

reason we do not use the standard form of quadratic function is that,

for 42 RVs, nearly 1,000 coefficients need to be estimated, which

requires a large number of samples for modeling. Two variations

of the QR approach are used to obtain the circuit timing samples

depending on the sampling scheme and the number of samples. These

two variations are (1.1) QR-UNI: quadratic fitting of circuit timing

using 10,000 uniformly generated samples (using “rand” in Matlab),

and (1.2) QR-LHD: quadratic fitting of circuit timing using 2,000

LHD samples (using “lhsdesign” in Matlab).

2. GP model: We generated 200 LHD samples for the parameter

variations and built GP model to characterize the circuit timing in

terms of these 42 RVs. For GP modeling, we used the mlegp package

in “R” and denote this SSTA approach by GP-200.

3. ADJ model: We generated 200 LHD samples for parameter

variations, and obtained the circuit timing samples using 200 MC

samples over entire circuit and over the critical subcircuit. These are

considered to be the accurate and approximate simulations, respec-

tively. We used the mlegp package in “R” to build the adjustment-

based timing model. We denote this approach which is based on

critical subcircuit extraction by ADJ-CS-200.

In order to evaluate the accuracy of the above approaches, we first

generated 10,000 test samples by assuming the parameter variations

to have a standard normal distribution. We also implemented MC-

SSTA-EC as our reference case.

First, we demonstrate the accuracy of ADJ-CS-200. Table I reports

the percentage error at different percentiles of the circuit delay

distribution using ADJ-CS-200 compared to MC-SSTA-EC. Columns

2-6 show the cumulative density function (CDF) error at different

percentiles. The average of all percentile errors was smaller than

2%. Column 7 shows the speedup of our proposed ADJ-CS-200 over

MC-SSTA-EC. The maximum and average speedup are 301.31X and

87.47X, respectively.

Next, we make comparisons among all these 4 SSTA approaches.

Due to our linear gate delay model, all the approaches including the

quadratic fitting SSTAs were highly accurate for un-balanced circuits.

So we focused on S35932, which was a highly balanced benchmark.

Discussion for balanced S35932: Fig. 3 shows the histograms of

the relative errors using these four SSTA approaches. The relative

error is defined as the difference between the circuit delay using

these SSTA approaches and that using MC-SSTA-EC. The average

relative errors of QR-UNI, QR-LHD, GP-200, and ADJ-CS-200 were

18.27%, 11.87%, 10.67%, and 4.42%, respectively. We can thus

conclude that, although ADJ-CS-200 used the smallest number of

samples, which is 50 times lower than QR-UNI, it still achieved the

minimum average relative error (i.e., 4.42%). We also observed that

QR-LHD with 2,000 LHD samples is more accurate than QR-UNI

with 10,000 uniform samples; therefore a good sampling scheme can

result in significant improvement.
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Fig. 3. Histograms of Relative error for S35932 (a): QR-UNI; (b): QR-LHD;
(c): GP-200; (d): ADJ-CS-200

Evaluation of Adjustment-based SSTA Using LG-SSTA: We im-

plemented the adjustment-based SSTA based on LG-SSTA as follows.

We first generated 200 LHD samples for the process variations and

obtained their corresponding approximate and accurate circuit delays

using LG-SSTA and MC-SSTA-EC, respectively. We then built the

adjustment model using “R” and denote this SSTA approach by ADJ-

LG-200. In order to evaluate the accuracy of ADJ-LG-200, we make

comparison with MC-SSTA-EC with 10,000 samples. For S35932

benchmark, ADJ-LG-200 had errors of 3.44%, 2.07%, 1.14%, 0.51%

at CDF percentile points 25%, 50%, 75%, 95%, respectively.

Discussion on Efficiency: We draw the following conclusions:

1. The simulation runtime of ADJ-CS-200 was nearly proportional to

the size of the extracted subcircuit which was much lower than the

simulation runtime for the total circuit size. The runtime to collect

the approximate circuit timing using MC-SSTA-CS was on average

about 5% of that of MC-SSTA-EC. Also, we required collection of

only 200 approximate and accurate samples. Similarly, the runtime of

ADJ-LG-200 was very fast; this is because Clark’s method is known

to have linear runtime complexity in the number of nodes in the

timing graph and is the fastest SSTA technique [11].

2. To build the adjustment-based model, Eq. (3) can be efficiently

solved using “R”. Note that this model can be directly used for robust

analysis under other different PDFs of process variations.

VII. CONCLUSIONS

We proposed a novel adjustment-based model for SSTA which

translates an approximate variation-aware circuit timing into an

accurate one. We proposed two ways to generate approximate circuit

timing to satisfy the principle of accuracy. For large circuits and

with high dimension of variability, our improvement is mainly due

to significant reduction in the number of samples using adjustment-

based modeling over conventional quadratic and GP modeling.
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