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Abstract—The complexity of modern chips intensifies verification chal-

lenges, and an increasing share of this verification effort is shouldered by

post-silicon validation. Focusing on the first silicon prototypes, post-silicon

validation poses critical new challenges such as intermittent failures,
where multiple executions of a same test do not yield a consistent outcome.

These are often due to on-chip asynchronous events and electrical effects,

leading to extremely time-consuming, if not unachievable, bug diagnosis

and debugging processes.
In this work, we propose a methodology called BPS (Bug Positioning

System) to support the automatic diagnosis of these difficult bugs.

During post-silicon validation, lightweight BPS hardware logs a compact

encoding of observed signal activity over multiple executions of the
same test: some passing, some failing. Leveraging a novel post-analysis

algorithm, BPS uses the logged activity to diagnose the bug, identifying

the approximate manifestation time and critical design signals. We found

experimentally that BPS can localize most bugs down to the exact root
signal and within about 1,000 clock cycles of their occurrence.

I. INTRODUCTION

Diagnosing and debugging failures in large, complex modern

digital designs is a difficult task that spans the entirety of the design

process. Recently, the role of post-silicon validation has increased,

particularly in the microprocessor design industry, in light of the

scaling problems of pre-silicon methodologies and tight time-to-

market development schedules.

Pre-silicon verification operates on an abstract design model and

has the advantage of being fully deterministic and fully observable,

but is limited by its slow speed and low coverage. Failing testcases

can be reliably reproduced to diagnose functional bugs, which in turn

manifest consistently. By contrast, real silicon lacks observability,

controllability and deterministic repeatability. As a result, some tests

may produce the same outcome over multiple executions, due to

the interaction of asynchronous clock domains and varying environ-

mental and electrical conditions. Bugs that manifest inconsistently

over repeated executions of a same test are particularly difficult to

diagnose. Furthermore, the number of observable signals in post-

silicon is extremely limited, and transferring observed signal values

off-chip is time-consuming. This work addresses precisely this post-

silicon validation platform and focuses on the localization of these

difficult, inconsistent bugs to ease their debugging.

During post-silicon validation, tests are executed directly on silicon

prototypes. A test failure can be due to complex functional errors that

escaped pre-silicon verification, electrical failures at the circuit level,

and even manufacturing faults that escaped testing. The failed test

must be re-run by validation engineers on a post-silicon validation

hardware platform with minimal debug support. Post-silicon failure

diagnosis is notoriously difficult, especially when tests do not fail

consistently over multiple runs. The limited observability and con-

trollability characteristics of this environment further exacerbate this

challenge, making post-silicon diagnosis one of the most challenging

tasks of the entire validation effort.

A. Contributions

To address this problem, we propose a novel solution called BPS,

(“Bug Positioning System”). BPS leverages a statistical approach to

address the most challenging post-silicon bugs, those that do not

manifest consistently over multiple runs of a same test, by localizing

them in space (design region) and time (of bug manifestation). BPS

leverages existing on-chip trace buffers or a lightweight custom

hardware component to record a compact encoding of observed signal

activity over multiple runs of the same test. Some test runs may fail,

while others may pass, leading to different activity observations. In

addition, observations may be affected by variations introduced by the

operating environment – both system-level activity and environmental

effects. Finally, a post-analysis software algorithm leverages a statisti-

cal approach to discern the time and location of the bug manifestation.

Overall, BPS eases debugging in post-silicon validation by:

• Localizing inconsistent bugs in time and space, often to the exact

problem signal, thus reducing the engineering effort to root-cause

and debug the most difficult failures. BPS targets a wide range

of failures, from functional, to electrical, to manufacturing defects

that escaped testing.

• Tolerating non-repeatable executions of the same test, a char-

acteristic of the post-silicon environment, and thus not part of any

mature pre-silicon methodology. BPS does not require any a-priori

knowledge of the design or failures.

• Providing a scalable solution with minimal engineering effort,

able to handle the complexity of full chip integration typical of

post-silicon validation, while minimizing off-chip data transfer

through the use of compact encodings of signal activity.

II. RELATED WORK

In industry practice, the post-silicon validation process begins

when the first silicon prototypes become available. These chips

are then connected to specialized validation platforms that facilitate

running post-silicon tests, a mix of directed and constrained-random

workloads. Upon completion of each test, the output of the silicon

prototype is checked against an architectural simulator, or in some

cases, self-checked [1], [2].

When a check fails, indicating that an error has occurred, the

debugging process begins, seeking to determine the root cause of the

failure. On-chip instrumentation can be used to observe intermediate

signals. Techniques such as scan chains, on-chip logic analyzers

[3] and flexible logging infrastructures [4] are configured to trace

design signals (only a small number can usually be observed) and

periodically transfer data off-chip. Traces are then examined by

validation engineers to determine the root cause of the problem. This

process is time-consuming and engineering intensive, and is further

exacerbated by bugs with inconsistent outcomes. Additionally, off-

chip data transfers are very slow, which further hinders observability

due to limited transfer time. BPS strives to reduce debugging ef-

fort, automatically diagnosing the time and location of bugs, while

minimizing off-chip transfers.

The debugging process of non-deterministic failures can be aided

by deterministic replay mechanisms [5], [6]. However, these so-

lutions perturb system execution which can prevent the bug from

manifesting, and often incurs significant hardware and performance

overheads. In addition, in an effort to automate the failure diagnosis

process, methods based on formal verification techniques have been

proposed [7]–[10]. These solutions require deterministic execution



and a complete golden (known-correct) model of the design for

comparison. However, the fundamental scaling limitations of formal

methods preclude these techniques from handling industrial size

designs. By contrast, BPS does not rely on formal methods, but

rather leverages a statistical approach. Furthermore, it requires no

a-priori knowledge of the design or the failure. Methods that target

small fully deterministic systems [11]–[13] are capable of identifying

limited types of electrical errors in small circuits. Other solutions

targeting different types of errors leverage Bayesian approaches [14]

for transient errors and analysis of bug reports for software errors

[15]. On the other hand, functional failures have been approached

by recording system state using a scan chain, and then comparing

passing and failing tests [16]. Early work in troubleshooting circuit

boards used signatures to achieve compact observations [17], [18].

While BPS shares common goals with many of these works, it focuses

on targeting large designs, since post-silicon validation is typically

carried out on the largest industrial microprocessors.

Finally, specialized post-silicon debugging approaches often add

dedicated hardware units for debugging specific areas, such as the

memory subsystem [19] or speed paths [20]. Solutions such as

BLoG/IFRA [21] can localize electrical bugs in the processor core,

as long as errors are detected on-chip within about 1,000 cycles.

Additionally, a bug is localized by IFRA only down to an architectural

block comprising approximately 10,000 gates, thus requiring signifi-

cant additional manual effort to locate the exact signal(s) responsible

for the failure. In contrast, BPS is capable of identifying exact bug

signals at any location or time in complete industrial-size chips. Table

I highlights the main differences between BPS and IFRA.

IFRA [21] BPS

description level architectural only Xlogic and architectural

design complexity single core only Xwhole chip

manual effort required for setup Xfully automated

type of bugs electrical Xfunctional, electrical, mfg.

bug depth at most 1,024 cycles Xflexible

temporal localization Xexact cycle cycle window

spatial localization architectural block Xexact injection signal

bug signal specificity ˜10,000 X˜60

search space reduction 99.8% X99.999%

TABLE I
BPS compared with IFRA [21] shows that BPS is a general solution capable
of localizing bugs with minimal manual effort.

III. BPS OVERVIEW

BPS diagnoses the time and location of functional, electrical

and manufacturing bugs during post-silicon validation; in particular,

those bugs that manifest through inconsistent test outcomes. In

these situations, the same post-silicon test may pass for some of

its executions and fail other times, due to asynchronous events or

electrical and environmental variations on-chip.

To locate these difficult bugs, BPS leverages a two-part approach:

logging compact observations of signal activity with an on-chip

hardware component, followed by an off-chip software post-analysis.

The compact size of observations produced by the hardware are

essential for minimizing expensive off-chip data transfers. These

signal observations are gathered and reduced to a compact encoding

for a number of executions of the same test, some passing and

some failing, but usually all slightly different. Finally, the collected

data is analyzed by the BPS post-analysis software, leveraging a

statistical approach that is insensitive to the natural variations over

several executions, but it is capable of detecting the more dramatic

differences in signal activity typically caused by bugs. The result is

the localization of the bug through the reporting of an approximate

clock cycle and the set of signals most closely related to the error.
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Fig. 1. BPS Operation. BPS operates in two phases: first, hardware sensors
collect compact encodings of signal activity on the post-silicon platform for
a number of executions of the same test: some may pass, while others fail.
These observations are then analyzed by post-analysis software, which locates
functional, electrical and manufacturing failures in time and space.

A. BPS Hardware

The hardware component of BPS logs signatures, compact en-

codings of observed activity on a set of target signals, which are

later used by BPS’ post-analysis software to locate failures. Signals

available for observation are selected at design time, and the most

effective choices are typically control signals. Signatures are recorded

at regular intervals, called windows, and stored in an on-chip buffer.

Windows can range in length from hundreds to millions of cycles,

and are later used to determine the occurrence time of a bug. Logged

data is periodically transferred off-chip for analysis by the BPS

software. Simple signatures can often be collected using existing

debug infrastructures, such as on-chip logic analyzers [3], flexible

event counters [4], [22], [23] or performance counters.

An ideal signature is compact for dense storage and fast transfer,

and represents a high-level view of the observed activity. Further-

more, the signature must exhibit a statistical separation between pass-

ing and failing cases, as shown in Figure 2. In order to differentiate

erroneous behavior from correct behavior, BPS characterizes activity

using distributions of signatures. Throughout the development process

of BPS, we considered a variety of signatures, including various codes

and counting schemes. We found that many traditional codes, such as

cyclic, hamming distance and multiple input shift registers (MISR),

exhibited a wide range of output (Figure 2a) and are very susceptible

to noise: small variations among executions led to severe variations

in the signature value. Thus, it is difficult to distinguish erroneous

from correct behavior with these signatures. This led us to counting

schemes, where the amplitude of changes in signal activity leads to

approximately proportional changes in signature values. The result is

a discernible difference in the distribution of signatures for passing

vs. failing testcases (Figure 2b) and less vulnerability to noise.

Signatures based on counting schemes include toggle count, time at

one and time at zero. We chose a variation of time at one for BPS: the

probability of a signal being at one during a time interval (window),

P (time@1). This signature is compact, simple and encodes notions

of switching activity, as well as timing. By contrast, toggle count

expresses the logical activity of the signal, but it does not provide
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Fig. 2. Comparison of typical distributions with different signatures. A
signature that exhibits a wide, evenly distributed output (a) does not allow
BPS to differentiate correct behavior from incorrect. In contrast, signatures
that exhibit good separation (b) are effective.



any temporal information. Figure 3 shows an on-chip hardware sensor

implementation for measuring P (time@1). Signals from the design

are connected to counters via muxes, allowing the selection of a

subset of the signals to be monitored. Note that we can calculate this

signature by simply counting the number of cycles when a signal is

at 1 and normalizing to the window length. Furthermore, we noted

experimentally that approximately 9 bits of precision are sufficient

for accurately locating bugs, offering precision similar to a window

size of 512 cycles. Thus, the resulting probability can be truncated

and stored with fewer bits. The final result is copied to a memory

buffer at the end of each window.

Note that it is not necessary to collect signatures for every signal

in the design. BPS leverages signals high in the module hierarchy,

those most likely to be available for observation in a post-silicon

validation platform. To further reduce the amount of data that must

be transferred off-chip, BPS uses two signal selection optimizations:

first, it excludes data signals, often identified as busses 64-bits wide or

more for a 64-bit processor design. Depending on hardware resources,

signatures can be collected all at once or in groups. If post-silicon

debugging hardware resources are scarce, then multiple executions of

the test can be leveraged to complete the signature collection, even if

those executions are not identical, since BPS’ post-analysis software

is tolerant to variation.
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Fig. 3. BPS Hardware collects signatures for a subset of the design’s signals.
An observed signal’s time@1 is tracked at each cycle for the duration of a
window; the sum is then truncated to limit its size and saved to a buffer.

B. BPS Post-Analysis Software

After on-line signature collection is completed, off-line software

analysis identifies a set of signals indicating where the bug occurred

and at what time. BPS uses the signatures from passing runs of the

test to build a model of expected behavior, and then determines when

failing executions diverge from the model, revealing a bug.

BPS’ software begins by partitioning a test’s signatures into two

groups: those where the test passed, and those where the test

failed, as illustrated in Figure 4 (top and bottom portions). The

signatures in each group are organized by window and signal: for

each window/signal combination, BPS considers multiple signature

values, the result of multiple executions of the test. Next, passing

signatures are used to build a model of acceptable system behavior

for each observed signal: the algorithm goes through all the signatures

related to one signal, building the model one window at a time.

The middle part of Figure 4 illustrates the model built for signalA

as a green (light gray) band. Representing the expected behavior

as a distribution of values enables BPS to tolerate variations in

signature values since, as we discussed above, post-silicon valida-

tion is characterized by non-identical executions due to naturally

occurring variations among distinct executions. Figure 5 illustrates

how distributions are used to build a model of observed behavior.

The passing band for one signal is generated by computing the

mean (µpass) of the signature values for each window, surrounded

by kpass standard deviations (σpass), where kpass is a parameter.

Thus the band representing the passing signatures is bounded by
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Fig. 4. BPS post-analysis algorithm. Using the passing group of signatures
from a test, BPS builds a model of the expected behavior for each signal,
shown by the green (light gray) band. The red (dark gray) band shows the
behavior of the failing test runs, constructed from the failing group.

µpass ± kpass ∗ σpass. In order to represent over 95% of uniformly

distributed data points, we used kpass = 2 for our experiments.

The BPS software now adds the failing group to the model, once

again considering each signal in turn and building the model window-

by-window. The failing group is plotted in Figure 4 as a red (dark

gray) band. Similar to the passing group, the failing group is modeled

as the mean surrounded by kfail standard deviations (µfail±kfail ∗
σfail). When the failing band falls inside the passing band, we deem

the corresponding signal’s behavior to be within an acceptable range,

indicating that a test failure has not yet occurred or, possibly it is

masked by noise. When it diverges from the passing band, we identify

this as buggy behavior.

Using this band model, BPS determines when failing signatures

diverge from passing signatures: we call the divergence amount a

bug band. Starting at the beginning of a test execution, the algorithm

considers each window in turn, calculating the bug band one signal

at a time. The bug band is zero if the failing band falls within the

passing band, otherwise it is the difference between the two top (or

bottom) edges. As an example, Figure 5 shows the model obtained

and the bug band calculation for a signal in the memory stage of a

5-stage pipelined processor.

The set of bug bands (one for each signal) is ranked and compared
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Fig. 5. BPS band model. Band model for a memory control signal from a
5-stage pipelined processor. Each slice of time in the model represents two
distributions (passing and failing). The bug is detected when the failing band
diverges from the passing one, representing diverging signature distributions.
The quantitative amount is measured by the bug band.
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Fig. 6. Number of common mode rejection signals in the OpenSPARC
T2 design. As the number of passing tests increases, the average number of
signals stabilizes to 44, only 1% of the signals monitored by BPS.

against a threshold that varies with the design (see Section IV-B). If

no bug band exceeds the threshold, BPS moves on to the next window.

When one or more bug bands exceed the threshold, BPS notes the

time (represented by the window) and the signals involved, reporting

them as the bug time and location.

As an additional filtering step, a set of common mode rejection

signals is leveraged by BPS to mitigate the noise present in large

designs. To generate this filter, BPS is run with two passing groups of

a same testcase, rather than a passing and a failing group. The signals

identified in this process are removed from BPS’ candidate bug

signals list; this helps to minimize the number of false positives. We

found that in a complex design (OpenSPARC T2), as the number of

runs used for identifying common mode rejection signals increased,

the resulting list stabilized. Figure 6 shows this asymptotic trend

for the testcases exhibiting the largest and smallest common mode

rejection signal lists, as well as the average. The size of the list is

typically small, only 44 signals (some of which are buses), comprising

1% of the design’s monitored signals.

C. Tuning Parameters

A number of parameters affect the quality of the results produced

by BPS: the bug band threshold, the window length, the number of

test executions in both the passing and failing groups and a set of

common mode rejection signals.

The bug band threshold is used to determine which signals BPS

detects, and also causes BPS to stop looking for bugs. Changing this

value changes BPS’ sensitivity to bugs and noise. In some cases, the

design perturbation caused by a bug can be amplified by neighboring

logic over time: a higher bug band threshold can cause BPS to detect

these neighboring signals after searching longer (more windows)

for errors. The result is often a reduction in the number of signals

detected, since few signals have a bug band that exceeds the threshold.

However, this can also lead to signals that are less relevant to the

error, as well as longer detection times. On the other hand, a bug

band threshold that is too small can result in prematurely flagging

irrelevant signals, halting the search for the bug. In our experiments,

we found that a single threshold value could be used for each design.

Thus, in practice, the proper bug band threshold is determined when

running the first tests, and then reused for the rest.

The window length is the time interval (in cycles) of signature

calculation, and affects the precision of BPS’ timing. Increasing the

window length increases the number of cycles that must be inspected

after BPS reports the bug detection window. However, large window

lengths have the advantage of allowing longer periods of execution

between signature logging and thus decrease the volume of data that

must be transferred off chip. Thus, the choice of window size is a

trade-off between off-chip data transfer times and the precision of

bug localization timing.

The population size of passing and failing groups primarily

affects false negative and false positive rates. When the population

of failing runs is small, variations in the failing group have greater

impact on the mean. Thus, bugs are triggered more easily, resulting

in increased false positives. Conversely, when the number of passing

testcases is small, variations impact the mean of the passing popula-

tion, this time increasing the false negative rate.

IV. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of BPS, we employed

it to find bugs on two microprocessor designs with a variety of

failures, including electrical, manufacturing and functional bugs. Each

processor ran a set of 10 distinct application workloads. The designs

are a 5-stage pipelined processor implementing a subset of the Alpha

ISA, comprising 4,901 lines of code and 4,494 signals (bits). After

excluding data signals, BPS was left with 525 signals for analysis.

Our larger industrial design, the OpenSPARC T2 [24] system, has

1,289,156 lines of code and 10,323,008 signal bits. We simulated

the system in its single core version (cmp1), which consisted of a

SPARC core, cache, memory and crossbar. BPS monitored the control

signals at the top level of the design for a total of 41,743 signal bits,

representative of the signals that would likely be available during

post-silicon debugging of such a large design. Both designs were

instrumented to record signatures during logic simulation; execution

variations were introduced with variable and random communication

latencies. BPS requires only these compact signatures and pass/fail

status of the test to operate.

Table II shows the bugs introduced in 10 different variants of

the design, with one bug in each variant. The failures included

functional bugs (design errors), electrical failures and manufacturing

errors. Functional bugs were modeled by modifying the design logic,

and electrical failures were simulated by temporary single bit-flips

persisting for a number of cycles. Manufacturing errors were modeled

as single bit stuck-at faults lasting for the duration of the test.

Each design variant executed several tests a number of times, and a

checker would determine if the final program output was correct. The

workloads used as test inputs for the two processor designs included

assembly language tests, as well tests from a constrained-random

generator. There were 10 tests for each design, ranging in size from

about 20K cycles to 11M cycles. Each test was run 10 times for each

bug, using 10 random seeds with varying impact on memory latency.

Additionally, each test was run 10 times (with new random seeds)

without activating the bug to generate the passing group.

5-stage pipeline bugs description

ID fxn functional bug in decode

EX fxn functional bug in execution unit

fwd fxn functional bug in fwding logic

EX SA stuck-at in execution

cache SA stuck-at in cache to proc ctrl

ID SA stuck-at in decode

MEM SA stuck-at in memory

WB elect electrical error in writeback

ID elect electrical error in decode

EX elect electrical error in execute

OpenSPARC T2 bugs description

PCX gnt SA stuck-at in PCX grant

XBar elect electrical error in crossbar

BR fxn functional bug in branch logic

MMU fxn functional bug in mem ctrl

PCX atm SA stuck-at in PCX atomic grant

PCX fxn functional bug in PCX

XBar combo combined electrical errors in Xbar/PCX

MCU combo combined electrical errors in mem/PCX

MMU combo combined functional bugs in MMU/PCX

EXU elect electrical error in execution unit

TABLE II
Designs and modeled failures. The bugs introduced in each design variant
were functional, electrical and manufacturing (stuck-at) failures.



5-stage ID
fx
n

E
X

fx
n

fw
d
fx
n

E
X

S
A

ca
ch
e
S
A

ID
S
A

M
E
M

S
A

W
B

el
ec
t

ID
el
ec
t

E
X

el
ec
t

bubblesort X+ X+ X X X X+ X+ X+ X+ X+

combRec n.b. X X X X X+ X+ X+ X+ X+

fib X+ n.b. X X X X+ X+ X+ X+ X+

hanoi n.b. n.b. X X X X+ X+ X+ X+ n.b.

insert X+ X+ X X X X+ X+ X+ X+ X+

knapsack X X+ X X X X+ X+ X+ X+ X+

matmult X X+ X+ X X X+ X+ X+ X+ X+

merge X+ X X X X X+ X+ X+ X+ X+

quick X+ X+ X X X X+ X+ X+ X+ X+

saxpy X X+ X+ X X X+ n.b. X+ X+ X+

OpenSPARC P
C
X

g
n
t
S
A

X
B
ar

el
ec
t

B
R

fx
n

M
M
U

fx
n

P
C
X

at
m

S
A

P
C
X

fx
n

X
B
ar

co
m
b
o

M
C
U

co
m
b
o

M
M
U

co
m
b
o

E
X
U

el
ec
t

blimp rand X+ X+ X X X+ X+ X+ f.n. X+ f.n.

fp addsub n.b. f.p. X X X X+ f.p. n.b. X+ f.p.

fp muldiv n.b. f.p. X X X X+ f.p. f.p. X+ f.p.

isa2 basic n.b. f.n. X n.b. X+ X+ X+ X+ n.b. f.n.

isa3 asr pr n.b. X X f.n. X+ X X+ X+ X X

isa3 window n.b. X X n.b. X+ X f.n. f.n. n.b. X

ldst sync n.b. X+ X X X+ X+ X+ X+ X+ n.b.

mpgen smc n.b. X+ X X X+ X+ X+ X+ X+ X+

n2 lsu asi n.b. f.n. X f.n. X+ X+ X+ X+ X+ n.b.

tlu rand n.b. X+ X X X+ X+ X+ X+ X+ X+

TABLE III
BPS signal localization. Checkmarks (X) indicate that BPS identified the
bug; the exact root signal was located in cases marked with X+. Each design
includes two bugs involving signals not monitored by BPS (light shading).
In these cases, BPS could identify the bug, but not the root signal. “n.b.”
indicates that no bug manifested for every run of the test; false negatives and
false positives are marked with “f.p.” and “f.n.”.

A. Bug Localization

Table III shows the quality of BPS bug detection for the 5-stage

pipeline and OpenSPARC T2 designs: eventually, BPS was able to

detect the occurrence of every bug. Often, the exact root signal was

detected, a few exceptions include 5-stage’s EX SA and cache

SA, as well as OpenSPARC’s BR fxn and MMU fxn, where the

root bug signal was deep in the design and not monitored by

BPS (indicated by light shading). In these situations, BPS was still

able to identify signals close to the bug location. In a few cases

with the OpenSPARC design, BPS did not find an injected bug, a

false negative. Finally, we observed false positives in two testcases,

instances where the system detected a bug before it was injected:

both were floating point testcases (fp_addsub and fp_muldiv).

Upon further investigation, we found the cause to be three signals that

exhibited noisy behavior, but were not included in the common mode

rejection filter. When these three signals were added to the filter, the

false positives were correctly avoided, highlighting the effectiveness

of rejecting noisy signals.

Some bugs were easier to detect than others, for example BPS was

able to detect the exact bug root signal in 8 out of 10 testcases with

the PCX atm SA bug, while a seemingly similar bug, the PCX gnt

SA, did not manifest in 9 out of 10 cases. PCX atm SA had wider

effects on the system, and thus manifested more frequently and was

easier to detect. By contrast, the PCX gnt signal was not often used

and thus the related bug did not manifest as frequently.

The number of signals and the time between bug occurrence and

bug detection are also a consideration in post-silicon validation: it is

easier to debug a small number of signals that are close to the bug’s

manifestation. Figure 7 shows the number of signals identified by

BPS for the bugs in each design. Each bar of the figure represents one

bug, averaged over all tests used in BPS, using a window length of

512 cycles. We found that the number of signals is highly dependent
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Fig. 7. BPS spatial localization, number of signals identified as closely
related to the bug when using a 512 cycle window.

on the bug, with BPS detecting a single signal for some bugs, such as

5-stage’s MEM SA and OpenSPARC’s MCU combo. Other bugs were

more challenging, for example, with the 5-stage pipeline’s bug WB

elect, BPS detected 158 signals on average: this was due to very

wide-spread effects of this single bug throughout the design. We also

noted that this catastrophic bug was caught by BPS very quickly, less

than 750 cycles after the bug’s manifestation. While BPS monitored

80x more signals in the OpenSPARC experiments, the number of

detected signals increased by only 2x, on average. This demonstrates

BPS’ ability to narrow a large number of candidate signals (nearly

42,000) down to a smaller pool amenable to debugging.

The time to detect each bug is reported in Figure 8, expressed

as the number of cycles between bug injection and detection. Each

bar of the figure represents one bug, averaged over all tests, using a

window length of 512 cycles. The error bars indicate the error window

in the BPS reporting, which corresponds to the window length. The

average detection time was worse for the 5-stage pipeline; mostly due

to three bugs: the EX SA and cache SA stuck-at bugs were both

inserted into data busses, and thus could not be directly observed by

BPS. The effects of the bug required many cycles before observable

control signals diverged. In the case of the ID functional bug, the

effects of the bug were masked for many cycles in the fib testcase,

thus, the bug went undetected until later in the program’s execution.

In the OpenSPARC design, we noted that most bugs were detected

within about 750 cycles, on average. Two bugs were an exception

to this rule, both involving the MMU, where bugs involving signals

deep in the design remained latent for a time before being detected.

Overall, BPS was successful in narrowing down a very large search
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detection. Error bars indicate the localization range.
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select a threshold by minimizing the sum.

space (number of signals * test length) to a small number of signals

and cycles. Our experiments show that it was able to correctly reject

over 99.999% of the candidate 〈location, time〉 pairs. By contrast,

IFRA [21] achieves 99.8% by this metric.

B. Bug Detection Quality

The quality of detection results is evaluated by both the number

of signals detected and the ability to detect the source signal of the

bug. The accuracy of the time at which the bug is detected is also a

consideration, as are the rates of false negatives and false positives.

Additionally, the number of signals must be manageable by validation

engineers. A variety of factors affects the quality of BPS results,

including the bug band threshold, number of executions (of the same

test) and window length.

Bug Band Threshold. Figure 9 shows the effect of threshold on the

number of false negatives and false positives, reporting the sum total

over all bugs and testcases for each threshold. We note that for both

designs, the number of false positives starts high and decreases as

the threshold increases, the result of a tighter filter for discerning a

bug occurrence over system’s noise. However, when the bug band

threshold is high, the subtler effects of bugs are overlooked by BPS,

resulting in more bugs being missed. In contrast, the number of

false negatives increases as the threshold increases. Thus, there is

a trade-off between false positive and false negative rates, indicated

by the minimum of their sum, occurring at 0.3 for the 5-stage

pipeline and 0.1 for OpenSPARC T2. We also noted that the number

of signals detected decreased as the threshold increased: with high

thresholds, BPS detects neighboring signals after searching longer

(more windows) for errors.

Population Size. The ratio of the number of passing vs. failing runs

determines the weight of signatures that may vary from the mean.

Figure 10 plots the number of false positives and false negatives as

the balance of passing vs. failing testcases changes. At the center

of the X-axis, the balance is equal, with 10 passing and 10 failing

tests. In the case of the 5-stage pipeline, we note that false negatives

are not present, regardless of the number of runs, indicating that the

wide-spread effects of a bug in a small design will always be caught

eventually. In both designs, the number of false positives decreases

with more failing testcases. When the number of failing runs is small,

only a few data points that differ from the mean can exceed the bug

band threshold, thus false positives are more prevalent. Conversely,

we see an increase in false negatives as the balance tips towards more

failing. Note that for our other experiments, we used an even balance

of 10 passing and 10 failing runs.

Window Length. Next, we examine the interaction of window length
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Fig. 10. Population size and quality of results. The plot shows false
negatives and false positives as the population of passing and failing runs
changes:. 10 passing runs on the left and 10 failing runs on the right.

with quality of results. BPS measures signatures over a time interval

and the interval length affects the time at which bugs are detected.

We found that the window length had a significant effect on the

number of signals detected and the detection time. Figure 11 plots

the number of signals detected, as well as the time between bug

injection and detection as window length increases. First, we observed

that shorter windows yield more accurate time localizations: for long

windows, the lag is mostly due to the length of the window itself.

Note that failing runs may execute long past the bug detection, since

the cycle is identified during post-analysis. Additionally, the number

of signals detected increases as the window length increases. This

is due to the increased time for the effects of the bug to spread to

many signals in the system. Thus, a smaller window length yields

more accurate results. We note however, that it would be possible

to run BPS multiple times with an iterative approach, strategically

decreasing the window size in order to narrow down a bug’s location.

C. Performance and Area Overhead

BPS’ software post-analysis was run on Xeon Core i7 2.27GHz

servers, and the time for running each analysis was approximately

412s for OpenSPARC T2 and 5s for the 5-stage design. This time

varies with the number of signals under observation, as BPS must

consider more data. CPU time is also linearly dependent on the

bug detection window, since BPS must sift through more windows

searching for bugs located deep in a test execution.

The hardware logging of BPS’ simple signatures can be obtained

using either standard flexible debugging infrastructures, or with

custom hardware. In the case of pre-existing debugging hardware,

signatures can be gathered with no area overhead.
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With its unique ability to leverage data from non-repeatable test

executions, BPS enables a trade-off between area overhead and the

time required to gather signature data. With a small area budget, the

signatures for a set of signals can be gathered a few signals at a time.

Leveraging fast post-silicon execution, a test is run multiple times,

recording signatures from a different subset of signals with each

run. Variation among different runs averages out in BPS’ statistical

approach, and thus does not impact the diagnosis quality.

We evaluated the area overhead of a BPS hardware sensor imple-

mentation in Verilog HDL, synthesized with a 65nm TSMC target

library. A signature recording unit capable of 100 signals over 100

windows, recording signatures for the 41,743 signal bits in the

OpenSPARC design would require 418 test executions, a reasonable

demand at fast post-silicon execution speeds. With 9-bit precision for

signature storage, full precision for a window length of 512 cycles,

the resulting memory buffer comprises 1.33 mm2. The hardware to

generate these signatures occupies 23,240 µm2, resulting in a total

area of 1.35 mm2. Compared to the OpenSPARC T2 system (342

mm2 [25]), the area overhead of BPS is 0.396%, less than half the

overhead of IFRA [21]. When comparing storage, the dominant factor

in both BPS’ and IFRA’s overhead, BPS requires 11KB with this

configuration, compared to 60KB for IFRA.

D. Limitations

While BPS is effective in localizing a wide variety of functional,

electrical and manufacturing failures, it has a few limitations.

The signals available to BPS for observation play a role in its

ability to accurately localize bugs. The scope of signals available

for observation during post-silicon validation varies with the quality

of its debug infrastructure. When the signals involved in a bug

are monitored by BPS, it is highly effective in identifying failures

down to the exact source signal, illustrated qualitatively in Section

IV-A. However, when the source signal is deep in the design and

not monitored, the accuracy of BPS is reduced. This results in an

increased number of signals detected, as well as increased detection

time. Thus, BPS is able to identify bugs that originate either within

or outside of its observable signals, but it can only identify the exact

signal when this signal is monitored.

The relationship between window size and the duration of a bug

also affects BPS. A bug’s duration comprises the perturbation in

the source signal and the after-effects that may spread to nearby

connected logic. When the bug duration is small relative to the

window size, its effect on the signature recorded for a window is

proportionally small (bugband < 2σ), sometimes resulting in false

negatives, depending on the bug band threshold. The effect of short

bug durations can be counteracted by a smaller threshold, as well as

by smaller window sizes. We most often observed this phenomena

when identifying bug root signals. As window sizes increased, the

number of cases where BPS detected the exact root signal decreased,

despite being able to detect other signals related to the bug. Upon

further investigation, we found that in many cases, the duration of

the perturbation of the bug’s root signal was small compared to

the window size, while the secondary effects of the bug remained

observable in the design’s behavior.

V. CONCLUSIONS AND FUTURE WORK

We have presented BPS, a solution for locating the most chal-

lenging bugs during post-silicon validation: functional, electrical and

manufacturing bugs with inconsistent program outcomes. BPS has

two components: hardware structures that log a compact encoding of

observed signal activity and companion post-analysis software. BPS

can localize bugs in time and space while tolerating non-repeatable

executions of the same test. It provides a fast solution, reducing off-

chip data transfers with compact signatures and scales to industrial-

size designs. BPS is effective in locating bugs under many different

workloads, often to the exact signal.

Moving forward, we plan to couple BPS with a technique to

automate signal selection: choosing those signals with high potential

for exposing bugs would increase the accuracy of BPS. Finally, while

BPS was evaluated on bare-metal tests, we plan to explore the type

of variations that an OS-based environment may introduce.
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