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ABSTRACT
The programmable logic block (PLB) in a modern FPGA
features a built-in carry chain (or adder) and a decompos-
able LUT, where such an LUT may be decomposed into two
or more smaller LUTs. Leveraging decomposable LUTs and
underutilized carry chains, we propose to decompose a logic
function in a PLB into two subfunctions and to combine
the subfunctions via a carry chain to make the circuit more
robust against single-event upsets(SEUs). Note that such
decomposition can be implemented using the decomposable
LUT and carry chain in the original PLB without chang-
ing the PLB-level placement and routing. Therefore, it is
an in-place decomposition (IPD) with no area and timing
overhead at the PLB level and has an ideal design closure
between logic and physical syntheses. For 10 largest combi-
national MCNC benchmark circuits with a conservative 20%
utilization rate for carry chain, IPD improves MTTF (mean
time to failure) by 1.43 and 2.70 times respectively, for PLBs
similar to those in Xilinx Virtex-5 and Altera Stratix-IV.

1. INTRODUCTION
Modern field programmable gate arrays (FPGA) uses ever-
advancing fabrication technologies for higher density and re-
duced power, but at the cost of more vulnerability to single
event upsets (SEU) caused by supply voltage fluctuations,
electromagnetic coupling and environmental radiation. Be-
cause FPGAs apply memory cells (primarily SRAM) to im-
plement logic functions and interconnects, an SEU can have
a permanent impact on the logic function and interconnect,
which can only be resolved by a reprogramming operation.
Therefore, SEUs have a much bigger impact for FPGA than
for ASIC, and it significantly reduces MTTF, a system level
measurement of reliability. Since an increasing number of
FPGA chips are used for deployed systems ranging from
internet line cards to enterprise severs [1] rather than proto-
types, MTTF is among the most important design objectives
for FPGA.

Robustness with respect to SEUs in FPGAs have been
extensively studied in the literature [2]. Specific FPGA ar-
chitectures have been developed such as radiation hardened
FPGAs from Xilinx [3] and anti-fuse based FPGAs from

Actel [4]. Circuit redundancy such as triple modular re-
dundancy (TMR) [5] and quadruple modular redundancy
(QMR) have also been proposed. However, the aforemen-
tioned techniques have high overhead on cost, area or power.
This makes them too expensive for non-mission critical ap-
plications such as communication systems.

Recently, several logic resynthesis algorithms have been
proposed to improve robustness for FPGA with minimal
area, power, or performance penalties. ROSE [6] iteratively
remaps logic blocks using a robust block template with path
reconvergence. However, ROSE can change the topology
of the LUT-level network, resulting in physical re-synthesis
and slowing down design closure. IPR [7] performs logic
transformation while preserving the topology of the LUT-
level network, and removes the aforementioned design clo-
sure problem. In essence, ROSE and IPR use logic mask-
ing/redundancy to minimize the impacts of SEUs, and their
MTTF improvements could be limited when circuits are
heavily optimized for area and therefore have little implicit
logic redundancy.

The state of art FPGAs such as Xilinx Vertix-5 and Altera
Stratix-IV [8, 9] use decomposable LUTs, where an LUT
can be decomposed into two or more smaller LUTs and a
second output pin is also provided (see Fig. 1(a) and Fig.
1(b)). Leveraging decomposable LUTs and under-utilization
of large-sized LUTs, [10] proposed to duplicate the logic in-
side a partially used LUT, and increase MTTF without in-
creasing the number of LUTs. However, the encoding to
combine the duplicated logic is done in the fanout LUTs.
This leads to extra interconnects and potentially heavy area
penalty and slows down design closure between logic and
physical resyntheses.

In addition to the decomposable LUT, the programmable
logic block (PLB) in modern FPGAs also have a dedicated
carry chain or adder. While the carry function can be im-
plemented by LUTs,these carry chain circuits are built in
as alternative circuits to obtain high speed for applications
- such as networking - with extensive carry computation.
Although the state of art synthesis tools have been devel-
oped to leverage carry chains for arithmetic computation,
the chip level carry chain utilization is typically less than
20% and LUT and carry chain inside a PLB are selfomly
used simultaneously.

This paper proposes an in-place decomposition (IPD) for
robustness in FPGAs. IPD decomposes the logic function
originally implemented by one decomposable LUT into two
subfunctions to be implemented by smaller LUTs and to
combine (also called converge in this paper) the subfunc-
tions by the carry chain. This decomposition introduces re-
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Figure 1: Dual-output LUT FPGA architecture

dundancy as the original logic function is now implemented
with extra circuitry (i.e., carry chain) and such redundancy
is used explicitly to make the circuit more robust for SEUs.

IPD offers clear advantages over duplication in [10]. Firstly,
duplication implies two identical subfunctions. It is a simpli-
fied case of decomposition which enables distinguished sub-
functions with more potential for improvement. Secondly,
IPD performs logic decomposition and converging within the
original PLB. It does not change PLB level placement and
routing, and therefore there is no PLB level penalty on tim-
ing, area and design closure. In contrast, the duplication
(namely FMD) algorithm from [10] carries out duplication
and encoding (called converging in this paper) in multiple
PLBs. This needs extra interconnects between PLBs, re-
sulting in a heavy penalty in area, delay and design closure.

We have developed an ILP (integer linear programming)
algorithm to solve IPD optimally inside each PLB and ap-
plied ILP iteratively to PLBs at the chip level. For 10
largest combinational MCNC benchmark circuits synthe-
sized by ABC mapper, FMD from [10] improves MTTF by
10% on average, but IPD improves MTTF by 1.43× for PLB
similar to that in Xilinx Vertex-5 and by 2.70× for PLB sim-
ilar to that in Altera Stratix-IV, when the conservative 20%
utilization rate of carry chain is assumed.

The rest of this paper is organized as follows. Section 2
presents the preliminaries and problem formulation. Section
3 proposes IPD algorithms and properties. The experimen-
tal results are given in Section 4 and the paper is concluded
in Section 5. To the best of our knowledge, this paper is the
first systematic study on robustness using both the built-in
carry chain (or adder) and decomposable LUT features of
modern FPGAs.

2. PRELIMINARIES AND PROBLEM FOR-
MULATION

2.1 Fault Modeling

We assume a stochastic single fault model for SEU-induced
faults on FPGA configuration SRAM bits since it has been
shown that simultaneous multiple SRAM flips almost never
occur [11]. In other words, we assume that at most one fault
occurs on the FPGA configuration bits at a given time.

For a circuit C with n primary inputs, the sensitivity of
an SRAM bit b to an SEU is defined by its criticality cb:

cb =
1

2n
|{x | C(x) �= Cb̄(x)}|, (1)

where x ∈ {0, 1}n is the primary input vector and C(x)
is the value of the primary outputs when the input vector
x is applied to C. In general, the criticality of an SRAM
bit is the probability that an error can be observed at the
primary outputs due to a flip in the SRAM bit. Accordingly,
the criticality cL of an LUT L and the full-chip fault rate of
a circuit C are defined as

cL =
1

2K

X

i

cLi (2)

fault rate(C) =

P
L∈Luts(C) cL

|Luts(C)| · PF , (3)

whereK is the number of inputs of L, Li is the ith SRAM bit
of LUT L, Luts(C) is the set of LUTs in circuit C, and PF is
the probability that an SEU occurs on an occupied SRAM
bit. The full-chip fault rate of a circuit is the percentage of
the primary input vectors that cause observable erroneous
outputs due to faults under the single fault assumption.

In this paper, we focus on improving the reliability of the
LUT configuration SRAM bits. Hence, we consider only
SEU on LUT configuration SRAM bits to best show the
effectiveness of our algorithm.

2.2 Robust Synthesis for Dual-output LUTs
Modern FPGAs have dual-output features on their PLBs.
For example, Xilinx Virtex-5 has a decomposable 6-input
LUT architecture with dual-output capability that can be
configured as a single 6-input function or two independent
functions with a total number of 5 unique inputs (see Fig.
1(a)). Altera Stratix-IV uses an 8-input adaptive logic mod-
ule(ALM), which contains two adaptive LUTs (ALUT) as
shown in Fig. 1(b). ALM has similar features like Virtex-5
6-input LUTs but with different input sharing constraints.
An ALM can implement any single 6-input function but only
a subset of single 7-input functions. Table 1 summarizes the
input sharing constraints when all the input pins are uti-
lized for both architectures. For example, when the second
output is used, an ALUT in an ALM can implement up to
two 6-input functions with four inputs shared between the
two ALUTs.

Virtex-5 size of dual-function 5,5
6-input LUT # of shared inputs 5
Stratix-IV size of dual-function 4,4 5,3 5,4 5,5 6,6

ALM # of shared inputs 0 0 1 2 4

Table 1: Input sharing conditions for Virtex-5 LUT
and Stratix-IV ALM

To improve circuit reliability against SEU faults, Fully
Masked Duplication (FMD) has been proposed in [10], where
duplication of a function is performed by utilizing the un-
used second output of an LUT. Then, AND or OR encod-
ings for logic masking and therefore robustness enhancement
are added at all fanout LUTs of a duplicated LUT when un-
used input pins are available for the fanout LUTs. A more
flexible PMD (partially masked duplication) has also been
developed. Note that the encoding of AND or OR operation
is called “converging logic” in this paper.
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2.3 Formulation of In-place Decomposition
To formulate the in-place decomposition (IPD) method, we
first define the decomposition and converging of a function.
Given an n-input function F , decomposition transforms F
into two subfunctions, F1 and F2, where the total number
of unique inputs is equal to n, and converging logic � is
applied such that F = F1 � F2. Fig. 2 is an example of
decomposition, where a 5-input function F is transformed
into a 4-input subfunction F1 and a 3-input subfunction F2
with two inputs shared. Then, the outputs of F1 and F2
are combined by the converging logic.

By taking advantage of the dual-output feature of LUTs,
the two subfunctions can be implemented in a single dual-
output LUT. Decomposition can be divided into two cat-
egories, fully-input-shared decomposition where all inputs
are the same for the two subfunctions, and partially-input-
shared decomposition, which includes the case where there
is no common input for the two subfunctions.

Unlike FMD and PMD, which need the spare input pins
of LUTs for encoding, IPD utilizes the unused built-in carry
chain (or adder) within the same PLB to converge two sub-
functions. Consider the boolean operation of a carry chain,
where Cout = A ·B +B · Cin +A ·Cin, the carry operation
becomes AND operation when Cin = 0 (Cout = A · B) and
OR operation when Cin = 1 (Cout = A+B).

With respect to the above discussion, we formulate the
IPD problem as follows.

Formulation 1. Given a circuit C, IPD decomposes the
logic function for a PLB into two subfunctions such that the
two subfunctions are implemented by the decomposable dual-
output LUT in the PLB and are combined (or converged) via
the carry chain in the PLB, and the resulting full-chip fault
rate is minimized.

While our formulation and algorithms presented here ap-
ply to any converging logic, for simplicity of presentation,
we consider only AND and OR converging logic in our dis-
cussion and experiment without losing the optimality.
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Figure 2: An Example of Decomposition

3. ALGORITHMS AND PROPERTIES
We first introduce an efficient criticality update method in
Section 3.1, and then present an ILP algorithm for IPD in
Section 3.2. The reader familiar with criticality can start
with Section 3.2 directly. We reveal the condition when in-
place duplication is optimal in Section 3.3, and summarize
the chip level IPD algorithm combining ILP and in-place
duplication in Section 3.4.

3.1 Criticality Update for Decomposition
By the definition of the criticality, we can explain the criti-
cality of an LUT SRAM bit in the following way. The crit-
icality of an LUT SRAM bit cLi is the probability that the

erroneous content of SRAM bit Li is retrieved, multiplied by
the probability that the erroneous output of L is propagated
to the primary output. Thus, cLi of the an LUT before de-
composition can be rewritten into the following equation.

cLi = I(L, xk) · O(L, xk) · P (L, xk), (4)

where xi ∈ {x1, . . . , x2K} is the input vector to LUT L which
retrieves the content of Li, and I(L, xi) is the probability
of xi occurring at L. The probability of passing an fault
from LUT L to the primary outputs under LUT input vector
xi can be divided into two parts, the internal observability
O(L, xi) and the external observability P (L, xi). The inter-
nal observability O(L, xi) is the probability that the fault
on Li can be observed at the PLB output under LUT input
vector xi, and the external observability P (L, xi) is prob-
ability to propagate the fault from the PLB output to the
primary outputs, respectively. Note that each xi is one-to-
one mapped to an LUT SRAM bit Li before decomposition,
and the internal observability O(L, xi) equals to 1 since be-
fore decomposition there is no logic masking capability from
an LUT to its PLB output. Therefore, cLi before decompo-
sition is

cLi = I(L,xk) · P (L, xk), (5)

After decomposition, assuming that the decomposed two
subfunctions are implemented by the two sub-LUTs, L1 and
L2, of the decomposable LUT L, an LUT input vector xi

retrieves two LUT SRAM bits, one from L1 and the other
from L2. Moreover, an LUT SRAM bit in L1 or L2 may
have more than one LUT input vector which can retrieve
its content. The criticality of an LUT SRAM bit after de-
composition becomes the summation of the probabilities of
its retrieving input vectors multiplied by its corresponding
internal and external observabilities, and the average criti-
cality a decomposed LUT L′ is

cL′ = 1
2K

(

m(L1)X

i

cL1i +

m(L2)X

j

cL2j )

= 1
2K

(

m(L1)X

i

X

xk∈ψ(L1i)

I(L, xk) · O(L1, xk) · P (L, xk)+

m(L2)X

j

X

xk∈ψ(L2j )

I(L, xk) · O(L2, xk) · P (L, xk)),

(6)

where m(L1) and m(L2) are the number of SRAM bits
of L1 and L2, and ψ(L1i) denotes the set of input vec-
tors that can retrieve the content of LUT SRAM bit L1i

(ψ(L2j) for L2j , respectively). Specifically, since each in-
put vector xk retrieves SRAM bits from L1 and L2, each
xk contributes I(L, xk) · O(L1, xk) · P (L, xk) and I(L,xk) ·
O(L2, xk)·P (L, xk) to the criticality calculation of cL′ . There-
fore, the average criticality of an LUT after decomposition
can be rewritten to

cL′ = 1
2K

2KX

i=1

(I(L,xi) · O(L1, xi) · P (L, xi)

+I(L,xi) · O(L2, xi) · P (L, xi))

= 1
2K

2KX

i=1

I(L, xi) · P (L, xi) · (O(L1, xi) +O(L2, xi))

(7)

Combining Eq.(5) and Eq.(7), and based on the fact that
xi and Li are one-to-one mapped before decomposition. we
can rewrite (7) to the following equation.

cL′ =
1

2K

2KX

i=0

cLi · (O(L1, xi) +O(L2, xi)), (8)
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According to (8), the criticality update after decomposi-
tion depends on the internal observabilities O(L1, xi) and
O(L2, xi). Since converging logic is applied to the outputs
of L1 and L2 after decomposition, internal observabilities
could be reduced to 0 under certain LUT input vectors ac-
cording to the type of the converging logic and the truth
tables of L1 and L2. O(L1, xi) depends on the output value
of L2 under input vector xi, and O(L2, xi) depends on that
of L1, respectively. For example, in the case of using AND
as the converging logic, O(L1, xi) can be reduced to 0 if
the output of L2 is ‘0’ under input vector xi, and O(L1, xi)
equals to 1 if the output of L2 is ‘1’. Therefore, the observ-
ability and the average criticality of LUT can be updated
very efficiently after decomposition.

3.2 ILP Algorithm
Based on Eq.(8), we formulate the IPD optimization prob-
lem for a given LUT L ∈ C to the following Integer Linear
Program (ILP) problem:

Minimize

2KX

i=1

cLi · (O(L1, xi) +O(L2, xi)),

subject to the following five sets of constraints.

3.2.1 Decomposition selection constraint
φ(L)X

j=1

dj ≤ 1

φ(L) is the set of decomposition templates with different
input sharing conditions of a decomposable LUT architec-
ture, such as those in Table 1 for Xilinx and Altera PLBs.
d(L, j) ∈ {0, 1} is ‘1’ if LUT L is decomposed with the jth
decomposition template, and this constraint guarantees that
there is at most one decomposition template is selected and
applied.

3.2.2 Boolean matching constraints for the LUT

2KX

i=1

t(dj , xi) ≥ 2K · dj , 1 ≤ j ≤ φ(L)

t(dj , xi) is a binary variable, where t(dj , xi) equals to ‘1’
indicates that the Boolean function of L and that of decom-
position dj are equivalent under input vector xi. This set of
constraint guarantees that a decomposition can be selected
only if its Boolean function is equivalent to that of L under
all LUT input vectors.

3.2.3 Boolean matching constraints for each LUT
SRAM bit of the LUT

0 ≤ L1(dj , xi) + L2(dj , xi) − 2 · t(dj , xi) ≤ 1, ifL(xi) = 1

2 ≤ L1(dj , xi) + L2(dj , xi) + 2 · t(dj , xi) ≤ 3, ifL(xi) = 0

1 ≤ j ≤ φ(L), 1 ≤ i ≤ 2K

The third set of constraints perform Boolean matching for
decomposition dj with AND converging logic for each input
vector, where L(xi) is the output value of LUT L under
LUT input vector xi, and L1(dj , xi) and L2(dj , xi) are the
output values of L1 and L2 with decomposition dj under
input vector xi. For simplicity, we show only constraints for
AND converging logic since constraints for OR converging
logic can be easily inferred from the above constraints.

3.2.4 Observability update constraints

0 ≤ dj + L2(dj , xi) − 2 · P1(dj , xi) ≤ 1,

0 ≤ −1 · dj + L2(dj , xi) + 2 · B1(dj , xi) ≤ 1,

−1 · P1(dj , xi) +O(L1, xi) ≥ 0

B1(dj , xi) +O(L1, xi) ≤ 1,

1 ≤ j ≤ φ(L), 1 ≤ i ≤ 2K

If decomposition dj with AND converging logic is applied,
the above constraints calculate the internal observability for
each input vector according to the function of L1 and L2.
P1(dj , xi) and B1(dj , xi) are binary variables, which repre-
sent the propagation and masking of signal from L1 (P2L

xi

and B2L
xi for L2, resp). Again, we show only constraints for

AND converging logic and constraints for OR converging
logic can be generated accordingly.

3.2.5 Default observability constrains

O(L1, xi) +

φ(L)X

j=1

dj ≥ 1, O(L2, xi) +

φ(L)X

j=1

dj ≥ 1,

1 ≤ j ≤ φ(L), 1 ≤ i ≤ 2K

The last set of constraints imply that when none of the de-
compositions is applied, the observabilities are one under
any input vector.

3.3 Optimality of in-place duplication
Given an N-input function, multiple potential decomposi-
tion solutions exist. For example, a 5-input function can be
decomposed into one 3-input subfunction and one 2-input
subfunction with no shared inputs. However, the function
can also be decomposed into two identical 5-input subfunc-
tions.

To prune the solution space for decomposition, we reveal
the following properties.1

Property 1: Considering all types of converging logic, the
optimal decomposition can be obtained by decomposition
with AND or OR converging logic.

Property 2: The optimal fully-input-shared decomposi-
tion with AND or OR converging logic can be obtained by
decomposing to two identical subfunctions.

For optimal fully-input-shared decomposition, the identi-
cal subfunctions are simply duplication of the original func-
tion with AND or OR converging logic. This is called in-
place duplication or in-place FMD (iFMD) in this paper.

3.4 Overall IPD Algorithm
The detailed IPD algorithm flow is illustrated in Fig. 3.
Note that we use AND or OR converging logic just for sim-
plicity, and the IPD algorithm can be applied to any con-
verging logic with slight modification.

Given a circuit C, the IPD algorithm starts with fault
simulation to calculate the criticality of each LUT SRAM

1The proofs of the properties are provided in our technical
report.
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Figure 3: IPD Algorithm Flow

bit. We first check whether any PLB has not been processed
and whether it has an un-used carry chain and LUT. For a
PLB that has un-used carry chain and LUT, we apply iFMD
to the PLB if it is applicable. If iFMD can not be applied,
we solve the ILP problem presented in Sec. 3.2 to obtain the
optimal partially-shared-input decomposition for the PLB.
After all the PLBs are processed, we update the full-chip
fault rate of C.

4. EXPERIMENTAL RESULTS
The proposed IPD algorithm is implemented in C++ with
the mosek [12] solver on an Ubuntu server with Xeon 2.4GHz
CPU and 2Gb memory. The 10 largest combinational cir-
cuits in MCNC benchmark set are tested on both Virtex-
5 LUT and Stratix-IV ALM architectures. All the bench-
marks are first mapped to 6-input LUT logic networks by
the Berkeley ABC technology mapper [13]. Then, the LUT
merge algorithm in [14] is applied to merge pairs of small
functions (<4 inputs) into dual-output LUTs. After that,
FMD[10] and our IPD are performed separately for compar-
ison. Assuming single fault and PF = 100% in Equation (3),
the full-chip fault rate is obtained by Monte Carlo simula-
tion with 5K input vectors for each SRAM bit. For FPGA
architectures under study, we apply IPD under different uti-
lization rates of built-in carry chain, e.g., 10% means that
randomly, 10% of build-in carry chain inside the used logic
blocks are not available to be used by IPD. We compute
MTTF as reversely proportional to the chip level fault rate
since there is no area change.

4.1 Characteristics of Circuits and Architec-
tures

function size 2 3 4 5 6
distribution 10.14% 17.32% 17.48% 17.72% 37.43%
fault rate

5.39% 6.22% 13.74% 22.05% 48.26%
contribution

Table 2: Distribution and fault rate contribution of
different sizes of functions in 10 largest MCNC com-
binational circuits

Table 2 summarizes the distribution of different size of
logic functions and their fault rate contribution in the mapped
10 largest MCNC combinational circuits before applying
FMD or IPD. It shows that 6-input functions have the great-
est impact on the circuits in terms of criticality, due to their

large number and the greater amount of SRAM bits they
utilize.

For Xilinx Virtex-5 LUT architecture with five shared in-
put pins, in-place duplication can be used for functions with
up to 5 inputs without losing optimality. Also note that no
decomposition is available for 6-input functions for this ar-
chitecture. Therefore, IPD is in fact the in-place duplication
with AND or OR as the converging logic in this architecture.

Fig. 4 shows the arithmetic mode of Stratix-IV ALM.
Each ALUT contains two 4-input LUTs, and three of the
inputs are shared among all of the 4-input LUTs, i.e., the
two 4-input LUTs in an ALUT have a total of five unique
inputs. Therefore, a function with up to five inputs can
be decomposed and implemented by one ALUT. For func-
tions that have number of input larger than five, we can
perform decomposition by using both ALUTs plus two con-
verging gates implemented by the two adders. Note that an
ALM can implement a subset of 7-input functions, which
can also be decomposed in the similar way like 6-input func-
tions. However, because ABC mapper is not able to map to
a subset of 7-input functions, we are not able to perform our
experiments for 7-input functions while our IPD algorithm
is capable of dealing with 7-input functions.

0
1
2
3

1

2

4

5

6

7

Figure 4: Altera Stratix-IV ALM arithmetic mode

4.2 MTTF Improvement and Discussions
The experimental results for the baseline algorithm, FMD
and the proposed IPD are summarized in Table 3. While
FMD improves MTTF only by 10% on average, IPD (with
a conservative 20% utilization rate for carry chain) improves
average MTTF by 1.43× and 2.70× for Virtex-5 LUT and
Stratix-IV ALM architectures for 10 largest combinational
MCNC benchmark circuits. When all carry chains are avail-
able (utilization rate is 0%), IPD improves MTTF by up to
2.43× (see “ex1010”) for Virtex-5 LUT architecture, and up
to 9.67× (see “apex2”) for Stratix-IV ALM architecture.

Because in-place duplication is used exclusively for Virtex-
5 LUT architecture as discussed in Section 4.1, the gap be-
tween 1.1× and 1.43× is the improvement due to performing
logic converging within the same PLB. On the other hand,
Stratix-IV ALM architecture utilize both in-place decompo-
sition and in-place duplication, the gap between 1.43× and
2.70× is a good indicator of improvement due to decompo-
sition.

Fig. 5 presents a good indicator of how much IPD could
improve the reliability of a system. The (blue) bars repre-
sent the absolute difference between criticalities of “on” set
and “off” set of circuits. The “on” (resp. “off”) set is the
SRAM bit set with logic “1” (resp. “0”). The (red) squares
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Circuit Characteristics Fault Rate

Runtime(s)Circuit PI# PO# Reg# LUT# BASE FMD
IPD

Virtex-5 LUT Stratix-IV ALM
0% 10% 20% 30% 0% 10% 20% 30%

alu4 14 8 - 507 0.34% 0.33% 0.25% 0.26% 0.25% 0.27% 0.09% 0.11% 0.13% 0.17% 1466
apex2 39 3 - 687 0.29% 0.26% 0.18% 0.19% 0.20% 0.21% 0.03% 0.05% 0.07% 0.12% 1137
apex4 9 19 - 594 1.16% 1.10% 0.93% 0.95% 0.97% 0.99% 0.31% 0.41% 0.49% 0.60% 1430
des 256 245 - 556 1.42% 1.41% 1.17% 1.20% 1.21% 1.27% 0.80% 0.85% 0.92% 0.95% 2022

ex1010 10 10 - 668 1.24% 1.05% 0.51% 0.57% 0.65% 0.72% 0.27% 0.37% 0.47% 0.54% 1635
exp5p 8 63 - 384 0.73% 0.62% 0.46% 0.48% 0.51% 0.52% 0.24% 0.30% 0.32% 0.39% 795
misex3 14 14 - 490 0.55% 0.49% 0.32% 0.34% 0.37% 0.38% 0.10% 0.15% 0.16% 0.23% 1235

pdc 16 40 - 1515 0.91% 0.83% 0.52% 0.56% 0.61% 0.63% 0.16% 0.22% 0.31% 0.38% 3429
seq 41 35 - 705 0.63% 0.56% 0.39% 0.42% 0.44% 0.45% 0.11% 0.15% 0.21% 0.28% 1659
spla 16 46 - 1436 1.14% 1.05% 0.70% 0.74% 0.78% 0.82% 0.20% 0.31% 0.40% 0.48% 3270

GeoMean 21 24 - 683 0.75% 0.68% 0.47% 0.50% 0.52% 0.55% 0.17% 0.22% 0.28% 0.35% 1808
Fault Rate Ratio 1.00 0.91 0.63 0.67 0.70 0.73 0.22 0.30 0.37 0.47

MTTF Ratio 1.00 1.10 1.59 1.50 1.43 1.36 4.51 3.32 2.70 2.12

Table 3: Summary of experimental results
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Figure 5: IPD improvement indicator

and the curve represent the MTTF improvement for the cor-
responding circuits. Both values are normalized for better
demonstration. One conclusion that we can draw from the
figure is that the more the gap between the criticalities of
“on” set and “off” set is, the more IPD increases the MTTF.
When the“on”set dominates the criticality of an LUT, faults
on the LUT can be masked by OR converging logic and then
effectively reduce the criticality. On the other hand, AND
converging logic can effectively reduce criticality when “off”
set dominates.

4.3 Runtime
Table 3 also presents runtime of our algorithm in seconds.
Generally, each PLB takes about 10s to obtain the optimal
solution for duplication or decomposition. This can be im-
proved by more efficient algorithms in the future.

5. CONCLUSIONS AND FUTURE WORK
Leveraging decomposable LUTs and built-in carry chain in
modern FPGAs, we have developed an in-place decomposi-
tion (IPD) to decompose a logic function into two subfunc-
tions and to combine the two subfunctions via carry chain
inside a PLB. An ILP algorithm is proposed to solve IPD
for each PLB in a circuit. We have also revealed the con-
dition when in-place duplication is optimal and duplication
can therefore be used instead of ILP-based IPD for better
algorithm efficiency. The primary contribution of this paper
is to reveal the potential of IPD for robustness in FPGA.
For 10 largest MCNC combinational circuits synthesized by
ABC mapper and with a conservative 20% carry chain uti-
lization rate, IPD improves MTTF to 1.43 times for PLBs
similar to those in Xilinx Virtex-5 and 2.70 times for PLBs
similar to those in Altera Stratix-IV.

The current algorithms and implementation can be ap-
plied to sequential circuits as well by treating register out-
puts and inputs as primary inputs and outputs. When reg-
ister outputs and inputs are treated as primary inputs and
outputs, we observed simular but slightly less improvement
on MTTF of sequential circuits than that of combinational

circuits. However, this may lead to a over-constrained so-
lution and reduced MTTF improvement. Our future work
will develop a more accurate fault rate analysis and a more
efficient algorithm for sequential cirtuis.

In our experiments, we assumed that selected carry chain
circuits have been used for other purposes in a random fash-
ion. Industrial benchmarks will be used in the future to take
into account the real carry chain utilization. In addition,
new problem formulations and algorithms (similar to those
in [10]) could be developed to implement converging logic
in different PLBs when intra-PLB carry chain has been oc-
cupied, with consideration of trade-off between area, timing
and robustness. Finally, the interaction between IPD and
existing ROSE and IPR [6, 7] will be studied for robustness
optimization.
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