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ABSTRACT
Detecting small delay defects (SDDs) has become increasingly impor-
tant to address the quality and reliability concerns of integrated cir-
cuits. Without considering functional constraints in the circuits under
test, however, existing techniques may generate test patterns that are
functionally-unreachable. Such SDD patterns may incur excessive (or
limited) power supply noise (PSN) on sensitized paths in test mode,
thus leading to over-testing or under-testing of the circuits. In this pa-
per, we propose novel pseudo-functional testing techniques to tackle
the above problem. Firstly, by taking the circuit layout information
into account, functional constraints related to critical paths are ex-
tracted. Then, we generate functionally-reachable test cubes for SDD
faults in the circuit. Finally, we use ATPG-like algorithm to justify
transitions that pose the maximized PSN effects on sensitized critical
paths under the consideration of functional constraints. The effective-
ness of the proposed methodology is verified with large ISCAS’89 and
ILWS’05 benchmark circuits.

1. INTRODUCTION
Power supply noise (PSN) has an ever-increasing adverse impact on

circuit timing with technology scaling. As demonstrated in [15], a 1%
voltage change can cause approximately a 4% change in gate delay
in 90-nm, 0.9-V technology. Consequently, it is essential to take PSN
effects into consideration in at-speed delay testing to guarantee that in-
tegrated circuits (ICs) fully meet customer performance expectations.

Some prior works advocated to generate test patterns that induce
maximum PSN effects in delay testing to ensure the timing correct-
ness of the shipped IC products even in the worst-case scenario [4,
12]. As shown in [14], however, at-speed scan patterns can be up to
20% slower than any functional patterns. Consequently, such method-
ologies may lead to over-testing and induce significant test yield loss.
To resolve this issue, on the other hand, various low capture-power and
low IR-drop testing techniques were presented to reduce the PSN ef-
fects in at-speed testing [7, 8, 16]. These test methodologies, unfortu-
nately, lead to the concern for under-testing. That is, if we over-restrict
the PSN effects, some defective chips that cannot meet circuit timing
requirement may pass delay test, leading to test escapes [2]. There-
fore, to avoid both over-testing and under-testing, the real question is:
How can we exercise the worst-case timing of the circuits under test
(CUTs) in their functional mode during manufacturing test?
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To tackle the above problem, a layout-aware pseudo-functional test-
ing technique targeting path delay faults was presented in [10]. By ex-
tracting functionally-unreachable states (also known as illegal states or
functional constraints) in the circuit and feeding them into automatic
test pattern generation (ATPG) tools, [10] first generates functionally-
reachable test cubes for every true critical path in the circuit. Then,
they used a heuristic to fill the don’t-care bits in the test cubes to max-
imize power supply noises on critical paths under the consideration
of functional constraints. As pseudo-functional testing naturally min-
imizes the possibility of over-testing while their proposed X-filling
strategy is able to maximize PSN effects, [10] is able to simultane-
ously reduce both test overkills and test escapes.

Although the above pseudo-functional path delay testing technique
is quite effective, it is inherently non-scalable due to the exponential
number of paths in the circuit and hence can only be used to generate
a few top-up patterns for selected critical paths. Today, timing-aware
ATPG for transition faults has gained wide acceptance in the industry
to detect those small delay defects (SDDs) that cause quality and re-
liability concerns for high-performance ICs. In this work, we present
novel pseudo-functional ATPG techniques to simultaneously reduce
both test overkills and test escapes in SDD testing. By doing so, the
proposed ATPG engine is able to cover much more critical paths when
compared to [10]. The main contributions of this paper include:

∙ We present techniques to generate pseudo-functional SDD test
cubes, wherein, by taking the circuit layout information into
account, functional constraints related to critical paths are ex-
tracted and conformed during SDD test generation;

∙ We propose an efficient and effective ATPG-like algorithm to
generate switching activities that pose the worst-case power sup-
ply noises on sensitized critical paths under the consideration of
functional constraints;

The remainder of this paper is organized as follows. Section 2 re-
views related work and motivates this paper. In Section 3 and Sec-
tion 4, we detail our proposed pseudo-functional SDD test genera-
tion methodology. Experimental results on several large ISCAS’89
and IWLS’05 benchmark circuits are then presented in Section 5 to
show the effectiveness of the proposed solution. Finally, Section 6
concludes this paper.

2. PRELIMINARIES AND MOTIVATION
2.1 Pseudo-Functional Testing

The discrepancy between circuits’ activities in functional mode and
that in structural test mode significantly affects test quality [1, 13].
Pseudo-functional testing was proposed to tackle this problem and
has attracted lots of attention recently [9, 17, 18]. In this technique,
functionally-unreachable states in the circuit are extracted [17] and
then fed to a constrained ATPG tool to generate functional-like pat-
terns [11].
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2.1.1 Pseudo-Functional Path Delay Testing
With a large set of identified illegal states, applying pseudo-functional

patterns naturally minimizes the possibility of over-testing, but under-
testing may occur without taking PSN effects into consideration dur-
ing the ATPG process. To address this issue, in [10], the authors pro-
posed a pseudo-functional test pattern generation technique to maxi-
mize the PSN effects on selected critical paths, targeting path delay
faults.

As [10] is well-related to this paper, we briefly review it here. In
[10], a so-called PSN effect weight (PEW ) was proposed to evaluate
the PSN effect caused by transitions on aggressors1. As the location
of the aggressors should be close enough to that of the victim so that
they are competing for power supply, the authors defined a so-called
E f f ectiveRange as a pre-defined maximum distance between the ag-
gressors and the victims. Within this range, PEW is defined as follows.

PEW = 1−∣Xagg −Xvic∣/E f f ectiveRange (1)

where Xagg and Xvic denote the row-coordinate of the aggressor and
the victim, respectively, which represents the closer an aggressor is to
a victim cell, the higher PSN it induces on it.

[10] defined a probability-based transition PSN metric to evaluate
the impact of X-bits on the PSN of targeted path from transitions of
relevant gates. Based on above, a novel X-filling heuristic is proposed
to assign logic values for X-bits in the test cube to maximize the PSN
effects on selected critical paths under functional constraints.

2.2 Motivation
As shown in [10], simply maximizing or minimizing PSN effects

in at-speed delay testing is not a good strategy since such one-sided
solutions are inevitable to result in the concern of the other side. The
work in [10] made a good attempt to tackle this problem consider-
ing path delay faults. However, since the number of paths in a cir-
cuit increases exponentially as the circuit size grows, it is infeasible to
consider every path in the circuit explicitly. Instead, only those criti-
cal paths identified by timing analysis tools can be considered during
test generation. Unfortunately, the ever-increasing process variation
makes circuits’ timing behavior unpredictable, and hence there might
be a large number of paths being critical. Consequently, only a subset
of critical paths can be tested based on path delay fault model, which
cannot guarantee test quality and can only be used to generate some
top-up patterns.

Due to the above, small delay defect testing has been widely ac-
cepted by the industry, wherein we try to detect transition faults by
propagating their faulty effects through long paths whenever possible.
Compared to path delay testing, the number of SDD test patterns in-
creases almost linearly with the circuit size and we can achieve good
transition fault coverage by being able to flexibly choosing the sensi-
tization paths.

The above motivates us to take the circuit layout into consideration
and maximize power supply noise effects for SDD testing under the
consideration of functional constraints. By doing so, we are able to
achieve high quality delay testing by simultaneously reducing both
test escapes and test overkills of the CUTs.

3. PROPOSED METHODOLOGY
Fig. 1 presents the overall framework for our proposed layout-aware

pseudo-functional SDD test pattern generation procedure. Given the
layout and netlist information of circuit, we first obtain critical paths
with commercial timing analysis tool, and then extract illegal states
related to these critical paths based on the method presented in [17,
10]. As can be observed from Fig. 1, our proposed ATPG flow mainly
contains two parts: (i). pseudo-functional SDD test cube generation;
and (ii) PSN effect maximization.
1For a critical path under test, the on-path logic cells and the cells that induce
power supply noise on them are denoted as victims and aggressors, respec-
tively.
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Figure 1: Proposed Pseudo-Functional SDD Test Generation Flow

To generate pseudo-functional SDD test cube, we extend the con-
ventional SDD test generation method presented in [6] by integrating
the functional constraints checking and breaking mechanism, which is
to sensitize SDD through critical paths whenever possible, meanwhile,
it guarantees that no illegal states is included in the test cube by setting
them as functional constraint as [10].

Next, in terms of PSN effect maximization, for the critical paths
sensitized by the test cube, we first parse the circuit layout to identify
those relevant transitions that may induce power supply noise on it,
and estimate the delay impact caused by each transition. Then, sev-
eral algorithms are introduced to justify as many relevant transitions
as possible by judiciously filling the X-bits of the test cubes without
violating functional constraints, so that the PSN effects incurred by
the final test pattern is nearly the worst-case scenario that exists in
functional mode (detailed in Section 4). After obtaining each pattern
as above, we drop those transition faults that are located on the same
sensitized critical path. To note, we do not conduct fault simulation
and drop the other detected transition faults since PSN effects are not
considered for their sensitized paths yet.

4. MAXIMIZING PSN EFFECTS UNDER FUNC-
TIONAL CONSTRAINTS

4.1 Relevant Transition Identification
After obtaining pseudo-functional test cubes, our objective is to fill

the X-bits to maximize PSN effects on the sensitized critical path un-
der functional constraints of each SDD test pattern. We do not simply
reuse the probability-based X-filling technique presented in [10] due
to its computational complexity2. Instead, we propose an effective
ATPG-like technique to fill X-bits, which is able to directly justify the
targeted transitions on relevant aggressors to required values by filling
X-bits in the test cubes. As we cannot justify all the relevant transi-
tions simultaneously, the main challenge is how to effectively justify
those highly-relevant transitions as many as possible without violating
functional constraints.

To tackle the above problem, we first parse the circuit layout to
identify those relevant aggressors that may induce power supply noise
affecting the targeted fault’s behavior. Then based on the distance
and required transition type of aggressors, the PEWagg−vic is calcu-
lated according to Eq. (1) for each pair of the on-path victim cells
and their respective aggressors. The PSN impact for relevant transi-
tion on a specific aggressor is then calculated by summing up all the
PEWagg−vic between this transition and all the on-path victims and
we denote it as transition weight (TW ). By formulating the problem
as above, our objective becomes to maximize the total TW by justify
relevant transitions as many as possible using X-bits in the test cube,
without violating functional constraints.

2As there is no direct correlation between X-bits within test cube and the rel-
evant signals with required transitions, time-consuming probability-based sim-
ulation is conducted in [10] to guide the filling procedure for every test pattern.
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Figure 2: Flowchart for Our Pseudo-Functional Relevant Transi-
tion Generation ALgorithm

4.2 Pseudo-Functional Relevant Transitions Gen-
eration

The task to justify the maximum number of compatible transitions
that lead to PSN effects is quite challenging, as certain relevant tran-
sitions cannot be justified simultaneously due to logic conflicts in the
circuit. Since it is obviously unacceptable to enumerate all the possi-
ble combinations, we propose to justify the set of relevant transitions
in an incremental manner.

Our proposed algorithm is composed of three main parts as shown
in the flowchart in Fig. 2. Firstly, we conduct a fast pre-processing step
on the relevant transition set, and try to form a compatible transition
graph (CTG) in such a way that some possible concurrently-justifiable
transitions are identified by logic implication, and then we extract the
maximum clique on the CTG. The subset of transitions on this clique
is our focus in the next transition justification step, wherein several
heuristics are used to justify as many as transitions in this subset as
possible3. To avoid being trapped into local optimal solution, we also
equip our algorithm with the flexibility to search within certain range
(denoted as backtracking mechanism), so as to find better solution in
the end.

4.2.1 Preprocessing
The relevant transitions identified from the layout information may

logically-conflicting with each other. Although we are able to identify
these conflicts during the logic value justification process, too many
conflicting transitions will dramatically increase the processing burden
and hence severely impact the runtime of our solution.

To resolve the above problem, we conduct a pre-processing step to
reduce the problem complexity, by using logic implication to build the
so-called compatible transition graph (CTG) as follows. Given a test
cube, two relevant transitions are treated as compatible if there is no
conflict after applying logic implication for the two transitions. Every
node on the CTG denotes a relevant transition which is weighted by
TW value, and two transitions are connected with a edge if they are
compatible. It is worth noting that building such CTG graph is quite
efficient because logic implication can be conducted efficiently and
CTG graph construction is a one-time effort only. Before transition
justification, we first extract the maximum clique of CTG and target
the transitions within it in the following steps.

3Not all transitions can be concurrently justified even for this subset in the
clique as logic implication is usually incomplete.

4.2.2 Transition Justification
We introduce two techniques to justify the required transitions as

many as possible. As both of them are based on the so-called symbolic
justification mechanism, we discuss it first.

To justify a transition, it is necessary to concurrently justify two
values for the same node in the circuit in two consecutive timeframes.
As the example shown in Fig. 3, wherein the circuit has been unrolled
and we want to justify three transitions at B, D and E. Taking tran-
sition at D as an example, there are two objects located at B and B′
in the two timeframes, respectively. For justifying B = 1, we need to
justify both C = 0 and I = 1 on different branches since logic ‘1’ is the
non-controlled value for NOR gate. Initially, three values need to be
justified for one transition, and this number keeps increasing as justifi-
cation proceeds. Suppose that a particular transition is failed because
it cannot be justified at any branch, it is meaningless to justify the rest
of the branches. Hence, we need to hold such information at the un-
justified gates to indicate which transitions it is related to. Moreover,
the to-be-justified transitions may be treated differently as they may
have different impact on PSN effects.
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Figure 3: Symbolic Justification Mechanism: An Example

To represent all of above, we introduce two sets of the so-called
justifying symbols ( js0 and js1) at the unjustified gates. Each justifying
symbol is composed of a three-tuple element including the correlated
transition, the weight of the transition and the state of the transition
(i.e., the un-failed transition is labeled as UF while the failed transition
is labeled as F). js0 and js1 list the set of transitions that require the
gate to be ‘0’ and ‘1’, respectively.

Symbolic Multiple Backtracing
Starting from several unjustified values, we employ multiple back-

tracing technique to trace them concurrently. In conventional ATPG
[3], the technique propagates n0 and n1 to indicate how many times
that the signal is required to be logic ‘0’ and logic ‘1’, and it sim-
ply treats every unjustified value equally important. For our problem,
however, different transitions have non-equal weight as indicated by
their TW values, and we need to have higher priority to justify those
transitions with larger TW . At the same time, we also need to remove
the state of some relevant transitions, since it does not make sense to
consider those failed transitions. Therefore, we propose a symbolic
multiple backtracing technique that propagates the justifying symbol
list js0 and js1, based on the following rules:

∙ For NOT gate, duplicate the js0/ js1 to js1/ js0 of its fan-in gate;

∙ For the other kinds of gates, if vo at output and vi at input are the
non-controlled and non-controlling values for the gate respec-
tively, we duplicate the jsvo to the jsvi of all the fan-in gates;
otherwise when they are the controlled and controlling values
for the gate respectively, we duplicate the jsvo to the jsvi of the
easiest justifiable fan-in gate, which is defined as the gate closest
to the primary/pseudo-primary input.

Following the example shown in Fig. 3, we use Fig. 4 to illustrate
the procedure for justifying symbol propagation, which is depicted by
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the arrowed lines. All the backward propagations stop at multi-fanout
nets or at the inputs. For example, for FF1, some transitions require
it to be logic ‘1’ while others require it to be logic ‘0’, hence we need
to make value decision on such multi-fanout nets, which is detailed in
the following symbolic transition-aware implication.
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Figure 4: Symbolic Multiple Backtracing: An Example

Symbolic Transition-Aware Implication
There are two major tasks in the symbolic transition-aware implica-

tion procedure. The first one is to guarantee no functional constraints
is violated during justification process. This is achieved by represent-
ing functional constraints in the same way as described in [10]. As
the example shown in Fig. 5, suppose flip-flops FF0 and FF1 should
have the same value, we insert a phantom XOR gate P into the circuit
and assign logic ‘0’ to it. By doing so, we can detect the logic conflict
on P if and only if these two flip-flops are assigned with the same logic
value. Once any functional constraint is violated, we stop implication
for backtracking by inverting the logic value that is last assigned at the
multi-fanout net.

The second task is to make value assignment decision when multi-
fanouts are reached during the multiple backtracing process. We can
observe that different implication orders result in failures of different
relevant transitions. As shown in Fig. 5, starting from multi-fanout
FF0 first, it is assigned with logic ‘1’ since the js0 set is empty on
it. Next, when making decision on FF1, we specify it as logic ‘0’
because the TW on B is larger than that on D. Functional constraint
violation is then detected on gate P, and backtracking is conducted
to invert the logic value on the last multi-fanout FF1. Consequently,
transition on B fails. However, suppose the decision making order is
first to assign ‘0’ on FF1 and then specify ‘1’ on FF0, the functional
constraint violation results in backtracking to invert the logic value
on FF0. In this case, the justifications for E(0) and A(1) are both
dependent on Input0. According to justifying symbols on these two
nodes, we specify Input0 as logic ‘0’. This assignment inverts the
logic value on A, and correspondingly, the logic values on D, G and
E ′ are all flipped, making transitions on both E and D failed.
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Figure 5: Impact of Implication Order: An Example

Based on the above observation, we propose a symbolic transition-
aware implication procedure that heuristically reduces the total amount

Benchmark Number of Gate (#) Fault Coverage (%) Path Activation Ratio (%)
s5378 2958 80.57 77.82
s9234 5808 80.29 81.68
s13207 8589 83.82 83.27
s15850 10303 82.28 64.13
s38417 23815 92.76 79.32
s38584 20679 86.29 72.56

des 154323 85.64 98.7
Average 84.52 79.64

Table 1: SDD Fault Detection Quality.

of weighted failed transitions as follows. For each reached multi-
fanout during the multiple backtracing process, we check its js0 and
js1 lists and calculate the weighted sum of the un-failed justifying sym-
bols on js0 and js1, which are defined as WSUJB0 and WSUJB1, re-
spectively. Next, WSUJB is used to store the larger value between
WSUJB0 and WSUJB1 on every reached multi-fanout. We then sort
the set of reached multi-fanouts in a non-decreasing order based on
their WSUJB values. Finally, we make value decision on multi-fanouts
and perform logic implication one by one. To be specific, starting from
the first gate in sorted multi-fanout list, we assign the corresponding
logic value according to WSUJB. Then we conduct logic implication
process and some transitions may fail, hence we update the states of
the justifying symbols on each reached multi-fanout or input and then
check the multi-fanout list again. The above procedure iterates un-
til all the reached multi-fanouts and inputs have specified values. By
doing so, the multi-fanout with higher weighted sum of un-failed jus-
tifying symbols is processed with higher priority, and hence we can
effectively reduce the total amount of failed transitions.

4.2.3 Multi-Level Backtracking Mechanism
In conventional ATPG process [3], backtracking is conducted as

soon as a logic conflict is detected during implication. While for our
problem, we can accept certain amount of temporary logic conflicts
that reduce the number of desired transitions and resolve them in later
stage. Consequently, we need to design a new backtracking mecha-
nism for maximizing PSN effects, as shown in the following.

During transition justification, we denote the T TWf /T TW as the
failed transition ratio (FT R), where T TWf and T TW are the total TW
of the failed transitions and that of total relevant transitions. Our ini-
tial thinking is to set one threshold ratio value T R, and backtracks once
the FT R is larger than T R. However, this strategy is not quite effec-
tive because the optimal T R values for different set of to-be-justified
transitions vary significantly, and hence a universal threshold value is
not preferred. In order to overcome this problem, we set a series of
threshold T R = {tr0, tr1, tr2...} arranged in an increasing order and
there is some interval between any neighboring pair. For example,
T R = {10%,20%,30%...}. For a given set of transitions to be jus-
tified, we try the threshold values one by one in the T R vector, and
record the number of backtrackings (denoted as nBT ). Clearly, later
trials are easier with smaller nBT . In each trial, if nBT is larger than
a a pre-defined constant value maxBT , we use the next more relaxed
threshold. This procedure terminates when either a solution is found
with nBT ≤ maxBT or all the threshold levels have been tried.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

We implement our layout-aware pseudo-functional SDD pattern gen-
eration framework on top of an academic ATPG tool Atalanta [5],
which originally targets stuck-at faults using FAN algorithm [3]. Ex-
periments are conducted on several large ISCAS’89 and IWLS’05
benchmark circuits that are available to us. Among them, the largest
circuit des contains about 150k logic gates. We synthesize them using
UMC’s 130nm CMOS technology with 1.08V power supply voltage,
and layout them using commercial EDA tools.
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Benchmark
SDD1
TWr

SDD2
TWw

SDD3
TWf

SDD4
TWo ORTW (%) OWTW (%) OFTW

s5378 19.15 29.36 23.62 26.56 38.69 -9.54 12.45
s9234 24.31 38.17 28.88 30.85 26.90 -19.18 6.82
s13207 35.98 61.37 41.51 48.65 35.21 -20.73 17.20
s15850 28.79 50.07 31.36 38.58 34.00 -22.95 23.02
s38417 57.8 105.25 72.91 91.83 58.88 -12.75 25.95
s38584 73.45 132.89 85.2 115.68 57.49 -12.95 35.77

des 306.89 431.25 346.87 419.68 36.75 -2.68 20.99
Average 41.13 -14.40 20.32

ORTW = TWo−TWr
TWr

×100% OWTW = TWo−TWw
TWw

×100% OFTW =
TWo−TWf

TWf
×100%

Table 2: Comparison among Different SDD Patterns.

5.2 Results and Discussion
As we mentioned in the previous section, our proposed technique

does not directly optimize the delay caused by PSN effects. This is
because, we can only obtain relatively accurate delay value by apply-
ing both PSN simulation and timing analysis and it is not affordable to
integrate such time-consuming process into our ATPG flow. Instead of
doing so, we employ the transition weight metric TW to evaluate the
PSN effects caused by certain transitions on a sensitized path and then
try to maximize the overall effective TW by justifying relevant transi-
tions in the original SDD test cube. To demonstrate the effectiveness
of our method, it is important to observe the correlation between TW
and the real circuit delay.

In our first experiment, we randomly select two SDD test cubes for
s38417 and one pattern for des, and then we randomly fill the X-bits in
them and calculate the sum of the activated relevant transitions TW for
several rounds. To obtain the delay information under PSN effects, we
first perform IR-Drop analysis on the layout with commercial tool to
extract the exact voltage on each node of the sensitized path, and then
feed this information into static timing analysis tool to obtain the de-
lay for the targeted path. After acquiring the delays on corresponding
paths for these patterns, we plot TW -delay figure as shown in Fig.6.
It can be observed that, although they are not perfectly correlated, the
trend is quite similar and the delay increases as the growth of the ac-
tivated TW in most cases. Hence, it is with sufficient accuracy to use
TW as the optimization target in our algorithm.

In our second experiment, we randomly select six true critical paths
sensitized by the SDD test patterns generated by [6] and then record
the maximum TW and minimum TW when these paths are under test,
as shown by “Orig. MIN” and “Orig. MAX” in Fig. 7. The corre-
sponding result with the proposed method is shown by “Pro.”. We
utilize the method in [10] to generate corresponding patterns on each
selected path and the TW result is denoted by “[10]” in Fig. 7. We
can observe that some paths (e.g., Path 6 in Fig. 7) can never be suffi-
ciently tested with the original test set, as the maximum TW is smaller
than the one obtained by both the proposed one and [10], causing pos-
sible test escapes. We also observe that, in most cases, a path can be
sensitized with much higher TW value than the one obtained under
functional constraints (e.g., Path 1 in Fig. 7), and hence leading to
possible test overkill. When comparing the induced PSN effects from
the proposed method against the one in [10] for the same path, we can

observe that the proposed one achieves higher TW than [10] on every
path. This demonstrates the proposed ATPG-like X-filling technique
is able to induce higher PSN effects under functional constraints when
compared with existing solution, thus improving test quality.

Then, Table .1 presents the SDD detection quality of our proposed
SDD patterns. Transition fault coverage is shown in Column 3 and
it can be observed that at least 80% transition faults can be covered
by our pseudo-functional SDD patterns for all the benchmark circuits.
Column 4 represents the critical path activation ratio, which is cal-
culated as follows. We first extract those critical paths which have at
most 10% slack from the longest path in the circuit according to static
timing analysis results. Next, we remove those false paths that are
not sensitizable in functional mode and denote the remaining paths as
sensitizable paths. We then count those paths that are sensitized by
our SDD test patterns, denoted as sensitized paths. The Path Activa-
tion Ratio is the ratio between these two sets of paths. On average,
there are 80% sensitizable paths activated by our SDD patterns. This
result shows that our SDD test patterns can effectively sensitize most
sensitizable critical paths in the circuit.
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Table 2 presents the comparison between different X-filling mecha-
nisms for small delay defects, in which we generate pseudo-functional
SDD test cubes first using the techniques presented in Section 3, and
fill the X-bits in test cubes differently to obtain four kinds of SDD pat-
terns: (1) pseudo-functional patterns with randomly-filled X-bits, de-
noted as SDD1; (2) test patterns to maximize PSN effects without con-
sidering functional constraints, represented as SDD2; (3) test patterns
to fast generate PSN effects under functional constraint, where we
speed-up relevant transition generation without applying multi-level
backtracking, shown as SDD3; (4)our proposed pseudo-functional pat-
terns to maximize the PSN effects under functional constraints, de-
picted as SDD4;

Columns 2-8 list the comparison among the four kinds of SDD pat-
terns. Columns TWr, TWw, TWf and TWo represent the average acti-
vated transition weight for different kinds of patterns. ORTW , OWTW
and OFTW are calculated as ORTW = TWo−TWr

TWr
× 100%, OWTW =

TWo−TWw
TWw

× 100%, and OFTW =
TWo−TWf

TWf
× 100%, respectively. By

comparing test patterns generated using the proposed solution against
conventional pseudo-functional patterns with randomly-filled X-bits,
it can be observed from Column 6 that our method can achieve up to
59% more PSN effects for benchmark s38417, and for all the bench-
mark circuits the average improvement is around 40%. As stated ear-
lier, while pseudo-functional testing inherently minimizes over-testing
problem, it may suffer from serious under-testing problem. The above
results demonstrate the effectiveness of our proposed algorithm by
explicitly taking PSN effects into consideration. When comparing
against patterns with maximum PSN effects without considering func-
tional constraints, we can observe more than 14% less PSN effects
on average for all benchmark circuits, and scan patterns for bench-
mark s15850 can result in up to 23% more power supply noises than
our patterns that try to maximize PSN effects under functional con-
straints. This comparison indicates that it is crucial to take func-
tional constraints into consideration when generating SDD test pat-
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terns. Otherwise, circuits can be over-tested, leading to significant test
yield loss. Then, we compare our proposed results fast maximiza-
tion ones to demonstrate the effectiveness of multi-level backtracking
mechanism. Without applying such technique, we lose to generate
20% PSN effect. In particular, we improve 35% PSN effect for bench-
mark s38584.

Next, we study the impact on ATPG runtime with the proposed
pseudo-functional SDD testing technique. The result is shown in Fig-
ure. 8, and we also plot the runtime for conventional non-pseudo-
function SDD ATPG with randomly filling for comparison. First of
all, we notice that functional constraints can be processed very ef-
ficiently in both test cube generation procedure and relevant transi-
tion generation procedure. This conclusion is drawn by observing the
close runtime between pseudo-functional random filling ATPG (De-
noted by “R.F. under F.C.”) and non-pseudo-functional random fill-
ing ATPG (Denoted by “Non-Functional pattern R.F. without F.C.”),
and between our proposed ATPG (Denoted by “Our proposed”) and
the ATPG that maximize PSN without functional constraint (Denoted
by “PSN MAX without F.C.”). Secondly, on average, we need to
pay more than twice runtime of proposed solution than the pseudo-
functional random filling ATPG, and for some extreme cases (e.g.
s38417) this ratio may reach as many as 3 times. The main overhead
here is caused by relevant transition extraction, process and genera-
tion. However, as we can see, the extra runtime does not grow ex-
ponentially with the increase of circuit size, which indicates the good
scalability of our proposed method. Thirdly, multi-level backtracking
is a very timing-consuming part in relevant transition generation as we
need to try different fail ratio thresholds and it may introduce some
meaningless search effort. To extract runtime used on such mecha-
nism, we compare our proposed ATPG with a fast PSN maximization
ATPG (Denoted by “PSN FMAX with F.C.”). It can be observed that
we significantly improve PSN effect by taking only up to 30% extra
runtime, which should be worthwhile considering the associated im-
provement of test quality.

In [6], once a SDD pattern is generated, fault simulation is con-

ducted and all the faults that are propagated through long paths are
dropped. In our method, however, we drop those undetected faults
if and only if they are located on the path targeted in relevant transi-
tion justification, since we need to guarantee the dropped faults have
been affected by sufficient PSN effects. Consequently, our solution
generates more test patterns than [6]. We compare the pattern count
between the two methods, as shown in the Fig.9. It can be observed
that, the pattern count increase is moderate and we attribute this to the
fact that long paths are difficult to be sensitized if we do not target on
them during the test pattern generation process.

6. CONCLUSION
In this work, we present a novel pseudo-functional ATPG technique

to simultaneously reduce both test overkills and test escapes in SDD
testing. Experimental results on large benchmark circuits demonstrate
the benefits of the proposed solution.
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