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Abstract—Next generation logic switch devices are ex-
pected to rely on radically new technologies mainly due to
the increasing difficulties and limitations of state-of-the-art
CMOS switches, which, in turn, will also require innovative
design methodologies that are distinctly different from those
used for CMOS technologies. In this paper, three alternative
emerging technologies are showcased in terms of their re-
quirements for design implementation and in terms of poten-
tial advantages. First, a CMOS evolutionary approach based
on vertically-stacked gate-all-around Si nanowire FETs is
discussed. Next, an alternative design methodology based
on ambipolar carbon nanotube FETs is presented. Finally, a
novel approach based on the recently discovered memristive
devices is presented, offering the possibility of combining
memory and logic functions.

Index Terms—logic synthesis, nanowire arrays, cell library,
arithmetic blocks

I. Introduction

DURING the past few years the scaling trend for
complementary-metal-oxide-semiconductor (CMOS)

technology included emerging research directions in order
to address the difficult question of voltage scaling, short-
channel-effects (SCEs) and the exponentially increase of
power consumption [1]. Solid state research has introduced
novel materials, such as high-κ dielectrics with metal gates, or
strained Si or SiGe channel replacement [2]; and by introducing
novel configurations, such as double-gate, FinFETs or gate-
all-around (GAA) constructions [3]. All this required more
advanced processing and additional effort in the evaluation of
the state-of-the-art technology.

In this respect, one-dimensional channel transistors, such as
Si nanowire or Carbon nanotube FETs are among the most
promising devices, due to increased performance [4] and for new
functionalities [5]. Nevertheless, radically new technologies such
as memristive devices also emerge towards the end of Moore’s
Law scaling, bringing completely new computational paradigms
into the realm of design.

In this paper, three alternative emerging technologies are
showcased in terms of their requirements for design implemen-
tation and in terms of potential advantages. First, a CMOS evo-
lutionary approach based on vertically-stacked gate-all-around
Si nanowire FETs is discussed. Next, an alternative design
methodology based on ambipolar carbon nanotube FETs is
presented. Finally, a novel approach based on the recently dis-
covered memristive devices is presented, offering the possibility
of combining memory and logic functions.

II. Overview on vertically-stacked nanowire

technology

Vertically-stacked Si nanowire (SiNW) technology makes use
of smart processing to fabricate transistors having parallel
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Figure 1. (a) Vertically-stacked inverter structure with SiNW chan-
nels anchored to Si pillars with GAA configuration. The electrical
equivalent circuit is a CMOS inverter with double drive. The number
of SiNW channels is double for pull-up network compared with the
pull-down network. (b) Tilted scanning electron micrograph (SEM)
view of an inverter construction composed of 3 parallel stacks each
composed of 4 SiNW channels. In this case pull-up and pull-down
transistors have 12 unit width each.

SiNW channels or fingers. As depicted in Figure 1 the basic
device is composed of a stack of SiNW channels embedded in a
poly-Si GAA structure. Each nanowire strand or channel forms
a unit width transistor. The fabrication process was reported
earlier by the authors [6] and it employs a combination of deep-
reactive-ion-etching (DRIE) and sacrificial oxidation steps to
form the SiNW channels, starting from a relatively inexpensive
standard bulk-Si or SOI substrate. The process allows for easy
tuning of vertical and horizontal separation between channels
as well as the number of channels to be used for a certain
device. All the channels are anchored to source/drain regions.
Due to stacking, the SiNW channels will have different values of
access resistance. This point is investigated in Section IV. One
advantage of this technology is that the width of the transistor
is wrapped around the stacked SiNW channels, thus reducing
the silicon estate of the active area. In addition, the versatility
of stacking a variable number of fingers reduces the active area
occupancy even more. Besides, due to the one dimensionality
of the channels, specific technology boosters such as strain [7]
can be envisaged, enhancing the performance compared with
planar SOI technology.

III. Combinational logic design

To assess the performance of complex logic circuits using
the vertically-stacked nanowire technology, we perform com-
binational logic synthesis of carry-lookahead adders that are
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then mapped with vertically-stacked nanowire libraries. The
vertically-stacked transistor electrical behavior was modeled as
a switch in series of a resistance, which include both access
and channel resistance. An estimation of the total diffusion
capacitance is also carried out. Then performance and active
area estimation are calculated for different combinational logic
gates. Finally different libraries of logic gates are built varying
both design and technology parameters of the basic transistor
cell.

A. Logic gate modeling and libraries
We considered 9 different combinational logic gates that

are listed in Table I. We implemented 14 libraries, listed in
Table II; every one of them being formed by these 9 logic
gates. The libraries include a planar SOI technology and 13
different SiNW technology libraries. These latter are obtained
by varying two technology parameters: the access resistance
(represented by Rs) and the strain (represented by the actual
channel resistance, and a design parameter: the number of
nanowire stacks). We designed the 9 logic gates in every library
using the linear switch model [8], which assumes that every
logic gate is driving the same current as a unit inverter, when it
switches. We therefore obtained the required characterization
in terms of area and delay. The latter was estimated as the
fanout-of-four (FO4), assuming that every gate drives its own
intrinsic delay and a loaf of 4 instances of itself. The obtained
area, FO4 delay and input capacitance for 3 different sample
libraries are illustrated in Table I.

B. Synthesis/mapping results
The ABC tool from Berkeley [9] was used to generate CLAs

of 8, 16, 32 and 64 bits. Fast and efficient synthesis with the
designed libraries is achieved by DAG-aware rewriting of the
and-inverter-graph (AIG) representation of the adder network.
We used the script resyn2 for synthesis, which consist of an
alternation of network rewriting and balancing algoritms that
reduce the AIG size and the number of AIG levels. The opti-
mized network was then mapped with the different libraries (see
Table II). The impact of the different design and technology
parameters on mapped CLAs is analyzed in the following.

1) Impact of series resistance on delay: The data refers to
FO4 delays of CLAs with different number of bits mapped with
single stack configuration. As expected, the FO4 delay linearly
increases with series resistance. This behavior is enhanced for
adders with more inputs, due to the use of more complex gates.
Data points at Rs

Rchannel
= 0 correspond to a FO4 delay that is

the same of the planar SOI case.
2) Impact of parallelizing stacks on delay and area: The

detrimental effect of series resistance can be counterbalanced
by using more stacks instead of a single one, thus reducing
the effect of Rs on Rtot which in turn is reflected on the
delay. For instance a 64 bits carry-lookahead adder synthetized
with 2 stacks shows an evolution of FO4 delay with series
resistace that is 6 times lower than the configuration which uses
1 stack. The speed-up achieved by the double stacking costs
additional active area occupancy. However, the total active area
occupancy remains lower than the planar case. For instance, the
64 bits CLA with single stack would reduce occupancy area
of 49% compared with the one mapped in planar technology.
The use of double stack will still reduce occupancy area of 4%.
However, the improvement in delay get by using double stack
is bigger than the additional cost on area.

3) Impact of strain on delay: More significant performance
improvement can be achieved by using strained nanowires.
The impact of strain was evaluated varying α within single
or double stack configurations. By comparing FO4 delays we
notice that strain can effectively counterbalance the effect of
series resistance, eventually outperforming planar technology.

IV. Ambipolar CNTFET

The second device structure we present is the double-gate
ambipolar Carbon Nanotube FET (CNTFET). This device has
a natively one-dimensional channel structure, with channels
consisting of an array of Carbon Nanotubes (CNTs) of 1-2nm in
diameter [10]. Among the types of CNTFETs demonstrated in
literature, independent double-gate ambipolar CNTFETs are
four-terminal devices where a second gate terminal is added to
control the device polarity. These devices combine performance
exceeding that of current scaled MOSFETs, with the possibility
to control the device polarity (n or p-type) by electrostatic
doping of the nanotubes [11].
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Figure 2. Independent double gate CNTFET structure and device
symbol.

Figure 2 shows a possible physical structure for the double
gate ambipolar CNTFET. In this device, the CNTs are em-
bedded in a sandwich-like structure with a local top gate, the
control gate, and a bottom gate, the polarity gate, which can
be shared by multiple devices and controls the device polarity.

A. Gate design considerations and advantages

Ambipolar CNTFETs do not require strong chemical doping,
as polarity can be tuned by means of the polarity gate. More-
over, CNTs present similar carrier mobility for both electrons
and holes [12], feature which can be exploited to produce
intrinsically symmetric devices.

By exploiting the symmetry in conductance between n-type
and p-type devices, CNTFET complementary logic gates can
be designed to be intrinsically symmetric, e.g. a NOR (shown in
Figure 3a) gate can be built from a NAND one (Figure 3b) by
simply vertically mirroring its layout. Moreover, the channel of
CNTFETs is isolated from the substrate, and does not require
wells to obtain proper functionality. These features enable
the construction of more compact layouts, adding degrees of
freedom on the placement of n, p or ambipolar CNTFETs,
which can share different sections of the same nanotube array.

A further advantage can be seen in the implementation
of regular layouts, such as gate arrays or structured ASICs
[13]. Layouts can be constructed consisting of a chessboard-
like tiling of dual logic gates, i.e. a logic cell and the cell
produced by switching the pull-up (PU) and pull-down (PD)
networks topology, without significantly reducing the overall
macro-regularity of the design.
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Table I
Gate parameters of three different libraries reporting active area occupancy, FO4 delay and capacitive input load.

planar SOI L06 : SiNW, single stack L07: SiNW, double stack
Gate Active Area FO4 delay Cin Active Area FO4 delay Cin Active Area FO4 delay Cin

[units] [ps] [C units] [units] [ps] [units] [units] [ps] [units]
INV 3 75 3 2 125 5 3 75 3
NAND2 8 110 4 4 220 7 4 110 4
NAND3 15 145 5 6 315 11 7 195 7
NAND4 24 180 6 8 410 14 10 280 10
NOR2 10 130 5 4 280 11 7 170 7
NOR3 21 185 7 6 435 17 13 315 13
NOR4 36 240 9 8 590 23 19 460 19
MUX2 24 180 6 8 420 14 10 300 10
MUX4 72 240 6 24 560 14 10 400 10

Table II
Library list obtained varying series resistance, number of horizontal stacks and Rchannel reduction due to strain booster.

n° of add8b add16b add32b add64b
Library Rs

Rchannel
stacks Rchannel,strained

Rchannel
Area Delay Area Delay Area Delay Area Delay

[units] [ns] [units] [ns] [units] [ns] [units] [ns]
planar SOI 0% - 100% 601 1.87 1265 3.87 2593 7.87 5249 15.87
L01 0% 1 100% 302 1.87 638 3.87 1310 7.87 2654 15.87
L02 25% 1 100% 302 2.44 638 5.08 1310 10.36 2654 20.92
L03 25% 2 100% 595 1.97 1267 4.13 2611 8.45 5299 17.09
L04 50% 1 100% 302 2.95 638 6.15 1310 12.55 2654 25.35
L05 50% 2 100% 571 2.02 1211 4.26 2491 8.74 5051 17.7
L06 100% 1 100% 302 3.92 638 8.24 1310 16.88 2654 34.16
L07 100% 2 100% 570 2.17 1210 4.65 2490 9.61 5050 19.53
L08 50% 1 80% 302 2.07 638 4.31 1310 8.79 2654 17.75
L09 50% 2 80% 586 1.61 1211 3.37 2491 6.89 5051 13.93
L10 100% 1 80% 302 2.49 638 5.21 1310 10.65 2654 21.53
L11 100% 2 80% 571 1.66 1211 3.5 2491 7.18 5051 14.54
L12 100% 1 60% 302 2.12 638 4.44 1310 9.08 2654 18.36
L13 100% 2 60% 597 1.29 1261 2.73 2589 5.61 5245 11.37
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Figure 3. A NOR2 gate layout (b) is derived from a NAND2 layout
(a) by simple vertical mirroring.

B. Ambipolar logic design methodology
Two main approaches have been taken to exploit this new

feature. In the first case, ambipolar double gate FETs are
used as configurable transistors. The polarity gates are fed
with appropriate configuration signals by means of SRAM cells
or antifuses. Depending on these, the gate can be configured
to calculate a set of different logic functions. Such config-
urable gates have been implemented in dynamic [14] and static
logic [15].

In the second approach, polarity gate signals are directly
fed with logic signals, and the transistor is polarized at run
time. In Figure 4 we can see the simplest logic gate which can
be implemented using this methodology [15]. By connecting
an ambipolar DG-CNTFET to a pull-up resistor, the output
characteristic of this gate is twofold, depending on the polarity
gate input. In the case of a positive polarity gate input,
the transistor behaves as a n-type FET, thus producing the

output of a classical pseudo-logic inverter. Alternatively, if the
polarity gate has a negative bias, the transistor behaves as p-
type, producing a degraded buffer output characteristic. If we
consider this gate as a black box, and see both input signals as
high level logic values, we can see that the gate calculates the
XNOR logic function.
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Figure 4. Pseudo-logic gate with a double gate ambipolar CNTFET
in the pull-down network. Depending on the value of the polarity
input B, the device behaves as an inverter or as a buffer, producing
the truth table of an XNOR.

The output of this basic pseudo logic gate is highly degraded,
due to the non complementary design, and to the presence of
a weakly polarized p-type transistor in the buffer configuration
(B=0). A natural extension of this gate, which would restore
full swing output, is the addition of a transistor in the pull up
network, and by coupling each transistor with another one of
opposite polarity. We can then add other transistors to the gate,
in a complementary manner, to produce more complex gates,
capable to include XOR operators in an efficient manner.
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Figure 5. Full swing output XNOR gate (a) and a more complex
gate, implementing function (A+B) · (CD). Gate sizes for unitary
output strength are shown [16].

V. Perspective on the Multi-Terminal Memristive

Devices

Due to the natural limitations of materials, deeply scaled
circuits in future technologies will have to exploit more effi-
cient ways for computation and memory storage. One possible
scenario envisages the end of charge-based technologies, after
which computation will rely on alternative, more power effi-
cient state variable manipulation. However, technologies using
new state variables would have to be implemented within a
completely new technological platform, and cannot be seen as
CMOS-compatible alternatives. The recent realization of HP
Labs memristor gave new push to solid state research for logic
and memory applications [17].

The memristive functionality is widespread in nature, and
it appears in many different multi-terminal devices. The most
prominent examples now relate to the 2-terminal solid-state
memristors, due to several advantages. In the first place, ultra-
dense crossbar memristive memory arrays can be built thanks
to the compactness of the two terminal junction. This high
density can be very important in a broad range of applications
such as CMOL (hybrid of CMOS and molecular technologies),
non-volatile memory arrays or as synapse emulator nodes in
artificial neural networks. One of the salient features of these
devices is the possibility to integrate these into the Back-End-
of-the-Line, as these basically consist of a dielectric layer sand-
wiched between two metal lines. One example of Back-End-of-
the-Line implementation demonstrated by the authors [18] the
feasibility for 3D programmable/reconfigurable interconnects
by combining Pt/TiO2/Pt memristive layers with Cu Through
Silicon Vias.

The memristive functionality is not a unique property of two-
terminal passive devices but mainly a memory effect related
to internal state variable changes. One such example is the
ambipolar Si nanowire Schottky barrier FET [19]. This three-
terminal device has an hysteretic behavior that is related to
charge trapping at the semiconductor/oxide interface of the
MOS capacitor, as well as the existence of interface states at
the Schottky junction. This leads to hysteretic Ids −Vgs curves
(see Figure 6) whose behavior depend upon sweep time, and can
be potentially be used as emulator for Spike Time Dependent
Plasticity in artificial neural networks.

VI. Conclusions

In this paper we report on alternative design solutions re-
lating to three innovative technologies: vertically-stacked Si
nanowire FET arrays, which shows advantages on density in
respect with planar SOI. Secondly, the ambipolarity of CNT

−5 0 5
10

−7

10
−6

10
−5

10
−4

10
−3

V
gs

 [V]

I d
s
 [

A
]

Forward

Reverse

Sweep time = 256s

(a)

−5 0 5
10

−7

10
−6

10
−5

10
−4

10
−3

V
gs

 [V]

I d
s
 [

A
]

Forward

Reverse

Sweep time = 64s

(b)

−5 0 5
10

−7

10
−6

10
−5

10
−4

10
−3

V
gs

 [V]

I d
s
 [

A
]

Forward

Reverse

Sweep time = 16s

(c)

−5 0 5
10

−7

10
−6

10
−5

10
−4

10
−3

V
gs

 [V]

I d
s
 [

A
]

Forward

Reverse

 Sweep time = 4s

(d)

Figure 6. Hysteretic dependence with the measurement (sweep time)
duration, the hysteresis window closes by reducing the measurement
time: (a) 256 sec. (b) 64 sec. (c) 16 sec. (d) 4 sec.

FETs can be exploited in a dual gate configuration to perform
logic operation with intrinsically more compact gates. Finally,
multi-terminal memristive devices are presented as novel tech-
nology for widespread application range.

References

[1] H. Iwai, “Roadmap for 22nm and beyond (invited paper),”
Microelectron. Eng., vol. 86, no. 7-9, pp. 1520–1528, 2009.

[2] W. Fang et al., “Vertically Stacked SiGe Nanowire Array Chan-
nel CMOS Transistors,” Elec. Dev. Lett., vol. 28(3), pp. 211–213,
2007.

[3] J.-P. Colinge, “From Gate-all-Around to Nanowire MOSFETs,”
Proc. of the Int. Sem. Conf. CAS, vol. 1, pp. 11–17, 2007.

[4] T. Ernst et al., “Novel 3D integration process for highly scal-
able Nano-Beam stacked-channels GAA (NBG) FinFETs with
HfO2/TiN gate stack,” IEDM, pp. 1–4, 2006.

[5] J. Appenzeller, J. Knoch, M. Bjork, H. Riel, H. Schmid, and
W. Riess, “Toward Nanowire Electronics,” Electron Devices,
IEEE Transactions on, vol. 55, no. 11, pp. 2827–2845, Nov. 2008.

[6] D. Sacchetto et al., “Fabrication and Characterization of Ver-
tically Stacked Gate-All-Around Si Nanowire FET Arrays,” in
ESSDERC, 2009.

[7] K. E. Moselund, “Three-dimensional electronic devices fabri-
cated on a top-down silicon nanowire platform,” Ph.D. disser-
tation, 2008.

[8] D. H. Neil H.E. Weste, CMOS VLSI DESIGN: A circuits and
Systems Perspective, 2005.

[9] http://www.eecs.berkeley.edu/ alanmi/abc/.
[10] Y.-M. Lin, “Novel structures enabling bulk switching in carbon

nanotube fets,” in 62nd DRC., June 2004, pp. 133–134 vol.1.
[11] R. Martel, “Ambipolar electrical transport in semiconducting

single-wall carbon nanotubes,” Phys. Rev. Lett., vol. 87, no. 25,
p. 256805, Dec 2001.

[12] W. Xue, Y. Liu, and T. Cui, “High-mobility transistors based
on nanoassembled carbon nanotube semiconducting layer and
sio[sub 2] nanoparticle dielectric layer,” Applied Physics Letters,
vol. 89, no. 16, p. 163512, 2006.

[13] Y. Ran, “On designing via-configurable cell blocks for regular
fabrics,” in Proc. DAC ’04. New York, NY, USA: ACM, 2004,
pp. 198–203.

[14] I. O’Connor, “Ultra-fine grain reconfigurability using cntfets,”
dec. 2007, pp. 194 –197.

[15] M. H. Ben Jamaa, “Novel Library of Logic Gates with Ambipo-
lar CNTFETs: Opportunities for Multi-Level Logic Synthesis,”
in DATE 2009., 2009, pp. 622–627.

[16] M. De Marchi, “Regular fabric design with ambipolar cntfets for
fpga and structured asic applications,” jun. 2010, pp. 65 –70.

[17] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
“The missing memristor found,” Nature, 2008.

[18] D. Sacchetto, M. Zervas, Y. Temiz, G. De Micheli, and
Y. Leblebici, “Resistive programmable through silicon vias for
reconfigurable 3d fabrics,” Nanotechnology, IEEE Transactions
on, vol. PP, no. 99, p. 1, 2011.

[19] D. Sacchetto, M. Ben-Jamaa, S. Carrara, G. De Micheli,
and Y. Leblebici, “Memristive devices fabricated with silicon
nanowire schottky barrier transistors,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium
on, 30 2010-june 2 2010, pp. 9 –12.

234


