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Abstract—Digital microfluidic biochips enable a higher degree
of automation in laboratory procedures in biochemistry and
molecular biology and have received significant attention in the
recent past. Their design is usually conducted in several stages
with routing being a particularly critical challenge. Previously
proposed solutions for this design step suffer from two issues:
They are mainly of heuristic nature and usually assume that the
blockages to be bypassed are present the entire time. In contrast,
we present a methodology which exploits the fact that blockages
are often only present at certain intervals. At the same time,
our approach guarantees exact solutions, i.e. always determines
a routing with a minimal number of time steps. Experimental
results show that, despite the huge complexity, optimal results can
be achieved in reasonable run-time and that the consideration
of temporary blockages indeed significantly improves the routing
results.

I. INTRODUCTION

Digital Microfluidic Biochips (DMFBs) are an emerging
technology which attracted significant attention in the recent
past. They enable an automation of laboratory procedures
in biochemistry and molecular biology by providing a plat-
form in which samples and corresponding operations can be
controlled automatically. For this purpose, so called droplets,
i.e. miniaturized and discretized liquids which serve as sample
carriers, are applied onto a two-dimensional electrode grid.
By assigning time-varying voltages to turn electrodes on and
off, droplets can be moved around the entire grid. Peripheral
devices such as dispensing ports, heating devices, and optical
detectors allow to place samples onto the grid and to perform
fundamental operations for the conducted experiments [1].

By this, DMFBs offer a flexible control mechanism, a high
throughput and sensitivity, as well as a low sample/reagent
volume consumption. This advances the execution of numer-
ous biochemical assays [2] and eventually found significant
interest in healthcare, environmental, and point-of-care-testing
applications. According to a report released by Research and
Markets in June 2013, the global biochip market will grow
from 1.4 billion in 2013 to 5.7 billion by 2018 [3].

Motivated by these promising developments, researchers
and engineers started to aid the design of biochips by means
of automatic methods. They roughly followed the established
(conventional) design flow composed of allocation, binding,
scheduling, placement, and finally routing – although for each
step, of course, dedicated solutions have been developed (see
e.g. [4] for a tool implementing a collection of these solutions).
Within this flow, the problem of routing poses a particularly
critical challenge.

Here, a fixed grid with a precise placement of all operations
(such as mixing, detection, heating, etc.) together with the
initial and desired positions (denoted as source positions and
target positions) of all considered droplets is given. Then, the
task of routing is to determine a route from the source position
to the target position for each droplet, such that unintended
mixing of droplets is avoided and blockages (e.g. caused by
operations in progress) are bypassed. The number of required
time steps to accomplish a routing serves as the optimization
objective.

Although routing in DMFBs is similar to conventional
routing for VLSI systems, it offers some intrinsic properties

but also requires to explicitly consider additional constraints.
Accordingly, several approaches for routing in DMFBs have
been presented in the recent past (see e.g. [5], [6], [7], [8],
[9]; they are discussed in more detail later in Section II-C).
However, these approaches particularly suffer from two issues:

1) They are mainly of heuristical nature, meaning that no
optimal results are known thus far, and

2) they ignore the fact that blockages are often not present
permanently but only at certain intervals, i.e. temporary
blockages are not considered.

In this work, we propose a routing methodology which
addresses these problems and copes with the exponentially
hard complexity of determining a minimal solution by using
solving engines for SAT Modulo Theories (SMT). They allow
for solving instances composed of hundreds of thousands of
variables and constraints and, hence, provide a promising core
technology for the considered problem. In order to apply these
solvers, the considered optimization problem (determine a
routing with the minimal number of time steps) is formulated
as a sequence of decision problems. Each decision problem
is then formulated as an SMT instance and solved by a
corresponding solving engine. While this scheme guarantees
minimality of the result, the respective formulation addition-
ally allows for an easy consideration of temporary blockages.

Experimental results confirm the improvements obtained
by this methodology. Using SMT, minimal results can be
obtained in reasonable run-time, despite the huge complexity.
For the first time, this enabled a comparison of previously
obtained results to the actual optimal solution. Moreover, the
explicit consideration of temporary blockages allow for further
reductions in the number of time steps needed to realize a
routing.

The remainder of this paper is structured as follows.
Section II provides the background on DMFBs, the routing
problem, as well as related work. Open potential for possible
improvements of previously introduced routing approaches
is discussed in Section III before the solution proposed in
this work is described in Section IV. Finally, results of our
experimental evaluation are summarized in Section V and the
paper is concluded in Section VI.

II. BACKGROUND

To keep this work self-contained, this section reviews the
basics of DMFB design with a particular focus on the consid-
ered routing problem and briefly discusses previously proposed
solutions.
A. Design of Digital Microfluidic Biochips

Usually, the design of DMFBs is conducted over several
stages, including well known steps such as allocation, binding,
scheduling, placement, and routing. The starting point for
each design is a sequencing graph which specifies the desired
functionality to be implemented. A module library provides
realizations such as mixing, detecting, etc. as well as their
respectively needed grid-size and timing requirements. The
design objective is to realize the desired functionality onto
a given grid within the smallest possible completion time
utilizing the available operations from the module library.
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Fig. 1: Design of DMFBs

The respective design steps are briefly illustrated in Fig. 1.
More precisely, the process of allocation and binding defines
which biochemical operation specified in the sequencing graph
is realized by which module from the module library. Schedul-
ing determines the order of operations based on the binding
result. Afterwards, the resulting configuration is realized on the
actual chip. This includes the placement, i.e. the determination
of the actual locations of the different operations – possibly
enriched by information in which time steps the respective
operation is executed. Based on that, routing schedules the
movement of each droplet.

B. Routing in Digital Microfluidic Biochips
In this work, we focus on the routing problem within

the flow described above. The routing problem is defined as
follows:

Definition 1. Given a fixed grid with a placement of all
operations as well as the source positions and the target
positions of all considered droplets, the process of routing
is to determine a route from the source position to the target
position for each droplet. The number of required time steps to
accomplish a routing is applied as the optimization objective.

In order to determine the routes, the following constraints
have to be considered:
• Two droplets must not occupy the same cell on the grid.

Moreover, in order to avoid unintended mixing of the
fluids, two droplets which are not supposed to be mixed
must not occupy adjacent cells [5].

• Operations are considered as blockages, i.e. the move-
ment of droplets must not interfere with the position of
any operation.

Example 1. Consider the sequence graph as shown in
Fig. 1(a) and its resulting placement in Fig. 1(d). A possible
routing is depicted in Fig. 1(e).

Note that routing is often split into several sub-problems.
That is, a single routing problem does not necessarily consider
the entire functionality to be realized at once. In the example
from Fig. 1, routing the droplets i1 and i2 to the position of
mixer m1, the resulting droplet and droplet i3 to the position
of mixer m2, and the resulting droplet to the position of
the detector d1 may be considered as three separate routing
problems. The approach proposed in this work is capable of
solving both problems, single sub-problems but also the whole
routing task at once.

In order to formally define and address this problem, the
following notation is used.

Definition 2. Consider a (w × h)-grid. Then,
• C = {1, 2, . . . , w} × {1, 2, . . . , h} denotes the set of all

positions or cells of the grid,
• D = {i1, i2, i3, . . . , ik} denotes the set of droplets

considered in the given routing problem,
• (x∗i , y

∗
i ) denotes the source position of the droplet i ∈ D,

• (x†i , y
†
i ) denotes the target position of the droplet i ∈ D,

• T ∗i denotes the spawn time of the droplet i ∈ D, i.e. the
time step in which i spawns at its source position,

• T †i denotes the best possible target time for the
droplet i ∈ D, i.e. the time step in which i would arrive
its target position when a direct path (and no blockages)
is assumed,

• T † denotes the best possible overall completion time,
i.e. T † := maxi∈D(T †i ),

• B denotes the set of all blockages. Each element
(x, y, t1, t2) ∈ B provides the (x, y)-position of the
blockage and the interval [t1, t2] in which the blockage
is present.

Using this notation, the routing problem from above can
be defined as the following task: For each droplet i ∈ D,
determine a path from (x∗i , y

∗
i ) at time step T ∗i to (x†i , y

†
i )

that does not violate the constraints mentioned above. In the
literature, the respective routing tasks are defined in terms of
so-called nets. One can distinguish between two-pin nets (one
droplet has to be routed to a given target) and three-pin nets
(two droplet share the same target).

C. Related Work
In principle, routing in DMFBs is similar to conventional

routing for VLSI systems. However, significant differences
exists since e.g. electrical circuits must not be short-circuited
while paths of droplets may cross each other. Consequently,
dedicated approaches for routing DMFBs have been intro-
duced in the past, which exploit the intrinsic properties but
also explicitly consider the constraints in this domain.

In [5], different routing paths for each net are computed
in a greedy fashion. Afterwards, for each net, one of these
paths is chosen. When every net was assigned a path it is
checked whether any constraint is violated. If necessary, paths
are rechosen until a solution is found. The concept of network-
flows is used in [6] to solve the routing problem via a two-
stage algorithm. In [7], routing prioritized by a metric called
bypassibility of droplets followed by a greedy compaction step
is proposed. The approach assumes that a higher bypassibility
will lead to less blockage of other droplets. Accordingly,
highly prioritized droplets are routed first. The work [8] uses
the concept of entropy, borrowed from thermodynamics, to
determine a routing for droplets. This approach first produces
sequential routing paths which, afterwards, are compacted
using dynamic programming.

However, all these approaches employ a heuristical scheme.
This means that they do not guarantee optimality with respect
to the number of required time steps. Thus far, determining
minimal results for relevant benchmarks suffered from the
respective complexity. Indeed an exact approach (exploiting
Integer Linear Programming, ILP) has been proposed in [9],
but failed to generate exact results within the considered time
limit. Hence, the ILP formulation has only been applied in
a progressive fashion which approximates the minimum but
cannot guarantee it. Afterwards, it was tried to address this
problem using Boolean satisfiability [10]. However, this work



also employs a two-stage algorithm that does not guarantee
optimality. Furthermore, these approaches address routing for
cross-referenced instead of direct-addressed biochips consid-
ered in this work.

Besides that, all approaches mentioned above considered
the blockages to be present on the grid during the entire time.
But this is usually not the case. For example, the mixer of
operation m1 from Fig. 1 blocks the respective 2× 2-grid
only within the interval [t1, t7]; in the remaining time steps, a
routing through the respective cells can be conducted. To the
best of our knowledge, this has not been exploited for routing
of droplets yet. A similar issue has been discussed in [11],
but here re-routing of droplets in case of physical failures is
considered; not the routing problem as such.

In [12], exact results are obtained for the one-pass synthe-
sis of DMFBs, which includes routing. However, this work
addresses a different and non-comparable problem. Also, the
movement of droplets is modeled differently.

Overall, existing approaches have some drawbacks, which
affect the quality of the obtained results and leave potential for
improvements. This potential is discussed in the next section,
which provides the motivation of this work.

III. EXACT ROUTING WITH TEMPORAL BLOCKAGES

Previously proposed approaches for DMFB routing as re-
viewed above particularly suffer from two issues:

1) They are mainly of heuristic nature, meaning that no
optimal results are known thus far, and

2) they ignore the fact that blockages are often not present
permanently but only in certain intervals of time.

The first issue is crucial as it does not allow an evaluation of
the quality of existing (heuristically obtained) solutions. Thus
far, existing routing approaches have always been compared
against each other, but, due to the lack of exact results, not
against the optimum. Although an exact approach has been
discussed in [9], its complexity prevented a successful termina-
tion of the algorithm for the considered benchmarks within the
given time limit, i.e. no exact solutions have been determined.
This negatively affects the evaluation. For example, improving
a heuristical result by 10% is significant, if this leads to an
optimal solution, but marginal if the generated results are still
orders of magnitude away from the optimum. To obtain such
conclusions, exact approaches need to be available.

The second issue, i.e. ignoring the fact that blockages are
often only present at certain intervals, prevents the determi-
nation of a better routing. This is illustrated by the following
(trivial) example.

Example 2. Consider the routing problem depicted in Fig. 2.
The droplet shall be routed from position (0, 0) to posi-
tion (0, 2) while blockages at cells (0, 1) and (1, 1) that are
present at the time interval [1, 2], have to be considered.
Previously proposed approaches do not consider the time
interval and, hence, always bypass the blockages. This leads
to a solution shown in Fig. 2(a) requiring six time steps. In
contrast, considering this interval, would enable a solution in
which the droplet remains on its source position for one time
step (until the blockage disappears) and, then, approaches the
target position in a straight-forward fashion. This leads to a
solution shown in Fig. 2(b) requiring three time steps only.

Hence, addressing these drawbacks would lead to significant
improvements in the way routing of DMFBs is conducted
today. In the following, we introduce an alternative routing
approach for microfluidic biochips that explicitly solves these
shortcomings.

IV. PROPOSED SOLUTION

This section presents a methodology which exploits the fact
that blockages are often only present in certain intervals, and,
at the same time, generates an exact solution with respect to
the number of time steps.

(a) W/o temporary blockages (b) W/ temporary blockages

Fig. 2: Considering temporary blockages

A. General Idea

Determining an exact routing for a DMFB obviously is
an optimization problem of significant (computational) com-
plexity. In order to cope with this seriously large search
space to be explored, we propose to address this problem
by exploiting the deductive power of solvers for Satisfiability
Modulo Theories (SMT). The SMT problem is defined as
follows:

Definition 3. Let Φ be a logical formula in first-order logic
which may additionally be restricted by further functions or
predicates. The SMT problem is to determine an assignment
to the variables of Φ such that Φ evaluates to true or to
prove that no such assignment exists. In the former case, the
corresponding SMT instance Φ is called satisfiable; other-
wise, Φ is called unsatisfiable. In this work, we assume Φ
being composed of Boolean variables whose assignments can
additionally be treated as natural numbers 0 and 1 in order to
allow a notion of cardinality. The formula itself is restricted
by logical operations as well as cardinality constraints.

Example 3. Let Φ = x1 ⇔ (x2 + x3 + x4 = 2). Then,
x1 = 1, x2 = 0, x3 = 1, and x4 = 1 is a satisfying assignment
for Φ.

Today there exist SMT algorithms which solve many prac-
tical problem instances, i.e. instances composed of hundreds
of thousands of variables and constraints, in reasonable time.
Hence, SMT solving has become the state-of-the-art for many
design problems. Motivated by these performances, the cor-
responding solving engines are applied in order to solve the
routing problem addressed here.

However, SMT solvers tackle decision problems, while
determining an exact routing, i.e. a minimal route for all
droplets, obviously is an optimization problem. Hence, we
propose an iterative scheme: the routing problem is approached
as a sequence of decision problems. More precisely, the fol-
lowing flow is applied: First a decision problem is formulated
checking whether the desired routing can be accomplished
within T = T † time steps1. If this is the case, the determined
routing is already optimal. Otherwise, T is incremented until
one of the following decision problems is satisfiable. In this
case, the desired routing has been determined using T time
steps. Since T is iteratively increased, starting from the lower
bound T †, minimality is ensured.

For this purpose, the respective decision problems “Is the
desired routing accomplishable in T time steps?” have to be
formulated as SMT instances. The resulting formulation must
be satisfiable (unsatisfiable), if such a routing does exist (does
not exist). In the satisfiable case, the determined assignment
must furthermore allow to extract the precise routing. An SMT
formulation which incorporates these properties is described
next.

1Recall that T † denotes the best possible overall completion time as defined
in Def. 2 and, hence, is applied as lower bound for the considered problem.
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B. Formulation of the Routing Problem as SMT Instance
To formulate the corresponding SMT instance, a Boolean

function Φ over the following variables is created:

Definition 4. Consider a w×h-grid for which a routing over T
time steps shall be determined. Then, the Boolean variables
dt

x,y,i with (x, y) ∈ C, i ∈ D, and 1 ≤ t ≤ T represent
whether there is a droplet with identifier i present on the cell
(x, y) at time step t. The value true (false) means present
(absent).

Example 4. Consider the 5×5-grid shown in Fig. 3(a) which
represents a time step t of a possible routing problem. Here,
the droplets i1, i2, and i3 are occupying cells (1, 5), (3, 1),
and (5, 2), respectively. This is represented by setting all
variables as indicated in Fig. 3(b).

Having all these variables, it is up to the solving engine
to assign values for each time step t. Considering all time
steps 1 ≤ t ≤ T together, this eventually creates a routing on
the given grid. However, without any further constraints, no
valid routing can be determined, i.e. neither are droplets and
blockages correctly placed onto the grid nor is the desired
routing objective enforced. Consequently, constraints over
these variables are added.

Enforcing the Source and Target Configuration
First, constraints are introduced enforcing that the source

position (x∗i , y
∗
i ) and the target position (x†i , y

†
i ) for each

droplet i ∈ D are properly represented. This can easily be
accomplished by ∧

i∈D

d
T∗i
x∗i ,y∗i ,i ∧ dT

x†i ,y†i ,i
. (1)

Example 5. Consider the routing problem for a 5 × 5-grid
as shown in Fig. 4(a), which serves as running example for
the rest of this section. The droplets i1 and i2 as well as the
target cell (2, 4) form a three-pin net, while droplet i3 and the
target cell (4, 5) form a two-pin net. The following constraints
enforce the source and target position for the droplets i1, i2,
and i3 with T = maxi∈D T †i = 4:

d1
1,5,1 ∧ d4

2,4,1 ∧ d1
3,1,2 ∧ d4

2,4,2 ∧ d1
5,2,3 ∧ d4

4,5,3.

Formulating the Movement of Droplets
In order to formulate the movement of droplets, we need the

notation of a neighborhood of an (x, y)-cell. More precisely,
we introduce a 5-neighborhood N5(x, y) which contains all
the cells a droplet at cell (x, y) can reach within one time
step. Fig. 5(a) provides a visualization of the 5-neighborhood
for the cell (2, 2). Having this, a droplet i which is present at
a certain cell (x, y) at a certain time step t requires that the
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same droplet either spawned at that time step (this is already
covered by the constraints from Eq. (1)) or occupied another
cell within the 5-neighborhood of (x, y) the time step before.
The latter requirement is formulated as

∧
i∈D

∧
(x,y)∈C

∧
T∗i <t≤T

dt
x,y,i ⇒

∨
(x′,y′)∈N5(x,y)

dt−1
x′,y′,i

 . (2)

Example 6. Consider again the running example shown
in Fig. 4(a). The constraint representing the movement of
droplet i3 from its starting position (5, 2) at time step t = 1
to the cell (5, 3) at time step t = 2 is

d2
5,3,3 ⇒ (d1

5,3,3 ∨ d1
5,2,3 ∨ d1

5,4,3 ∨ d1
4,3,3).

Note that the 5-neighborhood does not contain the cell (6, 3)
as (6, 3) 6∈ C. The constraints for the remaining cells, droplets,
and time steps are generated in a similar fashion.

Fluidic Constraints
An important constraint to be considered during the routing

is that in order to avoid unintended mixing, two droplets
that are not supposed to be mixed must not occupy adjacent
cells [5]. For this purpose, another extended neighborhood no-
tation is applied, i.e. we introduce a 9-neighborhood N9(x, y)
which contains all the cells surrounding (x, y). Fig. 5(b) pro-
vides a visualization of the 9-neighborhood for the cell (2, 2).
Having this, each droplet must not occupy the 9-neighborhood
of another droplet (i.e. all droplets must keep their minimal
distance as illustrated at the top of Fig. 6(a)) and each droplet
must not enter the 9-neighborhood constituted by the occupa-
tion of another droplet one time step before (as illustrated at
the bottom of Fig. 6(a)). For each droplet, this eventually leads
to a cube in the position-time-space which no other droplet is
allowed to enter (see Fig. 6(b)).

However, fully enforcing these fluidic constraints is in
contradiction to the intended realization of three-pin nets,
i.e. the determination of a routing of two droplets to the same
target cell. To resolve this contradiction, fluidic constraints
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are usually applied between different nets only (see e.g. [5],
[6]). In order to formulate this, the set of droplets D is
partitioned according to the given nets. Fluidic constraints are
only enforced between these partitions. The set of all partitions
is denoted by P .

Overall, this allows for the formulation of fluidic constraints
as follows:

∧
p∈P

∧
i∈p

∧
j∈D
j 6∈p

∧
1≤t≤T
(x,y)∈C

dt
x,y,i ⇒

∧
(x′,y′)∈
N9(x,y)

dt
x′,y′,j ∧

∧
(x′,y′)∈
N9(x,y)

dt−1
x′,y′,j


(3)

Example 7. Consider again the running example shown in
Fig. 4(a). The three-pin net and the two-pin net lead to a
partitioning of the set D = {i1, i2, i3} of all droplets into
P = {{i1, i2}, {i3}}. That is, fluidic constraints are applied
between i1 and i3, i2 and i3, i3 and i1, as well as i3 and i2.
For droplet i1, time step t = 4, and cell (5, 5), this leads to

d4
5,5,1 ⇒ (d4

5,5,3 ∧ d4
5,4,3 ∧ d4

4,5,3 ∧ d4
4,4,3

∧ d3
5,5,3 ∧ d3

5,4,3 ∧ d3
4,5,3 ∧ d3

4,4,3).

As the position is in the corner of the grid, only four cells are
in the 9-neighborhood. The constraints for the remaining cells,
droplets, and time steps are generated in a similar fashion.

Enforcing Blockages

In order to represent the blockages on the grid, the values
of the dt

x,y,i-variables have to be restricted properly. This also
enables an easy consideration of temporary blockages. In fact,
it is sufficient to enforce that for each blockage and at the
respective time intervals, no droplet is present at the respective
cells. This is formulated by∧

(x,y,t1,t2)∈B

∧
i∈D

∧
t1≤t≤t2

dt
x,y,i. (4)

Example 8. Consider again the running example shown
in Fig. 4a. The set B, describing the blockages, is given
by B = {(2, 2, 1, 4), (2, 3, 1, 4), (3, 2, 1, 4), (3, 3, 1, 4)}. Every
blockage has the interval [1, 4] assigned to it. The constraint
representing this blocking in the SMT instance is

d1
2,2,1 ∧ d1

2,2,2 ∧ d1
2,2,3 ∧ · · · ∧ d4

3,3,1 ∧ d4
3,3,2 ∧ d4

3,3,3.

TABLE I: Characteristics of the applied benchmarks
Benchmark Size # sub-probl. # nets Dmax

in-vitro1 16× 16 11 28 5
in-vitro2 14× 14 15 35 6
protein1 21× 21 64 181 6
protein2 13× 13 78 178 6

Consistency Constraints
Finally, further constraints are added ensuring that the

obtained solution obeys certain consistency properties. More
precisely,
• from the spawn time to the target time, each

droplet must occupy exactly one cell per time step,
i.e.
∧

i∈D

∧
T∗i ≤t≤T †i

(∑
(x,y) dt

x,y,i = 1
)

,
• before its spawn time, each droplet must not occupy any

cell, i.e.
∧

i∈D

∧
1≤t<T∗i

(∑
(x,y) dt

x,y,i = 0
)

, and,
• after the target time, each droplet may,

but does not have to occupy a cell,
i.e.
∧

i∈D

∧
T †i <t≤T

(∑
(x,y) dt

x,y,i ≤ 1
)

.

Solving and Interpreting the Solution
A conjunction of the constraints introduced above in

Equations (1)-(4) together with the consistency constraints
eventually yields an SMT formulation Φ of a decision problem
which states that a given routing problem can be solved in
T time steps. The resulting formulation is then passed to a
corresponding solving engine. If the solver returns unsatisfi-
able, it has been proven that no routing with T time steps
exists and T is increased accordingly. If instead the solver
returns satisfiable, a precise routing, i.e. the positions of all
droplets for all time steps, can be derived from the respective
dt

x,y,i-variables (as illustrated before in Fig. 3).

Example 9. Consider again the running example shown in
Fig. 4(a). Passing the formulation as sketched above for T = 6
yields a satisfying solution including e.g. d1

1,5,1, d2
2,5,1, and

d3
2,4,1 set to 1. From this assignment, the routing of droplet i1

can be derived. In a similar fashion, the routing of the other
droplets are obtained eventually leading to the overall solution
as shown in Fig. 4(b).

V. EXPERIMENTAL EVALUATION

The proposed approach has been implemented in a Ruby
program that generates the respective instances described
above using the SMT-LIB2 format [13] extended by a logic for
cardinality constraints. The extension has been implemented
on top of the open source toolkit metaSMT [14]. As solving
engine we utilized the SMT solver Z3 [15]. Afterwards, the
proposed approach has intensely been evaluated on a 2.6 GHz
Intel Core i5 machine with 8 GB of memory running 64bit
Xubuntu 13.10. This section summarizes and discusses the
results of the conducted experiments.

A. Comparison to Previous Work
As reviewed in Section II-C, determining optimal results for

relevant benchmarks suffered from the respective complexity
– thus far, no optimal results have been obtained in feasible run
time. In a first series of experiments, we evaluated whether the
SMT-based approach presented in this work can cope with this
problem. For this purpose, we applied benchmarks which have
previously been used to evaluate the (heuristic) approaches
from [8], [9], [10] to the proposed exact approach. The
characteristics of these benchmarks, i.e. their name, grid-size,
number of routing sub-problems (denoted as # sub-probl.),
number of nets, as well as largest number of droplets to be
considered (denoted as Dmax), are summarized in Table I.



TABLE II: Comparison to previous work
Fluidic constraints with N9(x, y) Fluidic constraints with N5(x, y)

Progressive ILP [9] Two-stage SAT [10] Proposed exact approach Entropy [8] Proposed exact approach

Benchmark max T avg. T max T avg. T max T avg. T Time max T avg. T max T avg. T Time

in-vitro1 24 13.09 19 12.36 19 12 1726.3 18 12.47 18 11.2 1091.8
in-vitro2 21 10.93 20 10.20 16 10.07 907.8 17 10.43 16 10.07 793.9
protein1 26 16.15 23 15.78 20 15.28 11766.9 20 15.51 20 15.28 9754.2
protein2 29 10.47 21 9.25 20 9.54 4958.9 20 10.04 20 9.53 3950.5

Results are provided in Table II. For each benchmark (com-
posed of several routing problems) and each approach, the
maximal and average number of time steps needed to perform
the respective routings are given (denoted as max T and
avg. T , respectively). Additionally, for the proposed approach,
the required run-time (in CPU seconds) is provided. Note that
previously proposed approaches apply different interpretations
of fluidic constraints: In [8], a 5-neighborhood instead of a
9-neighborhood is used to avoid unintended mixing in the
moving step. Our approach can handle both interpretations by
simply replacing N9(x, y) in the right part of the constraint
in Eq. (3) with N5(x, y). To allow a consistent evaluation, the
respective results are distinguished accordingly in Table II.

The results clearly confirm that exact results can be de-
termined in feasible run time for all benchmarks. For the
first time, this enables a qualitative comparison of previously
obtained (heuristic) results to the actual minimum. In fact,
using the exact approach, routings with a lower maximal as
well as the average number of time steps can be generated2.
Nevertheless, since the differences are rather small, we were
able to confirm that the previously proposed heuristics are
already quite close to the actual optimum. Besides that, it is
interesting to see that the different interpretations of the fluidic
constraints have very little effect on the resulting routing.

B. Exploitation of Temporary Blockages
As discussed in Section III, previously proposed approaches

ignore the fact that blockages are often not present the entire
time but only in certain intervals. Thus far, this prevented the
determination of better routings. This has been evaluated in
a second series of experiments. For this purpose, the routing
problems introduced in [8, Fig. 1 and 2] and the 59th sub-
problem of the protein2-benchmark have been applied as
benchmarks. The blockages have additionally been enriched
with temporal information in terms of intervals. More pre-
cisely, first we determined the minimal number of time steps
assuming all blockages to be present the entire time (denoted
by init. T ). Afterwards, T is applied to specify the length
of the respective intervals with respect to different percentage
values: For example, if T = 10 then blockages are assumed
to be present onto the grid for 9 (90%), 7 (70%), and 5 (50%)
time steps. The precise intervals are determined randomly.
Blockages which can be merged into rectangles containing
more than one cell are assumed to share the same interval.
This creates proper benchmarks which allow to observe the
effect of temporary blockages.

Results are provided in Table III. The initially determined
number of time steps (init. T ) denotes the best possible result
available thus far. Then, for each benchmark and each length
of intervals, 10 instances are considered. The best (min) and
average (avg.) number of time steps obtained from those
instances are reported in the remaining columns. The results
show that routing can indeed be significantly improved if
blockages are not assumed the entire time. In the best case,
the number of time steps is reduced from 16 to 4. This
demonstrates the potential of using timing information of
blockages.

2Only one exception exists for the protein2-benchmark, where a smaller
average value is reported in [10]. Even after thorough evaluations, we were
not able to re-produce this result from [10].

TABLE III: Exploitation of temporary blockages
90% 70% 50%

Benchmark Size init. T min/avg. min/avg. min/avg.

protein2.59 13× 13 16 16/16 4/11.1 4/5
[8, Fig. 1] 13× 13 15 15/15 15/15 13/14.4
[8, Fig. 2 (a)] 13× 13 13 13/13 13/13 10/11.3
[8, Fig. 2 (b)] 16× 16 24 24/24 23/23.0 21/22.7

VI. CONCLUSION & OUTLOOK

In this work we considered the exact routing for digital
microfluidic biochips. Previously proposed solutions suffer
from the fact that they are of heuristic nature only and
assume blockages to be present the entire time. We proposed
an SMT-based approach which addresses both issues. For
the first time, this enabled the generation of minimal results
and, hence, a qualitative comparison of previously proposed
approaches to the actual minimum. Furthermore, the potential
of considering temporary blockages has been shown. This
motivates a deeper consideration of this timing information
during routing processes and provides the basis for further
work in this direction.
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