
Fast Statistical Timing Analysis for Circuits with Post-Silicon
Tunable Clock Buffers

Bing Li, Ning Chen, Ulf Schlichtmann
Institute for Electronic Design Automation, Technische Universitaet Muenchen, Germany

{b.li, ning.chen, ulf.schlichtmann}@tum.de

Abstract—Post-Silicon Tunable (PST) clock buffers are widely used
in high performance designs to counter process variations. By allowing
delay compensation between consecutive register stages, PST buffers can
effectively improve the yield of digital circuits. To date, the evaluation
of manufacturing yield in the presence of PST buffers is only possible
using Monte Carlo simulation. In this paper, we propose an alternative
method based on graph transformations, which is much faster, more than
1000 times, and computes a parametric minimum clock period. It also
identifies the gates which are most critical to the circuit performance,
therefore enabling a fast analysis-optimization flow.

I. INTRODUCTION

Process variations have become larger in recent technology nodes.
This trend makes the traditional worst-case timing analysis too
pessimistic, which causes expensive overdesign and deprives design-
ers of the valuable performance-yield information. To model the
timing characteristics of a circuit more accurately, Statistical Static
Timing Analysis (SSTA) has gained much attention in the research
community in past years. This method models process variations with
random variables directly and computes the complete performance-
yield curve of the circuit. According to the assumption of the distri-
butions of process variations and the method to model gate delays
as well as the computation of the circuit delay, statistical timing
algorithms can roughly be classified into several groups. First-order
methods [1]–[3] use the canonical linear form [3] to represent gate
delays and arrival times so that the computation can be simplified,
at the expense of accuracy. To improve modeling and propagation
accuracy, quadratic methods are proposed in [4]–[7], using second-
order polynomials to approximate gate delays and arrival times. Other
methods, for example [8], [9], can handle non-Gaussian process
variations and the corresponding timing propagation.

The research on statistical timing analysis focuses mainly on
combinational circuits, which implies that it is only applicable to flip-
flop based circuits. However, many methods have also been deployed
in industry to counter process variations, thus creating circuits with
special structures. Post-Silicon Tunable clock buffers, PST buffers
henceforth, are widely used in high performance designs, for example
[10], [11]. The tunable or programmable buffers are inserted in the
clock network to the registers which are relevant to critical paths.
After manufacturing, the delay values of these buffers are adjusted,
through the TAP port, to assign the critical paths more timing margin
by allowing the delay compensation between register stages, therefore
revitalizing the chips which may have failed to meet the timing
specification. Consequently, with PST buffers the yield of the circuit
should be higher than without them deployed.

Several methods have already been proposed for statistical timing
analysis and optimization of circuits with PST buffers. In [12] a
clock scheduling method is developed and PST buffers are selectively
inserted to balance the skew that could be caused by process
variations. Further in [13] algorithms are proposed to minimize the
area required for the insertion of PST buffers, or to minimize the
number of PST buffers in the circuit. In these methods, the yield of the
circuit with PST buffers is computed using Monte Carlo simulation,

therefore requiring much runtime. In [14] the yield loss due to process
variations and the total cost of PST buffers are formulated together
for gate sizing. The resulting optimization problem is solved using a
stochastic cutting plane method mixed with a Monte Carlo based STA
scheme, still having a slow convergence. Additionally, the placement
of PST buffers is investigated in [15] and large benefit is observed
when the clock tree is designed using the proposed tuning system.
To the best of our knowledge, all existing methods depend on Monte
Carlo based yield evaluation, thus causing considerable large runtime.

The research on statistical timing analysis and optimization has
shown the advantage of using PST buffers in high performance de-
signs. However, two problems still remain. The first is the requirement
of a fast statistical timing analysis method, with which the runtime
of the already proposed methods for optimization can be reduced.
These methods still use Monte Carlo simulation to compute the yield
of the circuit and no faster solution exists. The second is to select
a small set of gates for sizing after the main circuit structure is
stable. The selected gates should have high probabilities to affect
the circuit performance, which can be improved by sizing these
gates. In statistical timing analysis this probability is usually called
criticality, and many methods have been proposed to describe and
compute the criticalities of the gates in the circuit efficiently. In [3]
the concept of criticality is first explored but without considering
correlation. In [16] the sensitivities of gate and path delays to the
circuit delay are computed. In [17] the criticality is computed using a
cutset based method with a binary tree partition. Furthermore in [18]
a fast criticality computation method is proposed with incremental
yield gradients. Additionally in [19] a clustering based pruning is
proposed to speed up the computation and improve the accuracy of
criticalities. For ranking criticalities the computation of the maximum
of a set of random variables is investigated in [20]. These methods,
though accurate and fast, do not consider PST buffers, which allow
the compensation of path delays across register stages and therefore
make the criticality computation more complicated.

In this paper, we propose a fast method to compute the circuit delay
in the presence of PST buffers. We also investigate the criticalities
of gate delays when timing compensation is allowed across register
boundaries. The main contributions of this paper are as follows.

• The proposed method computes a parametric minimum clock
period for the circuit with PST buffers. The statistical properties
of this minimum clock period, such as mean and variance, are
directly available so that the yield of the circuit for any given
clock period can be evaluated very fast. Since the computed
circuit performance is in a parametric form, it can easily be
integrated into other optimization methods for circuits with PST
buffers.

• The proposed method is much faster, more than 1000 times, than
Monte Carlo simulation by handling the path delay compen-
sation across registers with a graph transformation based loop
evaluation.

• The criticalities of gate delays in such circuits are defined and

ICCAD2011
DOI: 10.1109/ICCAD.2011.6105314
http://ieeexplore.ieee.org/document/6105314/

ar
X

iv
:1

70
5.

04
97

9v
1

 [
cs

.A
R

]
 1

4
M

ay
 2

01
7

computed. The gates with large criticalities are candidates for
sizing when the circuit structure is stable. The proposed method
can capture the most critical gates within very short runtime,
therefore enabling a fast analysis-sizing cycle.

The rest of this paper is organized as follows. In Section II we
give an overview and formulate the problem of timing analysis for
circuits with PST buffers. In Section III we explain our statistical
timing analysis and criticality computation method. Finally we show
experimental results in Section IV and conclude our work in Sec-
tion V.

II. TIMING ANALYSIS WITH PST BUFFERS

In this section, we describe the timing constraints of digital circuits
with PST buffers. The proposed method handles circuits in which
all registers are edge triggered Flip-Flops (FFs). For simplicity we
will only discuss setup time constraints. Hold time constraints can be
analyzed similarly as formulated in [21], or met by delay insertion
or padding, for example in [22].

In a digital circuit the clock signal is routed to FFs through a clock
distribution network. If PST buffers exist on the clock routing to FFs,
the clock signal reaches FFs not at the same time. Fig. 1 shows an
example of two FFs with PST buffers.

xjxi

clk clk

FF i FFj

Fig. 1. FFs with PST Buffers

Assuming the common clock signal switches at reference time 0,
the clock events at FF i and j happen at time xi and xj due to
the PST buffers. To guarantee the setup time constraint of FF j, the
minimum clock period T must meet

xi + dij ≤ T + xj − sj ⇐⇒ xj − xi ≥ wij − T (1)

for any pair of FFs i and j, where xi and xj are the delay value
of the PST buffers; dij is the maximum delay of the combinational
paths from i to j; T is the clock period; sj is the setup time of j;
and wij = dij + sj . Each PST buffer has a feasible delay range
determined by design specification or the optimization algorithm, for
example [13], written as

−ri ≤ xi ≤ ri (2)

where ri is a predetermined constant for the PST buffer to FF i. xi

is defined in respect to a reference time so that it can be negative.
When process variations are considered, the values of dij and

sj can only be known after manufacturing. An individual chip is
considered working if a set of values for xi and xj meeting (1) and
(2) can be found. The PST buffers are adjusted to have delays of
these values so that the given clock period T can be met. This is
actually a skew schedule problem in static timing analysis [23] to
improve the circuit performance by cycle stealing, and can be solved
by minimizing T subject to (1) and (2), using linear programming or
the binary search method in [21]. If the minimum clock period T is
smaller than the specification, the values of PST buffers, as xi and
xj in Fig. 1, are determined accordingly, using linear programming,
for example. Otherwise, the chip is considered failed. The goal of
statistical timing analysis for circuits with PST buffers is thus to

determine the percentage of chips for which a valid set of PST values
can be found.

Since each chip after manufacturing can be considered as a sample
in the parameter space, all minimum clock periods of the chips can be
described using a random variable Tmin. The yield of the circuit for
a given clock period T is computed by the probability prob{Tmin ≤
T}. Before manufacturing, Tmin can be computed by sampling the
variables dij and sj in (1) and computing the minimum clock period
for each sample using Monte Carlo simulation. However this method
needs a very long runtime for a large number of samples to guarantee
simulation fidelity. In our method we directly compute Tmin from
the constraints of (1) and (2) to avoid the runtime problem.

Because in each constraint of (1) and (2) there are no more than two
variables xi or xj , they together form a difference constraint problem.
The constraint that there is a solution for the problem described by
(1) and (2) is equivalent to the constraint that all the loops in the
corresponding constraint graph are nonpositive [24, Ch. 25.5]. The
constraint graph contains a node for each FF, corresponding to a
variable xi or xj in (1) and (2). If a constraint (1) exists for FFs i
and j, a directed edge is created from i to j, with weight wij − T .
To incorporate the constraint (2), a common root node is created
and an edge is created from it to i with weight −ri for xi ≥ −ri

and an edge from i to the root node with weight −ri for xi ≤
ri, equivalent to −xi ≥ −ri. Fig. 2 shows a constraint graph with
3 nodes representing x1 to x3, where node 0 is the root node. A
loop in the constraint graph is nonpositive if the sum of all the edge
weights of the loop is nonpositive. Without considering the root node,
the constraint graph is actually a register connection graph, where
each node represents an FF and an edge represents the combinational
connection between FFs, with wij as the sum of the maximum path
delay and setup time and T as the timing budget. The constraint
graph is also used in [21] to determine the skew range in static timing
analysis. The detailed proof of the equivalence of the nonpositive loop
constraint in the graph and the existence of a solution for (1) and (2)
can be found in [24].

0

2

31
w31 − T

−r
3

−r
3

w23
− T

w
12 −

T

w
21 −

T

−
r 2−

r
1

−
r
1

−
r 2

Fig. 2. Constraint Graph

III. THE PROPOSED METHOD

In this section we will first explain the basic concept to extract
Tmin for the clock period from the constraint graph. Thereafter, the
criticality computation in the presence of PST buffers will be shown.
Finally, several techniques are explained to reduce the runtime.

A. Extracting Tmin using graph transformation

The minimum clock period Tmin must guarantee that there is at
least a solution for the difference constraints of (1) and (2). This is
equivalent that all the loops in the constraint graph are nonpositive.
For convenience we write all the edge weights in the constraint graph
into the form wij−kijT . For edges which are connected with the root
node kij = 0 and wij = −ri. The weight of a loop l in the graph,
denoted by Wl, is computed by Wl =

∑
i,j(wij − kijT), where

the sum is computed over all the edges in the loop. The nonpositive
constraint for the loop l specifies that

Wl =
∑

i,j

(wij − kijT) ≤ 0 ⇐⇒ T ≥
∑

i,j

wij

/∑

i,j

kij = Tl (3)

Tl is called loop constraint henceforth because it is a lower bound
for the clock period. In the constraint graph the loops containing
only edges connected with the root node have

∑
i,j kij = 0. These

loops are not included in (3) because the corresponding
∑

i,j wij are
always negative.

The constraint (3) from one loop creates a lower bound for the
feasible clock period. If all loops are considered, the minimum clock
period Tmin can be computed as

Tmin = max
l∈L

Tl (4)

where L is the set of all loops in the graph except those which only
include the edges connected with the root node. These loops always
have negative loop weights and create no constraint for Tmin.

To compute Tmin in (4) the direct enumeration of all loops is
prohibitive owing to the number of loops in a large constraint graph.
Instead, we use a method based on graph transformation to capture
the loops whose weights affect Tmin. These loops tend to have fewer
numbers of nodes on them than the theoretically largest loop, which
contains all nodes in the graph. This observation will be explained
in Section III-C. The basic concept of traversing loops by graph
transformation has been used in [25] for statistical timing analysis
of level-sensitive circuits. However, it can not handle the constraint
graph, especially due to the full connections from and to the root
node. In our method several improvements will be introduced to
handle the constraint graph and an edge tracing method will be used
to compute the criticalities.

Two basic graph merge operations are used in the graph transfor-
mation: serial merge and parallel merge. Fig. 3 illustrates an example
of the serial merge operation. The transformation removes node v
from the graph and creates direct edges between its input and output
nodes. The weight of a new edge is equal to the sum of the weights
of edges from which the new edge is formed and is also in the same
form wij − kijT , so that the serial merge operation can be applied
repeatedly. In this transformation, an input node and an output node
may be the same. For example, if we apply the serial merge to node
1 in Fig. 2, a new edge will be created forming a loop at node 2 and
similarly at the root node. Such a loop, called self loop, is removed
from the graph and the constraint from it, in the from of (3), is
extracted and merged into Tmin using (4). Because the serial merge
operation creates direct edges between nodes repeatedly, self loops
actually contain the sum of the edge weights from the original graph.
For example after removing node 1, the self loop at node 2 captures
the constraints from the loop 2 → 1 → 2 in Fig. 2. If there are other
loops which pass through the removed node v, serial merge does not
affect their loop weights because the edge weights from any input to
any output of v are maintained in the new edges, so that serial merge

v
wvjn − kvjnT

wimv − kimvT

i1 im

jnj1

i1 im

jnj1

(wimv + wvjn)

= wimjn − kimjnT
−(kimv + kvjn)T

Fig. 3. Serial Merge

can be applied repeatedly until all loop constraints are extracted and
Tmin is computed eventually.

After each serial merge operation the node number of the graph is
reduced by one. If a node with m inputs and n outputs is removed,
m×n new edges are created, assuming no self loops appear. Normally
this is far larger than the number of the removed m + n edges, thus
causing the edge number in the graph to increase very fast during
the transformation. Actually applying the serial merge operation
repeatedly to capture all loop constraints enumerates all the loops,
which is prohibitive for a large graph. Therefore, further methods
will be applied to reduce the number of edges after each serial merge
operation.

Because new edges between the input and output nodes are created
during the serial merge operation, parallel edges may appear, which
can be merged together to reduce the number of edges. For example,
if node 3 in Fig. 2 is removed, a new edge is created from node 2 to
1, parallel to the edge from 2 to 1 in the original graph. An example
of the parallel edges is shown in the left of Fig. 4. If the coefficients
of T , −k1 and −k2 in Fig. 4, in the weights of the parallel edges
are equal, these edges can be merged into one edge by the operation
called parallel merge. In Fig. 4, the two edges with −k1T are merged,
but the other edge with −k2T can not be processed similarly because
at this time we do not know the value of T . Similar to the serial merge
operation, parallel merge does not affect the constraints from the
weights of loops which pass through i and j, because the maximum
weight of the loops through the merged edges is maintained by the
new edge.

ji

wij2 − k1T

wij1 − k1T

wijn − k2T

ji

max{wij1 , wij2} − k1T

wijn − k2T

Fig. 4. Parallel Merge

Using the two graph transformation operations we can capture
all loop constraints and compute the minimum clock period Tmin,
shown in Algorithm 1. The function remove self loop(i) removes
all edges from and to i, which are self loops generated after
the transformation. These loops are formed by compressing the
loops comprising multiple edges in the original graph by repeatedly
applying the serial merge operation. For each of these self loops
the constraint in (3) is computed and Tmin is updated using (4),
therefore capturing the constraints of the loops in the original graph.
Although the parallel merge operation can reduce the edge number

Algorithm 1: Computing Tmin using Graph Transformation

while more than one node exists in the graph doL1
next node=select node();L2
serial merge(next node);L3
foreach node i in the input nodes of next node doL4

remove self loop(i);L5
endL6
if parallel edges exist between nodes i and j thenL7

parallel merge(i, j);L8
compress parallel edges(i, j);L9

endL10
endL11

after each serial transformation, the edge number in the graph still
increases very fast. In Algorithm 1 the functions select node()
and compress parallel edges() use some heuristics to reduce the
edge number and the runtime. These techniques will be explained in
Section III-C.

B. Computing criticality in the presence of PST buffers

For circuit optimization the timing analysis tool should report a
set of gates which are critical to the circuit performance. The
probability that a gate delay affects the circuit performance is called
criticality [3], [17], [19]. Because PST buffers allow the path delays
to compensate each other across FFs, the critical paths may span
more than one stage of FFs. Fig. 5 shows an example of such critical
paths, where the inverters represent the combinational delays shown
above the gate. If PST buffers are not considered, the critical path is
between FFs 2 and 3. However, the paths between FFs 1 and 3 allow
a minimum clock period of 5 due to PST buffers having a range of
up to 3. In contrast the minimum clock period constrained by the
paths between FFs 4 and 6 is 6, which form the critical paths in this
circuit. To capture the critical paths with PST buffers we first define
the criticality for loops and edges in the constraint graph. Thereafter,
the concept in [17] is extended to include this information into the
computation of criticality for combinational gates.

8 6 62

3 3

31 2 4 5 6

Fig. 5. Critical Paths with PST Buffers

According to (4) the circuit performance is constrained by all the
loop constraints Tl. Because edge weights are random variables, any
loop has a probability to dominate the circuit performance, defined
as

cl = prob{Tl ≥ Tmin} (5)

The larger cl is the more effect the loop has on the circuit perfor-
mance. Therefore cl is called loop criticality. A loop with a large cl

is called critical loop and the edges on a critical loop are candidates
for optimization.

In the constraint graph an edge may be on multiple loops. If any
of these loops dominate the circuit performance, the edge is critical.
Therefore the criticality for an edge e, called sequential criticality,
is defined as

ce = prob{
∨

l∈Le

(Tl ≥ Tmin)} (6)

= prob{¬(
∧

l∈Le

(Tl < Tmin))} (7)

= prob{¬(max
l∈Le

{Tl} < Tmin)} (8)

= prob{max
l∈Le

{Tl} ≥ Tmin} (9)

where Le is the set of loops across e and maxl∈Le{Tl} is the
maximum constraint of all these loops. ∧ means logic and, ∨ logic
or and ¬ logic not.

An edge in the constraint graph, if not connected to the root
node, corresponds to the maximum delay between a pair of FFs in
the circuit. Because the gates between a pair of FFs form many
combinational paths, not all gate delays are critical even if the
sequential criticality ce is large. In [17], [18] the cutset concept is
introduced to define the criticality of a gate delay. This concept is

illustrated in Fig. 6. Considering the combinational circuit between
FFs i and j, all the paths can be partitioned into two sets: Pg and
Pḡ . Pg contains the paths between i and j and across the gate g;
Pḡ contains all the other paths between i and j. The gate delay
is critical if the longest path passes across it, that is, it belongs to
Pg . The maximum path delay dPg from Pg can be computed by
dig + dg + dgj , where dig is the maximum delay from the output i
to the input of g, and dgj the delay from the output of g to the input
of j. dg is the gate delay. According to [18], the criticality of the
gate delay is computed by

cno pst
g = prob{dPg ≥ dPḡ } (10)

= prob{dPg ≥ max{dPg , dPḡ }} (11)

= prob{dPg ≥ dij} (12)

where dPḡ is the maximum path delay from Pḡ; dij is the maximum
path delay between i and j. Detailed proof of this computation can
be found in [17], [18].

xi xj

clk clk

FF i FFj

dg

Fig. 6. Criticality of Combinational Delays

The criticality cno pst
g defines the probability that the paths across a

gate dominate the other paths. When PST buffers are considered, this
gate is critical only if the delay between i and j, which corresponds
to an edge in the constraint graph, is on a loop l which dominates
Tmin, that is, Tl ≥ Tmin. A gate g may be on the combinational
paths between many pairs of FFs, corresponding to a set of edges,
written as Eg , in the constraint graph. Combining (6)-(9) and (12),
the criticality of a gate delay in the presence of PST buffers is defined
as

cg = prob{
∨

e∈Eg

(max
l∈Le

{Tl} ≥ Tmin ∧ dPg ≥ dij)} (13)

= prob{
∨

e∈Eg

(0 ≥ max{Tmin − max
l∈Le

{Tl}, dij − dPg })} (14)

where edge e is between nodes i and j in the constraint graph; Le

is the set of loops passing through edge e in the graph; dij is the
maximum path delay between FFs corresponding to i and j. Let
Ce = max{Tmin − maxl∈Le{Tl}, dij − dPg },

cg = prob{¬(
∧

e∈Eg

(Ce > 0))} (15)

= prob{¬(min
e∈Eg

{Ce} > 0)} (16)

= prob{min
e∈Eg

{Ce} ≤ 0} (17)

In practice only the edges with sequential criticality ce defined in
(9) larger than 0 in the edge set Eg should be processed for the
computation from (13) to (17) so that the runtime can be reduced.

The criticality cg measures the probability that a combinational
gate affects the circuit performance Tmin. However, in the process
space only some of the chips may fail in respect to a given clock
period Ts from the timing specification of the design. It is therefore
reasonable to optimize the critical paths and gates in these chips to
meet the timing specification. The criticality of a gate delay against
a given clock period Ts is defined in [17] to compute cno pst

g in

(10) under the condition Tmin > Ts. Similarly the criticality defined
in (13)-(17) can be extended to incorporate this condition. This
conditional criticality, denoted by cTs

g , is computed as follows.

cTs
g = prob{min

e∈Eg

{Ce} ≤ 0 | Tmin > Ts} (18)

= prob{min
e∈Eg

{Ce} ≤ 0 ∧ Tmin > Ts}/prob{Tmin > Ts}
(19)

∼= prob{max{min
e∈Eg

{Ce}, Ts − Tmin} < 0}/prob{Tmin > Ts}
(20)

where Ts is the given clock period. (19) and (20) are roughly equal
owing to the fact that the existing statistical timing engines approxi-
mate the max and min computations using continuous functions.

To compute the criticalities several variables should be known
in (6)-(9) and (13)-(20). The minimum clock period Tmin can be
computed using Algorithm 1. The path delays dij and dPg can
be computed using an SSTA engine as described in [17]. The
computation of maxl∈Le{Tl} for an edge e in the constraint graph
however needs to traverse the loops passing through the edge e, which
are normally in a prohibitive number.

Instead of searching the loops for each edge individually, we apply
the serial merge operation to the original constraint graph again after
Tmin is computed. For each edge created during the transformation,
we maintain an edge tracing list to trace the edges which form the
new edge. When two consecutive edges are replaced by a new edge
in the serial merge operation in Fig. 3, the edge lists in the replaced
edges are copied into the edge list of the new edge, denoted by the
function copy edge lists(). Each time when a self loop is formed,
the loop is removed and the loop constraint Tl defined in (3) is
updated into the variable holding the value maxl∈Le{Tl} for each
edge in the edge tracing list. The computation of maxl∈Le{Tl} is
summarized as follows.

Algorithm 2: Computing maxl∈Le{Tl} for Edges

while more than one node exists in the graph doL1
next node=select node();L2
serial merge(next node);L3
foreach newly created edge doL4

copy edge lists();L5
endL6
foreach node i in the input nodes of next node doL7

remove self loop(i);L8
foreach removed edge e forming a self loop doL9

foreach edge in the edge tracing list of e doL10
update loop constraint();L11

endL12
endL13

endL14
if parallel edges exist between nodes i and j thenL15

compress parallel edges(i, j);L16
endL17
if exit condition() thenL18

exit;L19
endL20

endL21

The main structure of Algorithm 2 is similar to Algorithm 1
because they both capture the nonpositive loop constraints. The
difference is that Algorithm 1 updates the constraints into Tmin

using (4), but Algorithm 2 updates the constraints into the variables

holding maxl∈Le{Tl} for edges which are parts of the loop in the
original graph. This update operation is denoted by the function
update loop constraint() in Algorithm 2. Because the new edges
have different edge tracing lists, the parallel merge operation in Fig. 4
can not be applied even if they have the same coefficients of T .
This limitation increases the edge number during the transformation
and causes the runtime larger than Algorithm 1. In the next section,
we will explain several techniques to reduce the runtime of both
algorithms, including the functions compress parallel edges(),
select node() and exit condition() in Algorithm 1 and 2.

C. Implementation issues

In the serial merge operation in Fig. 3 the number of edges increases
in most cases. This not only causes the runtime in the following
transformations to increase but also consumes much memory. In
Algorithm 2 the parallel merge operation can not be applied because
even if the edge weights have equal coefficients of T they may have
different edges in their edge tracing lists. To solve this problem, we
compare the weights of parallel edges. If an edge has a much smaller
delay than the other, it is removed from the constraint graph. Because
all edge weights are random variables, the comparison can only be
performed statistically. Consider two edge weights w1 − k1T and
w2 − k2T , the second edge will be dominated if

prob{w1 − k1T ≥ w2 − k2T} > σh (21)

where σh is a predefined value near to 1. In Algorithm 2 the clock
period is known from Algorithm 1, so that the probability can be
computed directly. However, in Algorithm 1 the constraints created
by the loops are updated into Tmin using (4). Before the algorithm is
finished, the value of Tmin is only temporary and should be smaller
than the final value because there are loop constraints which have
not been processed. Therefore, we compare the parallel edges, if
k2 − k1 > 0, by computing

prob{Tmin ≥ (w2 − w1)/(k2 − k1)} (22)

If the probability in (22) is larger than σh, edge weight w2 − k2T
is dominated by w1 − k1T . This edge removal technique is denoted
by compress parallel edges() in Algorithm 1 and 2. During this
edge compression, special cases, for example the probability masking
described in [20], should be handled. Because the circuit performance
Tmin is dominated by the longer paths between FFs, many other
paths have relative small delays. Therefore the new edges which are
formed from a large number of consecutive edges in the original
constraint graph by applying serial merge operations are very likely
to be dominated by other parallel edges. This can also be explained
by the fact that in most cases a long path delay in the circuit needs
not to be compensated by the other FF stages far from it.

The second issue is the order of nodes for the serial merge
operation. If a node with m inputs and n outputs is removed by
the serial merge operation, m × n edges are created. An extreme
case is the root node, which has edges to and from all other nodes.
If the root node is removed using the serial merge operation, for any
two nodes in the graph two new edges are created. In a graph with
many nodes this will generate a large number of new edges, which
are impossible to be processed by the following transformations.
Although an optimal node processing order, which guarantees the
number of edges in each of the transformations is minimal, may
exist, to find this optimal order is very difficult and, even if possible,
consumes much runtime. In the proposed method, we use a heuristic
algorithm to select the next node for the serial merge operation.
First we select the nodes with the smallest node connection, which

is defined as ni × no for a node, where ni and no are numbers
of nodes which have edges to and from the node under evaluation
respectively. If there are multiple nodes with the same smallest node
connection, the node with the fewest edges is selected. This node
selection is heuristic but very effective in the graph transformation.
Because the root node has edges to and from all other nodes, it is
excluded from the node selection until it is the only node in the
graph. At this time no edge exists in the graph because all edges
have been processed and removed. The node selection is denoted by
the function select node() in Algorithm 1 and 2.

The third issue is the exit condition, the function exit condition()
in Algorithm 2. In the parallel removal technique above, even though
some edges are already negative, they may not be dominated by each
other. To handle this case, all the edges in the graph are checked if
they are negative by the function exit condition() after each serial
merge operation. If all edges are negative, it is guaranteed that no
positive loop is left in the graph. Because the edge weight is a random
variable, the negativity of an edge in the constraint graph is defined
by

prob{wij − kijT < 0} > σh (23)

The last issue is the fact that not every FF but the ones which
are relevant to critical paths have PST buffers. If an FF does not
have a PST buffer, the corresponding variable xi in (1) is 0. If a
constraint in (1) contains only one variable, an edge is created from
or to the root node, similar to the case for (2). If both variables in
(1) are 0, the constraint simply creates a lower bound for the clock
period and no edge needs to be created in the constraint graph. A
special case is that a path from and to the same FF. In this case
the two variables in (1) are the same, so that the constraint also
creates a simple lower bound for the clock period. According to this
observation, many nodes corresponding to FFs need not to appear in
the constraint graph. This not only reduces the numbers of the nodes
and edges but also breaks large loops, making the timing analysis
and criticality computation faster.

IV. EXPERIMENTAL RESULTS

The algorithms were implemented in C++ and tested using a 2.33GHz
CPU. The ISCAS89 benchmark circuits were used for experiments,
where all FFs were assigned PST buffers. The gates in the benchmark
circuits were mapped to a 90nm library from an industry partner.
The standard deviations of transistor length, oxide thickness and
threshold voltage were assigned to 15.7%, 5.3% and 4.4% of the
nominal values respectively [26]. The gate delays were created using
the method proposed in [1]. We used the SSTA engine proposed in
[3] to compute the sum and maximum of random variables. In the
proposed method the probability threshold σh in (21) and (23) was
set to 0.99 to guarantee accuracy.

To verify the accuracy of the proposed method, we ran Monte
Carlo simulation with 10 000 samples. For each sample, the mini-
mum clock period constrained by (1) and (2) was computed using
linear programming. The distribution formed by all the performance
samples was compared with Tmin computed by the proposed method
and the results are shown in Table I, with the PST ranges set to 1/8 of
the clock period calculated without considering PST buffers, roughly
the range used in [11].

In Table I nc and ns denote the numbers of combinational cells and
sequential cells in the circuit respectively. Next, the accuracy of the
proposed method compared to Monte Carlo simulation is shown. µerr

is the relative error of the mean of the minimum clock period Tmin

and defined as |µSSTA − µMC |/µMC , where µSSTA and µMC are

TABLE I
RESULTS OF SSTA FOR CIRCUITS WITH PST BUFFERS

Circuit nc ns µerr σerr tP (s) tMC (s) Speedup

s298 119 14 0.18% 0.64% 0 8.95
s526 193 21 0.20% 0.36% 0 15.2
s820 289 5 0.22% 0.17% 0 11.59
s1238 508 18 0.23% 0.28% 0 10.59
s1423 657 74 0.27% 0.76% 0.31 465.72 1502
s5378 2779 179 0.23% 0.32% 0.05 1608.87 32177
s9234 5597 211 0.56% 0.44% 0.11 1681.25 15284
s13207 7951 638 0.41% 0.42% 0.10 2107.82 21078
s15850 9772 534 1.00% 0.39% 3.66 9690.81 2648
s38584 19253 1246 1.26% 0.65% 7.56 21705.9 2871

the means of the minimum clock period computed by the proposed
method and by Monte Carlo simulation using the original circuit
respectively. Similar to µerr , σerr is defined to show the accuracy
of the standard deviation of the clock period. From µerr and σerr

we can see that the results of the proposed method are accurate for
statistical timing analysis.

The runtimes of timing analysis using the proposed method and
Monte Carlo simulation, which is used in the existing methods for
timing analysis and optimization of circuits with PST buffers, are
shown as tP and tMC in seconds respectively. The 0s in Table I
represent that the runtimes are shorter than 10−6s and can not be
measured accurately using the clock function. The speedup of the
proposed method compared to Monte Carlo simulation is shown in
the Speedup column of Table I. Since Monte Carlo simulation is
the only method available for statistical timing analysis of circuits
with PST buffers, this comparison demonstrates the efficiency of the
proposed method and its applicability to accelerate other methods
which depend on the results of statistical timing analysis.

Using PST buffers the circuit performance can be improved, as
explained in Section II. However, the performance improvement is
bounded because after the range of PST buffers reaches a threshold
the circuit performance is determined by the maximum average edge
delay between FFs across loops in the circuit, which does not change
as the PST range changes, and therefore can not be improved by
further cycle stealing. To show the relation of the circuit performance
and the PST range, we tested the circuit performance by setting the
size of the PST range (−ri, ri) in (2), equal to 2 × ri, to 1/32, 1/16,
1/8, 1/4, 2/5 and 2/3 times of the clock period calculated without
considering PST buffers, denoted by Tno pst. The trend of the mean
values of the minimum clock period is shown in Fig. 7. As the range

0.6

0.7

0.8

0.9

1.0

M
e
a

n
R

a
ti

o
o

f
th

e
C

lo
ck

P
e
ri

o
d

0 1/32 1/16 1/8 1/4 2/5 2/3

PST Range, Ratio to Tno pst

s5378

s9234

s13207

s15850

s38584

Fig. 7. Trend of the Mean Values of the Minimum Clock Period

of the PST buffers increases, the clock period decreases, meaning
higher performance, because the delays between FFs are allowed to
compensate each other in a larger range. According to Fig. 7, PST
buffers can reduce the clock period by about 30%, and therefore
have great value in high performance designs. However, when the
PST range reaches about 40% of the clock period calculated without
PST buffers, no significant further circuit performance can be gained.
Owing to the efficiency of the proposed method, it can be used to
evaluate the relation between the minimum clock period and the
range of PST buffers, allowing designers to make tradeoff between
performance and die size.

To verify the proposed criticality computation, the distances be-
tween nodes in the constraint graph were computed using the
Bellman-Ford algorithm [24] in each Monte Carlo sample. Thereafter
each edge was checked if the loop across it determines the minimum
clock period computed by linear programming. Table II shows the
results of the comparison. In this test the PST range was set to 1/8
of the clock period calculated without PST buffers. The runtime
of the Monte Carlo simulation for the circuit s38584, longer than
nine days, is estimated from ten iterations. Because of the large
runtime of Monte Carlo simulation, the results of this circuit are not
compared, although the proposed method can compute the criticalities
in less than 40 seconds. Owing to the approximation in the statistical
computations of SSTA engines, the criticality can not be calculated
accurately. However, because the purpose to compute criticality is
to select the gates for optimization, we compare the sets of critical
gates selected by Monte Carlo simulation and the proposed method.
In Table II the columns >0.3 and >0.2 show the numbers of gate
delays with criticalities larger than 0.3 and 0.2 respectively. nc is
the number of gate delays identified by Monte Carlo simulation, and
nm is the number of gate delays which are missed by the proposed
method. The criticality cTs

g is computed against the specified clock
period Ts, which is set to µ + σ where µ and σ are the mean and
standard deviation of the minimum clock period Tmin computed by
Algorithm 1.

TABLE II
RESULTS OF CRITICALITY COMPUTATION

cg , nm/nc cTs
g , nm/nc Runtime (s)

Circuit > 0.3 > 0.2 > 0.3 > 0.2 tP tMC

s298 0/10 0/14 0/10 0/10 0 18.84
s526 0/10 0/10 0/10 0/10 0.01 42.51
s820 0/12 0/12 0/12 0/12 0 18.07
s1238 0/17 0/17 0/17 0/17 0 36.51
s1423 0/61 0/61 0/61 0/61 0.44 1466.44
s5378 0/31 0/45 0/31 0/38 1.09 4227.07
s9234 0/71 2/93 0/75 2/113 1.12 15338.9

s13207 0/32 1/69 0/37 0/70 2.05 84551.4
s15850 0/32 63/133 0/36 23/89 14.51 211356
s38584 - - - - 39.80 >9d

According to Table II, the proposed method can identify the gate
delays with criticalities larger than 0.3 effectively. However for the
circuit s15850 many critical gate delays are missed when the bound
for the selection is lowered to 0.2. This is because many criticalities
computed by the proposed method fall through the boundary 0.2.
For example, if the sets of gates with criticalities larger than 0.01
are compared, the proposed method can identify 449 gates out of
473 gates which are identified by Monte Carlo simulation. In the
missing gates the maximum criticality is 0.02. This shows that
for optimization purpose the proposed method can provide enough
information, especially in view of the very short runtime. As pointed

out in [17], the skewness of the distribution, which is not considered
by many SSTA engines, may cause large inaccuracy in criticality
computation. Especially when the critical paths are compared to the
circuit performance, the criticality is very sensitive to the inaccuracy
of the statistical approximations. For example, in (12) the inaccuracy
of dPg and dij may cause a large deviation of the criticality from
the correct value. In order to improve the accuracy of criticality
computation, further methods, for example [27], can be considered.

V. CONCLUSION

In this paper, we propose a fast method to compute the minimum
clock period for circuits with PST buffers. Using graph transformation
the proposed method can effectively capture the constraints from
loops in the constraint graph. The resulting minimum clock period
is in a parametric form from which we can compute the yield of the
circuit for any given clock period. The criticalities of gate delays are
also computed, providing information for circuit optimization.

REFERENCES
[1] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering spatial

correlations using a single PERT-like traversal,” in ICCAD, 2003, pp. 621–625.
[2] K. Kang, B. C. Paul, and K. Roy, “Statistical timing analysis using levelized

covariance propagation,” in DATE, 2005, pp. 764–769.
[3] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan, “First-

order incremental block-based statistical timing analysis,” in DAC, 2004, pp. 331–
336.

[4] V. Khandelwal and A. Srivastava, “A general framework for accurate statistical
timing analysis considering correlations,” in DAC, 2005, pp. 89–94.

[5] Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma,
“Correlation-aware statistical timing analysis with non-Gaussian delay distribu-
tions,” in DAC, 2005, pp. 77–82.

[6] L. Zhang, W. Chen, Y. Hu, J. A. Gubner, and C. C.-P. Chen, “Correlation-preserved
non-Gaussian statistical timing analysis with quadratic timing model,” in DAC,
2005, pp. 83–88.

[7] Z. Feng, P. Li, and Y. Zhan, “Fast second-order statistical static timing analysis
using parameter dimension reduction,” in DAC, 2007, pp. 244–249.

[8] J. Singh and S. Sapatnekar, “Statistical timing analysis with correlated non-
Gaussian parameters using independent component analysis,” in DAC, 2006, pp.
155–160.

[9] H. Chang, V. Zolotov, S. Narayan, and C. Visweswariah, “Parameterized block-
based statistical timing analysis with non-Gaussian parameters, nonlinear delay
functions,” in DAC, 2005, pp. 71–76.

[10] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young, “Clock
generation and distribution for the first IA-64 microprocessor,” JSSC, vol. 35, pp.
1545–1552, Nov. 2000.

[11] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, “Clock distribution on a dual-
core, multi-threaded Itanium R©-family processor,” in ISSCC, 2005, pp. 292–293.

[12] J.-L. Tsai, D. Baik, C. C.-P. Chen, and K. K. Saluja, “A yield improvement
methodology using pre- and post-silicon statistical clock scheduling,” in ICCAD,
2004, pp. 611–618.

[13] J.-L. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analysis driven post-
silicon-tunable clock-tree synthesis,” in ICCAD, 2005, pp. 575–581.

[14] V. Khandelwal and A. Srivastava, “Variability-driven formulation for simultaneous
gate sizing and post-silicon tunability allocation,” in ISPD, 2007, pp. 11–18.

[15] K. Nagaraj and S. Kundu, “A study on placement of post silicon clock tuning
buffers for mitigating impact of process variation,” in DATE, 2009, pp. 292–295.

[16] X. Li, J. Le, M. Celik, and L. Pileggi, “Defining statistical sensitivity for
timing optimization of logic circuits with large-scale process and environmental
variations,” in ICCAD, 2005, pp. 844–851.

[17] J. Xiong, V. Zolotov, N. Venkateswaran, and C. Visweswariah, “Criticality com-
putation in parameterized statistical timing,” in DAC, 2006, pp. 63–68.

[18] J. Xiong, V. Zolotov, and C. Visweswariah, “Incremental criticality and yield
gradients,” in DATE, 2008, pp. 1130–1135.

[19] H. Mogal, H. Qian, S. Sapatnekar, and K. Bazargan, “Clustering based pruning
for statistical criticality computation under process variations,” in ICCAD, 2007,
pp. 340–343.

[20] J. Xiong, C. Visweswariah, and V. Zolotov, “Statistical ordering of correlated
timing quantities and its application for path ranking,” in DAC, 2009, pp. 122–125.

[21] R. Deokar and S. Sapatnekar, “A graph-theoretic approach to clock skew optimiza-
tion,” in ISCAS, 1994, pp. 407–410.

[22] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli, “Minimum padding to
satisfy short path constraints,” in ICCAD, 1993, pp. 156–161.

[23] J. Fishburn, “Clock skew optimization,” IEEE Transactions on Computers, vol. 39,
pp. 945–951, Jul. 1990.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT
Press, 1990.

[25] B. Li, N. Chen, and U. Schlichtmann, “Fast statistical timing analysis of latch-
controlled circuits for arbitrary clock periods.” in ICCAD, 2010, pp. 524–531.

[26] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in CICC, 2001,
pp. 223–228.

[27] D. Sinha, H. Zhou, and N. V. Shenoy, “Advances in computation of the maximum
of a set of random variables,” in ISQED, 2006, pp. 306–311.

