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A Mixed Discrete-Continuous Optimization Scheme
for Cyber-Physical System Architecture Exploration

John Finn, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, email: {jbfinn,nuzzo,alberto}@eecs.berkeley.edu

Abstract—We propose a methodology for architecture explo-
ration for Cyber-Physical Systems (CPS) based on an iterative,
optimization-based approach, where a discrete architecture selec-
tion engine is placed in a loop with a continuous sizing engine. The
discrete optimization routine proposes a candidate architecture to
the sizing engine. The sizing routine optimizes over the continuous
parameters using simulation to evaluate the physical models
and to monitor the requirements. To decrease the number of
simulations, we show how balance equations and conservation
laws can be leveraged to prune the discrete space, thus achieving
significant reduction in the overall runtime. We demonstrate the
effectiveness of our methodology on an industrial case study,
namely an aircraft environmental control system, showing more
than one order of magnitude reduction in optimization time.

I. INTRODUCTION

The recent advancements in embedded processor technol-
ogy have pushed system designers to replace several me-
chanical, pneumatic or hydraulic components with electronic
components interacting with the physical world via sensors
and actuators. This trend towards higher “electrification,” par-
ticularly evident in the automotive and aerospace domains, has
enabled designers to drastically reduce system cost and weight,
while increasing performance and energy efficiency [1], finally
leading to the realization of complex cyber-physical systems
(CPS) that are characterized by the tight integration of physical
processes with the “cyber” world of computation, communi-
cation and control.

By pushing such a tight integration to an increasingly larger
scale, CPS are capable of interconnecting the world around us
and making it “smarter,” thus offering very promising solutions
to societal and environmental problems. However, as system
complexity and heterogeneity increase, current design practices
no longer scale to meet the demanding cost, performance, or
time-to-market constraints of these systems. A major bottle-
neck is the inability to foresee the impact of design decisions
made early in the design process on the final implementation
because of the lack of comprehensive frameworks for scalable,
system-level architecture exploration under a set of heteroge-
nous, possibly conflicting constraints, and with tight safety,
reliability and performance guarantees [2].

The rigorous definition of a cyber-physical system archi-
tecture, including the number and type of system components,
their dimensions, and their interconnections, tends to generate
intractable mathematical problems. Often, designers are ex-
pected to simultaneously reason about many discrete alterna-
tives, in conjunction with a large, continuous design space,
which requires expensive, high-fidelity simulations to achieve
the required accuracy in performance and cost estimations.
System-level design exploration is the domain of experienced
architects, often relying on their accrued knowledge and a
set of heuristic evaluations to take risky decisions. In fact,
the result of ad hoc design practices is often at the origin
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of unsustainable delays, lengthy redesign cycles and severe
financial consequences.

This paper addresses the challenges above by proposing a
rigorous and efficient optimization scheme for the exploration
of large, mixed discrete-continuous design spaces. Our contri-
bution is threefold:

• We propose a general formulation of the architec-
ture design problem in terms of a hybrid discrete-
continuous optimization problem, where the contin-
uous design space can be captured by nonlinear, non-
convex expressions, which may be, in general, not
available in closed analytic form.

• We propose an efficient, iterative algorithm that can
approximate the solution of the above optimization
problem by leveraging a discrete architecture selection
engine placed in a loop with a continuous sizing
engine. The discrete optimization routine proposes a
candidate architecture to the sizing engine. The sizing
routine optimizes over the continuous parameters us-
ing simulation to evaluate black-box physical models
and monitor the design requirements. To decrease the
number of simulations, fundamental axioms based on
conservation laws are leveraged to prune the discrete
space at each iteration, thus achieving significant re-
duction in the overall runtime and correctness of the
final result.

• We demonstrate the effectiveness of our methodology
on an industrial case study: an aircraft environmental
control system (ECS). Our results show more than
one order of magnitude reduction in optimization time
with respect to full enumeration of optimal candidate
configurations from the discrete selection engine.

The remainder of this paper is organized as follows. After
an overview of related works in Sec. II, we formulate the
CPS architecture design problem in Sec. III and present our
optimization-based methodology in Sec. IV. Sec. V introduces
the aircraft environmental control system case study and sum-
marizes our optimization results. Finally, concluding remarks
follow in Sec. VI.

II. RELATED WORK

Our work builds upon a series of recent results advocating
a formalization of the design process and the support of
design automation to address the challenges associated with
the next generation of CPS [3]–[6]. Specifically, we have
recently proposed a methodology for system-level design of
an aircraft electric power system, which relies on a formaliza-
tion of the design requirements using contracts expressed in
terms of temporal logic constructs and mixed integer-linear
constraints [3]. While architecture selection was previously
based on steady-state, discrete system abstractions [3], [6],
the focus of this paper is instead on providing an efficient
procedure for architectural exploration that can also capture
continuous dynamics in the plant and the controller. In addition



to determining the system structure, we also support com-
ponent sizing and continuous-valued decision variables. The
approach proposed in this paper is therefore complementary
to our previous one [3], [6], and can be incorporated in our
methodology.

Very few papers in the literature address the class of non-
linearly mixed discrete-continuous optimization-based design
problems, such as the one in this paper. A possible approach
to these difficult problems is to formulate simpler, monolithic
problem instances using a combination of approximations [7],
such as continuous relaxations of discrete constraints followed
by rounding methods, or analytical (e.g. linear, convex) ap-
proximations of nonlinear and dynamic constraints [8], [9]
that can be handled by mixed integer-linear or semidefinite
programming solvers. By building on our previous results [3],
[6], we propose instead an iterative combination of two solvers
that efficiently breaks a complex task into two simpler ones
at the discrete and continuous levels. Differently than previous
methods [7], we make no specific assumptions on the structure
of the continuous design space (e.g. monotonicity of cost or
constraints, knowledge of their derivatives) and the differential
equations of the underlying physical system. We are then able
to support black-box models that can be accurately evaluated
by simulation, while leveraging fundamental axioms based on
conservation laws to effectively discard conflicting discrete
design choices when a certain set of continuous constraints
is violated. This iterative scheme allows smoothly integrat-
ing heterogeneous modeling formalisms and distinct, possibly
domain-specific, optimization and simulation frameworks.

A set of model-based approaches to aircraft ECS design
have also appeared over the years, which are related to the
design example in this paper. However, they mostly entail
ad hoc procedures, characterized by a poor automation level
and largely neglect the interactions between architecture se-
lection and the control algorithm. Some of these works seek
to optimize the heat exchanger size for fuel efficiency, but
pay little attention to control design [10]; other approaches
only focus on the design of the control protocol, by either
evaluating the tradeoffs between a finite number of candidate
ECS architectures with respect to temperature control and
efficiency [11], or by exploring control strategies based on
fuzzy logic [12]. A correct-by-construction supervisory con-
trol protocol synthesized from linear temporal logic (LTL)
requirements, along with a state-estimation algorithm has also
been recently reported [13]; however, the architecture sizing
problem is not taken into account. More closely related to our
work is the procedure to co-design the heat exchanger (a plant
component) along with the bypass ratio (a control variable) to
optimize the overall efficiency and volume [14]. However, as
for the majority of the ECS design approaches above, the pro-
posed technique heavily relies on domain-specific knowledge
to take important decisions and lacks a rigorous formalization
of the design requirements.

III. PROBLEM FORMULATION

In this section, we formulate the CPS architecture selection
problem as a mixed discrete-continuous optimization problem.
The discrete decision variables encode component selection
from a pre-characterized library, while the continuous variables
encode sizing alternatives for the selected components. Our
goal is to find an optimal assignment for all the design
variables to satisfy a set of composition constraints and design
requirements while minimizing a cost function. To support
both continuous and discrete models within a unifying frame-
work, we need to enrich our previous formulation [6] as
follows.

A. Component Library and Architecture

We assume that a design is assembled out of a library
(collection) L of components and contracts. Each component
is associated with a type, defining its functionality (role or
task) in a system, and a tuple of attributes including: terminals,
variables, parameters, behavioral and extra-functional models.
A behavioral model is represented, in general, by a set of
differential algebraic equations (DAEs) F(u, x, y, κ) = 0
determining the values of the component output variables y
and internal variables x (including state variables) over time
given the values of the input variables u and the configuration
parameters κ. We also use [[F ]] to denote the set of behaviors of
a component, i.e. the solutions of F(.) = 0, and the notation
x(t) to emphasize that these solutions are traces over time,
t ∈ R≥0. Moreover, we assume vectors κ of the form (d, p)
where d encodes a set of (finite) discrete design choices,
while p represents a set of continuous design parameters.
Extra-functional models are compact maps that allow directly
estimating non-functional properties of a component, such as
energy, performance, and cost, as a function of (some of) the
component variables without expensive evaluations of the full
behavioral model.

Components can be connected via terminals and terminal
variables. Terminals can be logical (i.e. input or output) or
physical (e.g. hydraulic, thermal, electrical, mechanical) in
nature. Input terminals are used when a signal or the value
of a variable are imposed to the component by the external
environment; output terminals are used when a signal or a
value of a variable are imposed by the component. Physical
terminals are instead associated with effort and flow variables
subject to conservation laws. These variables are shared, rather
than imposed, in an interconnection. Examples of effort and
flow variables include, respectively, voltage and current for
an electrical terminal, pressure and mass flow for a hydraulic
terminal, and temperature and heat flow for a thermal terminal.
Examples of inputs and outputs include variables that are,
respectively, sensed and set by a controller, for example, a
valve controller’s mass flow and valve opening. While physical
terminals and variables cannot be univocally classified as
inputs and outputs a priori, they can still be labelled as
such a posteriori, based on the specific function a component
performs within the system and the overall interconnection
structure.

Components are associated to contracts, offering an ab-
straction for their behaviors. A contract C for a component
M is a triple (T,A,G), where T is the set of component
variables (including parameters), and A and G are assertions
representing sets of behaviors over T . A represents the as-
sumptions that M makes on its environment and G repre-
sents the guarantees provided by M under the environment
assumptions. A component M satisfies (implements) a contract
C, i.e. M |= C, whenever M and C are defined over the
same set of variables and all the behaviors of M satisfy the
guarantees of C in the context of the assumptions, i.e. when
[[FM ]] ∩ A ⊆ G. We say that a component N is a legal
environment of C, i.e. N |=E C, whenever N and C have the
same variables and [[FN ]] ⊆ A. Assumptions and guarantees
can be concretely expressed by DAE-based behavioral models
or signal temporal logic constructs. Contracts and their algebra
can then be used to formalize system-level requirements and
verify the correctness of the compositions and refinements
between components [3].

We then define a system architecture as a graph G =
(V,E), where V is a set of nodes, while an edge eij ∈ E
represents the interconnection between nodes vi and vj (i, j ∈
{1, . . . , |V |}, |V | being the cardinality of V ). Each node and
edge in an abstract architecture can be mapped to a library



element that implements it. Both nodes and edges can then be
labelled with the attributes of the associated library elements.
A template is an architecture in which the number and types of
nodes are fixed, while the interconnection structure is variable
and can be reconfigured. In a template, edges can be repre-
sented by a set of Boolean variables E = {eij}, each denoting
the presence or absence of an interconnection. An assignment
over E defines an architecture topology. We use the edge
variables E of a template to formulate a topology selection
problem and the configuration parameters K = {κi}i∈V ∪E to
formulate a sizing problem, where V and E are the sets of
nodes and edges of the template.

While the topology selection problem was the objective of
previous work [6], the focus of this paper is on the sizing
problem. In particular, given a topology T = (V,E) and
a library L, we aim to map a set of design requirements
into a selection of library components that implement each
node and edge in T , while minimizing an overall cost. In
our contract-based framework, the architecture is specified as
an aggregation of contracts from the library L, composed
according to the interconnection structure in T , which we
denote as architecture contract CT . The top-level requirements
are specified by a system-level application contract CA. The
refinement (mapping) between CA and CT is then modeled as
the vertical contract CA ∧ CT given by the conjunction of the
architecture and application contracts [3]. We are interested in
an optimal parameter configuration κ∗ subject to the constraint
that CA ∧ CT is consistent, i.e. there exists an implementation
satisfying both the guarantees of CA and CT in the context of
their assumptions as further detailed below.

B. System Requirements and Mapping

Our framework supports the specification of contracts using
algebraic constraints on integer and real variables, e.g. to
capture steady-state requirements, as well as signal temporal
logic constructs, to capture more complex real-time perfor-
mance requirements, including transient behaviors, which can
be monitored during simulation [3]. In the following, we dis-
cuss an instance of the mixed discrete-continuous architecture
selection problem in the case of steady-state requirements
expressed as inequality constraints on the system variables.

We cast the architecture sizing problem as an optimization
problem as follows. Let sij = 1 if a node or an edge i ∈ V ∪E
of T is implemented by a library component j ∈ Li, Li being
the set of library elements having the same type of element i,
and 0 otherwise. Let S′ be the set of all the decision variables
sij . We assume that behavioral models can be composed based
on the interconnection structure E in T via the composition
operator ∧E , implemented by the conjunction of the DAEs,
after extending the (local) variable alphabet of each component
to a (global) common set of symbols [3]. The guarantees of
the architecture contract CT can then be expressed by

F(u, x, y, s, p) =
∧

E
i∈V ∪E,j∈Li

sijFj(uj , xj , yj , dj , pj),

where x, y, u, s, and p are valuations over the sets X =
∪i∈V ∪EXi, Y = ∪i∈V ∪EYi, U = ∪i∈V ∪EUi \ Y , P =
∪i∈V ∪EPi, S = ∪i∈V ∪EDi ∪ S′ representing, respectively,
the sets of all the internal variables, output variables, input
variables, continuous parameters and discrete parameters in
the system. In the expressions above, we have used a capital
letter, e.g. X , to denote a set of variables, to distinguish
it from a valuation x over X , or a trace x(t). A first set
of optimization constraints in our problem will then come
from the behaviors guaranteed by the system, by requiring
that the DAEs F(u, x, y, s, p, x0) = 0 hold ∀u(t) ∈ U and
∀x0 ∈ X0. This constraint emphasizes the dependence on the
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Figure 1: Architecture selection methodology.

initial condition x0 for the state variables in F , where U is the
set of all admissible input behaviors (traces) for the system,
and X0 the set of all admissible initial conditions. These legal
sets of inputs and initial conditions encode the assumptions of
both CT and CA.

Next, we partition the set of optimization constraintsR into
two subsets. We denote Rf as the set of functional constraints,
which can only be checked by evaluating the system behavioral
model, i.e. rk(s, p, x∞, y∞) ≤ 0 ∀k ∈ {1, . . . , |Rf |}. We
instead denote Ref as the set of extra-functional constraints,
which can be checked without directly evaluating F(.) = 0,
i.e. rm(s, p, x∞, y∞) ≤ 0 ∀m ∈ {1, . . . , |Ref |}. We use the
notation x∞ to denote the steady-state value of the variables
X . Moreover, we assume that the domain P for the continuous
parameters P is selected such that, for any legal discrete
configuration s ∈ S = {0, 1}|S|, the steady state values
x∞(s, p) and y∞(s, p), which are generally functions of p and
s, are achieved ∀u(t) ∈ U and ∀x0 ∈ X0. Rf and Ref can
both originate from the “global,” system-level requirements in
CA as well as “local,” component-level requirements in CT . In
fact, the behavior of a component in T is guaranteed, according
to its behavioral model, only under a set of constraints express-
ing its assumptions. Some of these constraints, e.g. including
bounds on the magnitude of flows (fmax) and efforts (hmax),
must be discharged by the guarantees of other components
and explicitly accounted for in R. For example, the gauge of
a wire limits the amount of current that can safely pass or
the material of an air duct limits the maximum temperature of
the air passing through it. However, the actual values of the
current or temperature can only be determined after evaluating
the entire system model.

Altogether, given an objective function C(s, p), the archi-
tecture sizing problem generates the following optimization
problem, which searches over all the architecture configura-
tions that make the vertical contract CA ∧ CT consistent:

min
p∈P,s∈S

C(s, p) (1a)

s. t. F(u, x, y, s, p, x0) = 0,∀u(t) ∈ U ,∀x0 ∈ X0
(1b)

rk(s, p, x∞, y∞) ≤ 0, ∀k ∈ {1, . . . , |Rf |} (1c)
rm(s, p, x∞, y∞) ≤ 0, ∀m ∈ {1, . . . , |Ref |}

(1d)∑
j∈Li

sij = 1, ∀i ∈ V ∪ E, (1e)

and where the last cardinality constraint ensures that one
(and only one) library element is selected to implement each
component in the topology.

IV. HYBRID OPTIMIZATION SCHEME

To find a solution for problem (1a)-(1e), we propose the
iterative scheme illustrated in Fig. 1. Both the library L
and the topology template T are provided as inputs to our



Algorithm 1 Hybrid CPS Architecture Exploration
Input: Library L, topology T , constraints R, cost function C
Output: Best cost Cbest, selection sbest, parameters pbest
R̂ ← {}; Cbest ← +∞; sbest ← {}; pbest ← {}; k ← 1;
while true do

(s∗k, p∗k, C∗k ) ← OPTSEL(L, T , R, R̂, C);
if (s∗k, p∗k) = {} and Cbest = +∞ then

return infeasible;
else if C∗k > Cbest or (s∗k, p

∗
k) = {} then

return (sbest, pbest, Cbest);
(p∗∗k , C∗∗k ) ← OPTSIZE(L, T , R, C, s∗k);
if C∗∗k ≤ Cbest then

Cbest ← C∗∗k ; sbest ← s∗k; pbest ← p∗∗k ;
R̂ = R̂ ∪ LEARNCONS(s∗k, p

∗∗
k ,L, T ,R);

k ← k + 1;

process together with the application contract CA and the
objective function. The optimization strategy consists of a
discrete selection engine placed in a loop with a continuous
sizing engine. The output is an optimized system architecture
T ∗.

Let PF (p, s) denote problem (1a)-(1e) and PEF (p, s) de-
note the extra-functional problem associated with PF (p, s)
and consisting of just the objective function (1a) and con-
straints (1d) and (1e). Let Cbest be updated, after each iteration,
with the best achieved cost value. In our scheme, the discrete
optimization routine OPTSEL solves a version of the extra-
functional problem PEF (p, s) at each iteration by proposing
a candidate selection (s∗, p∗) to the sizing routine OPTSIZE.
Based on the nature of the cost function and the constraints,
PEF (p, s) can be a mixed integer-linear (or integer-quadratic)
program that can be efficiently solved without evaluating the
system dynamics. Resting on this candidate selection, OPT-
SIZE attempts to find an optimal assignment p∗∗ by solving
the full problem PF (p, s∗) with all the design constraints.
Both the cost function and the constraints are evaluated by
simulating the hybrid system model. If OPTSIZE achieves a
better cost solution, Cbest is accordingly updated. Otherwise,
if the newly computed cost is not optimal, or the sizing
engine reports infeasible, the discrete engine is queried
for another candidate selection. In every case, the current value
s∗ is excluded by the search space by augmenting PEF (p, s)
with additional constraints. The process repeats until an op-
timal, feasible solution is found or OPTSEL terminates with
infeasible. We implemented OPTSIZE using a version
of the Nelder-Mead (NM) method [15], which is particularly
suitable to approximate the solution of optimization problems
with nonlinear, black-box constraints for which derivatives
are not available and when decreasing the number of cost
evaluations is more critical than achieving high accuracy on
the final solution. However, the NM method can be replaced
by any other method for black-box optimization.

The iterative process described above can be very ineffi-
cient if only the current discrete assignment is eliminated at
each iteration, especially when simulation runs are expensive
or the discrete design space is extremely large. Therefore, we
develop a LEARNCONS function to help prune the discrete
design space with a set of new constraints R̂ that eliminate
more discrete assignments based on the gathered insight from
simulations. More formally, our procedure is summarized in
Algorithm 1. Let C∗k represent the cost after solving P k

EF (p, s),
at the kth iteration, achieved by the assignment (s∗k, p

∗
k).

Similarly, let C∗∗k denote the optimal cost value achieved by
the sizing engine for the candidate selection s∗k and the optimal
point p∗∗k . Since the current discrete variable assignment s∗k is
eliminated by the search space at each iteration, the sequence
of costs C∗k is finite, which guarantees termination, and is

monotonically increasing with k, i.e. C∗k ≥ C∗k−1. Moreover,
by our assumptions, C∗∗k can only be higher than or equal to
C∗k since OPTSIZE solves a problem that is more constrained
than the one solved by OPTSEL. Therefore, Algorithm 1 can
terminate as soon as C∗k > Cbest is found without having to
visit all the discrete combinations.

To further reduce the number of iterations and simulation
runs, LEARNCONS implements a strategy that can leverage
the results of the current optimization run and the underlying
conservation laws enforced by the topology to prune a larger
portion of the discrete search space whenever there is a viola-
tion of certain categories of functional constraints. To illustrate
the strategy, let R′f ⊆ Rf be a subset of functional constraints
enforcing bounds on flow or effort variables in the system.
Intuitively, if component A’s flow constraint in R′f is violated,
meaning that the current (simulated) flow through the terminals
of A exceeds its upper bound, we can use this information to
eliminate all the discrete configurations whose upper bound
on the allowed flow is smaller than the current value for A,
thus enforcing an increase in the maximum allowed flow at
the next sizing iteration. Since A is the “bottleneck” in the
current configuration, increasing the maximum flow allowed
in any other component in series with A will not help push the
search towards a feasible point. However, if component A is in
parallel with another component B of the same type, increasing
the maximum allowed flow through B may alleviate the burden
posed on A and move faster towards a feasible sizing. In this
case, we require the maximum flow requirement should be
increased for at least one of the components in parallel in the
next iteration.

Formally, let fki be the value of the flow through the
terminal of component i ∈ V ∪ E of topology T at iteration
k, and let fj,max be the maximum allowed flow through
component j ∈ Li of the same type as i. Let Fi ⊆ V ∪ E be
the set of components in parallel with component i, including
i, in T . Fi can be easily determined from the topology graph,
or from the balance equations at the interconnection between
terminals. For example, from a balance equation of the form
f1 + f2 − f3 = 0, we can directly infer that components 1
and 2 are in parallel, and both are in series with component
3. Then, there is a flow constraint violation at component i if
we find ∑

j∈Li

sk∗ij fj,max < fki , (2)

where sk∗i,j is the assignment decided by OPTSEL at iteration
k. Next, let Wk ⊆ V ∪ E be the set of components such
that (2) holds at iteration k. We can then augment the number
of constraints in the optimization problem as follows:

R̂k+1 = R̂k
⋃

i∈Wk

{∑
l∈Fi

∑
j∈Ll

fj,max(s
k∗
lj − sk+1

lj ) < 0

}
, (3)

where we enforce an increase in the maximum allowed flow
for at least one component in Fi for all i ∈ W k. Finally,
by exploiting the duality between flow and effort variables,
we handle violations in efforts in a similar way by replacing
parallel components with series components and vice versa.

As discussed above, the violation of a constraint involving
a set of flow (or effort) variables J will mostly impact the
selection of those components that enter the same set of
balance equations as the variables in J . However, it is possible
to generalize the above strategy to any constraint that is
monotone, as defined below.

Definition IV.1 (Monotone Constraint). A constraint (r(.) ≤
0) ∈ Rf in Problem (1a)-(1e) is monotone if there exists a



partial order 4 on the set of legal assignments S ′ ⊂ S such
that, if r(.) ≤ 0 is violated for an assignment s ∈ S ′ then
r(.) ≤ 0 is also violated for any other assignment s′ ∈ S ′
such that s′ 4 s.

Therefore, if a monotone constraint is violated for a configu-
ration of library components s∗k, we are allowed to disregard
all the selections of elements in L that are dominated by
s∗k without the risk of cutting feasible portions from the
search space. Altogether, the arguments offered above allow
us to conclude that Algorithm 1 terminates and does not miss
optimal points by disregarding feasible space portions. We can
then state the following theorem on its correctness.

Theorem IV.2. Let the following hold for Algorithm 1: (i)
OPTSEL is sound and complete on any instance of the extra-
functional problem P k

EF (s, p), i.e. it either finds the optimum
or correctly concludes with infeasible; (ii) OPTSIZE is
sound and complete on any instance of the problem PF (s∗k, p);
(iii) LEARNCONS augments the set of constraints R̂k by
adding constraints that eliminate the current assignment s∗k
and, if any monotone constraints is violated, any other assign-
ment that is dominated by s∗k. Then, Algorithm 1 terminates
and is sound and complete.

Unlike previously proposed monolithic optimization schemes,
the above decomposition does not rely on constraint relax-
ations or approximation techniques. While it can be used,
in general, as a heuristic method, stronger guarantees can be
provided under the assumptions of the above theorem. The full
enumeration of all the discrete choices may still be necessary
in the worst case; however, in practice, we observed substantial
reductions in the search space and in the overall execution time
as reported in the following section. A rigorous investigation
of the complexity of the proposed algorithm will be object of
future work.

V. APPLICATION TO AIRCRAFT ENVIRONMENTAL
CONTROL SYSTEM DESIGN

An aircraft Environmental Control System (ECS) is respon-
sible for maintaining a comfortable cabin temperature, pressure
and freshness for all passengers and crew [16]. To illustrate our
methodology, we consider a simplified architecture, shown in
Fig. 2, inspired by an industrial patent [17]. High temperature
(Te) and pressure (Pe) bleed air from the engine enters the ECS
through Valve 1, which regulates the mass flow rate, and is sent
to the Heat Exchanger for cooling. The Heat Exchanger cools
the bleed air using ambient air with a lower temperature Ta and
a controlled flow rate Fa from the RAM Air door. The cooled
air from the Heat Exchanger is mixed with bypass air, which
is controlled by Valve 2, and recirculated air in the Mixer. The
output of the Mixer is delivered to the cabin. Control of the
bypass valve and the RAM air allow the ECS to respond to
disturbances and set point changes in a timely manner. Finally,
air ducts connect all the components to transport gaseous air
from one to another. In such a multi-physics system, the flow
variables are represented by mass flow and heat flow rates,
while the effort variables are temperature and pressure.

In ECS design, critical parameters are the individual duct
size and material, the heat exchanger size (length, area and tube
diameter) and material, the valve positions, and the RAM air
flow rate. Ducts are typically selected “off-the-shelf” according
to a catalog of existing choices because customization is too
expensive. In contrast, optimizing the heat exchanger size,
which varies on a continuous spectrum, is necessary to meet
the unique requirements of a particular application or aircraft.
The control variables, such as the valve positions and RAM air
flow rate, can also be regulated within a continuous, predefined
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range. In this scenario, a possible bottleneck stems from the
need to accurately capture the coupling between duct sizing
and control. Duct size, a discrete decision variable, limits the
amount of allowed flow, which directly affects valve control, a
continuous variable. We start our analysis by providing details
on the components and contracts in our library and the models
used to represent them.

A. Component and Contract Library

In the following, a subscript i denotes an input variable
while o denotes an output. As mentioned in Sec. III-A, phys-
ical terminals and variables cannot be univocally classified,
in general, as inputs and outputs. To do so, we consider the
function associated with an ECS architecture, i.e. to condition
and transport air from the engine to the cabin. Therefore,
as represented by the arrows in Fig. 2, input and output
terminals are labelled according to the direction of the air flow.
Behavioral models capture both the thermal and hydraulic
viewpoints (aspects) of each component.

Valve: The valve controls the mass flow rate through it by
restricting the size of its opening, which is regulated by the
valve coefficient C. The temperature of the air leaving the
valve equals the temperature of the one entering the valve,
i.e. T = Ti = To. The relationship between the mass flow rate
F and the pressure Pi and Po at the terminals is described by
the following function:

F =


6.67 · 10−4CPi

√
1
T

Po < 1
2
Pi

4.72 · 10−4C(Pi + 2Po)
√

1
T
(1− Po/Pi)

1
2
Pi ≤ Po < Pi

0 Po ≥ Pi

(4)

accounting for the absence of reverse flow and the case
of choked flow. Since no mass accumulates in the valve,
F = Fi = −Fo hold. Finally, based on the valve contract,
the behaviors above are guaranteed under the assumption that
the valve coefficient satisfies 0 ≤ C ≤ Cmax.

Container: The container is characterized by a fixed volume
V = 0.0049 m3. The state variables describing its behaviors
are the mass m [kg] of the internal air and the corresponding
thermal energy Qc [J]. The input and output terminals have the
same pressure, i.e. P = Pi = Po. The Ideal Gas Law relates
the pressure, output temperature, mass and volume at each time
instant as P = mToR/V , where R = 287.058 J/(kgK) is the
gas constant for air. Similarly, the thermal energy is related to
the mass and output temperature by Qc = CairmTo, where
Cair = 1003.5 J/(kgK) is the specific heat of air. The dynamic
equations for the mass and thermal energy in terms of the
incoming and outgoing mass flow rates and temperatures are
reported below:

dm

dt
= Fi + Fo (5)



dQc

dt
= Cair(FiTi + FoTo). (6)

Heat Exchanger: In a heat exchanger two flows with different
temperature and rates are allowed to transfer energy. We
denote these two flows as the hot (subscript h) and cold
sides (subscript c). As mentioned above, the parameters to
optimize for are the cross-sectional area AHX [m2], length
LHX [m] and tube diameter DHX [m]. The overall heat
transfer area is a function of the number n and length LHX
of the tubes as well as the cross-sectional area AHX . Since
we assume no accumulation of mass, Fh,i + Fh,o = 0 and
Fc,i + Fc,o = 0 hold. The available area for heat transfer is
then AHT = nπDHXLHX , where n is the number of tubes.
The heat exchanger dynamics follow the equations below:

dTh,o
dt

+
UAHT

MHXCm
(Th,o − Ths) = 0 (7)

dTc,o
dt

+
UAHT

MHXCm
(Tc,o − Tcs) = 0, (8)

where MHX [kg] is the mass of the heat exchanger and Cm
[J/(kgK)] is the specific heat of the metal separating the two
flows. Ths and Tcs are calculated from the input temperature
and mass flow rates on both the cold and hot sides based on the
exchanger effectiveness ε [18], and U [W/(m2K)] is the heat
transfer coefficient of the heat exchanger. U is a function of the
input temperatures and flow rates and is linearly interpolated
from experimental data. Lastly, the pressure drop across the
hot side of the heat exchanger is given as a function of the
headloss [19] hl and air density ρ as ∆PHX = Ph,i−Ph,o =
hlρ. The headloss hl can be obtained as

hl =
fLHXV

2
h,i

2DHX
, (9)

where f is the friction coefficient and Vh,i is the velocity
[m/s] of the hot inflow. The velocity is a function of the
mass input flow rate (Fh,i), volumetric flow rate (Qh.i) and
air density, while the friction coefficient is a function of
the Reynold’s number. An exhaustive description of the heat
exchanger behavioral model is out of the scope of this paper.
We conclude here by pointing out that the specific heat, mass
and air density parameters of the heat exchanger model also
depend on the material used to build it. In our library, a heat
exchanger can be realized using either aluminum or steel.
The set of parameters related to the two materials, together
with their cost and weight model, are listed in rows 1 and 2,
respectively, of Tab. I.

Mixer: The mixer allows multiple input flows to be mixed
into a single output flow. All terminals (ports) have the same
pressure (Po = Pi,k,∀k). Flows and thermal energies are
instead balanced as follows

Fo = −
∑
k

Fi,k, FoTo = −
∑
k

Fi,kTi,k, (10)

where the input terminals are indexed by k.

Cabin: To simplify, we use a reduced model of the cabin in
this study, characterized by a fixed volume V = 141.58 m3,
number of passengers n = 200, thermal energy per passenger
Qpass = 90 W and heat gain from the external environment
δQ = 0 W. Moreover, we assume that a release valve in the
cabin can provide an air flow rate Fl to maintain a constant
pressure P = Pi = Po = 101.325 kPa. Just like in the
container, the Ideal Gas Law relates the pressure P with the
cabin temperature To = T , its volume V and the mass m of
the inner air. Because of our assumptions, the thermal energy
of the air inside the cabin, Qcab = CairmT = CairPV/R is

ID r
(m)

Fmax
(kg/s)

Tmax
(K)

c
($/m2)

w
(kg/m2)

SP
(J/(kgK))

1 0.17 0.400 455 5.50 2.17 900
2 0.17 0.400 800 3.00 3.85 450
3 0.17 0.400 330 41.50 0.75 NA
4 0.26 1.250 455 5.50 2.17 900
5 0.26 1.250 800 3.00 3.85 450
6 0.26 1.250 330 41.50 0.75 NA
7 0.23 0.870 455 5.50 2.17 900
8 0.23 0.870 800 3.00 3.85 450
9 0.23 0.870 330 41.50 0.75 NA
10 0.20 0.695 455 5.50 2.17 900
11 0.20 0.695 800 3.00 3.85 450
12 0.20 0.695 330 41.50 0.75 NA
13 0.15 0.304 455 5.50 2.17 900
14 0.15 0.304 800 3.00 3.85 450
15 0.15 0.304 330 41.50 0.75 NA

Table I: Available configurations for a duct in our library L. Config-
urations 1 and 2 can also be used to implement the Heat Exchanger.
The columns relate, respectively, to the radius, maximum allowed
flow rate, maximum allowed temperature, cost per area, weight per
area, and specific heat. The specific heat parameter SP is only used
in the heat exchanger model.

a constant, while the dynamic equation for Qcab degenerates
into the following algebraic equation:

0 =
dQcab

dt
= Cair

(
FiTi+FoT+FlT

)
+nQpass+δQ. (11)

Lastly, the cabin mass m obeys the following differential
equation:

dm

dt
= Fi + Fo + Fl. (12)

Fan: The fan enforces a flow rate Ff = Fi = −Fo = 0.3042
kg/s, which is assumed as fixed in this paper. Furthermore, the
input and output temperatures are equal, i.e. To = Ti.

Ducts: The air ducts connect each component together and
have various sizes and materials. Each duct enforces Fi =
−Fo at its terminals, as well as the same input and output
temperatures, i.e. To = Ti. Moreover, a duct is associated
with a tuple of variables (c, w, r, l, Tmax, Fmax), including
the cost per area, weight per area, radius, length, maximum
allowed temperature, maximum allowed flow rate and specific
heat, respectively. To simplify, we assume that the maximum
flow rate is directly proportional to the duct radius, while the
pressure drop across each duct is zero. Tab. I shows 15 possible
configurations for a duct in our library. Configurations 1, 4, 7,
10 and 13 relate to aluminum ducts; configurations 2, 5, 8, 11
and 14 relate to steel, and 3, 6, 9, 12 and 15 are composite.

Controller: A typical ECS may leverage complex, hierarchical
control architectures, where a high-level supervisor provides
the appropriate set points to lower-level proportional-integral-
derivative (PID) controllers, which directly interact with the
plant. While our simulation-based methodology can support
the exploration of these architectures in closed-loop configu-
ration, in this paper, we opt for a simplified steady-state model
of the controller to formulate the architecture exploration
problem. Specifically, given the current system state and input,
as measured from the physical plant, the controller directly
regulates the valve coefficients C1 and C2 with the RAM
air flow-rate Fa to achieve the desired steady-state cabin
temperature and air flow, while avoiding component faults.
The control parameters can then be determined as part of the
topology sizing problem as further detailed below.

B. System Requirements and Mapping

We cast the ECS architecture design problem as a mapping
problem using the formulation in Sec. III-B. Given the library



L in Sec. V-A, our optimization problem is constrained by
the achievable system behaviors, as obtained by the composite
model FECS(.) = 0, under the input scenario u = (Te, Pe, Ta)
for the bleed air temperature and pressure, and the ambient
air temperature, where Te = 450 K, Pe = 350 kPa and
Ta = 240 K, all constant over time. We denote as p ∈ P an
assignment over the continuous parameters P = (AHX , DHX ,
LHX , Fa, C1, C2), i.e., the heat exchanger’s cross-sectional
area, tube diameter and length, the RAM air flow rate, and the
positions of Valve 1 and Valve 2, respectively. P is defined by
the lower and upper bounds (0.15, 0.001, 0.2, 0.5, 0.01, 0.01)
and (0.30, 0.005, 0.4, 1.0, 0.10, 0.10), respectively, with the
units given in Sec. V-A. To initialize the system state, we chose
a point x0 such that 0.5‖xref‖2 ≤ ‖x0−xref‖2 ≤ 0.8‖xref‖2,
where xref is a “target” reference point and ‖x‖ denotes the
2-norm of x. We aim to minimize the overall material cost for
the ducts and heat exchanger computed as follows

C(s, p)

2π
=

5∑
i=1

li
∑
j∈Li

sijcjrj + LHX
AHX

DHX

∑
j∈LHX

sHX,jcj ,

(13)
where the first sum in (13) ranges over the set of the five
ducts in T , sij = 1 if and only if the configuration j ∈ Li
is selected to implement a duct i, sHX,j = 1 if and only if
the configuration j ∈ LHX is selected to implement the heat
exchanger, while cj and rj are defined as in Tab. I.

A set of optimization constraints for the objective in (13)
derives from the spatial arrangement of the ducts (mechanical
viewpoint), specifying that the lengths of ducts 1, 2 and 5 are
fixed (l1 = 0.1 m, l2 = 0.5 m and l5 = 0.25 m), while the oth-
ers are linked to the heat exchanger length via the constraints
l3 = l4 = (l2 − LHX)/2. These length constraints can be
directly incorporated into the cost function (13) by adequately
rearranging its terms. The other optimization constraints will
instead enforce that the component-level contracts are com-
patible (i.e. CT is compatible and therefore FECS(.) = 0
provides the correct system behaviors), and their aggregation
is consistent with the application contract, i.e. CA∧CT is con-
sistent. Therefore behaviors obtained by solving FECS(.) = 0
refine the top-level requirements captured by CA. As discussed
in Sec. III-B, we distinguish between functional and extra-
functional constraints.

In addition to the constraints generated by the DAEs of
the model FECS() = 0, other functional constraints enforce
that the cabin reaches a comfortable steady-state temperature
(Tc,∞ ∈ [290, 300] K) and maintains a desirable flow of fresh
air (Fc,∞ ∈ [0.8, 1.2] kg/s). Furthermore, for safety, the heat
exchanger should not freeze (Tx,∞ > 273 K). Finally, the
temperature and flow rate of the air through the ducts must
not exceed their maximum value, based on the selected duct
configuration, i.e.,

Ti,∞ ≤
∑
j∈Li

Tj,maxsij , Fi,∞ ≤
∑
j∈Li

Fj,maxsij , (14)

for all i ∈ {1, . . . , 5}. These constraints assure that the
assumptions of the duct contracts are discharged by the guar-
antees of the other contracts in the composition CT . The extra-
functional constraints include the box constraints imposed by
P on p, the sum (cardinality) constraints on the {sij} and
{sHX,j} Boolean variables and a maximum weight constraint
requiring the weight of the ECS be less than Wmax = 44.5 kg.
The overall weight can be computed with a similar expression
as the one used for the objective function in (13), where cj is
replaced with wj .

We observe that both the objective function and the
weight constraint can be linearized by using auxiliary vari-
ables and constraints to eliminate the products of continuous
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Figure 3: Single Nelder-Mead optimization trace: continuous config-
uration parameters p for heat exchanger and controller.

and Boolean variables in (13). Therefore, the extra-functional
optimization problem can be formulated as a mixed integer-
linear program (MILP) and efficiently solved by a commercial
solver. Moreover, the duct configurations in the library form
an ordered set with respect to their temperature and flow
constraints in (14), which allows eliminating all the dominated
configurations whenever one of the constraints in (14) is
violated. Therefore, by Theorem IV.2, we can leverage our
hybrid optimization scheme to solve the ECS architecture
exploration problem.

C. Optimization Results

We implemented the full ECS model using MODELICA1,
an object-oriented modeling language for acausal systems
based on DAEs, and JMODELICA2, an open source, PYTHON
toolbox for the simulation of MODELICA models. The discrete
optimization routine leverages CPLEX3 via the PYTHON inter-
face PULP4. The continuous optimization routine utilizes the
version of the NR method that is built into JMODELICA. All
tests were executed on an Intel Xeon 3.59-GHz processor with
24-GB memory.

A single NM optimization trace is shown in Fig. 3 and
Fig. 4 for a randomly selected initial guess in P . As apparent
from Fig. 3, OPTSIZE aims to minimize LHX and AHX and
maximize DHX , while determining the steady-state control
values of the valve coefficients and the RAM air flow rate
to satisfy the system requirements. The red lines in Fig. 3
indicate the parameter bounds. In practice, to evaluate the
objective function and the optimization constraints for each
parameter configuration, we run a transient simulation for
enough time to guarantee that changes in the system state and
output variables become negligible, hence the steady-state is
achieved. Optimization constraints other than bounding boxes
are incorporated in the cost function using a ramp penalty
function. As shown in Fig. 4, although the cabin temperature
(Tc), cabin flow rate (Fc) and heat exchanger temperature (Tx)
requirements may be initially violated, the optimization trace
is eventually driven into the feasible region, denoted by the
thresholds in red, in a way that is largely independent of the
specific slope selected for the ramp penalty function.

We then executed the hybrid optimization scheme under the
assumption that only the first six duct configurations in Tab. I

1https://www.modelica.org/
2http://www.jmodelica.org/
3www.ibm.com/software/integration/optimization/cplex-optimizer/
4https://pypi.python.org/pypi/PuLP
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Library Runtime Performance

Size Discrete
Choices Cost Discrete

Iterations Simulations
Run
Time
(h)

FULL ENUMERATION
6 15,552 112.39 17 62,496 3.72
9 118,098 112.03 72 257,141 15.42

12 497,664 18-h Timeout
15 1,518,750 21-h Timeout

LEARNCONS
6 15,552 112.39 2 5,812 0.36
9 118,098 112.03 4 13,329 0.83

12 497,664 111.63 6 21,418 1.34
15 1,518,750 111.14 9 31,874 1.91

Table II: Runtime versus library size (number of available duct
configurations).

are available in our library. To decrease the chance of getting
trapped in a local minimum, we also ran the sizing problem
separately using three different initial points for each discrete
selection. The initial guess consists of AHX = AHX,min,
LHX = LHX,min and DHX = DHX,max, while Fa, C1
and C2 are randomly assigned within P . When only one
discrete assignment is eliminated at each iteration, which we
call the full-enumeration operating mode, the optimization
converges after 17 selections and 51 sizing iterations for
an overall execution time of 3.72 hours to explore 62,496
total configurations. The optimum material cost of 112.39 is
achieved by asserting the Boolean variables {s1,4, s2,1, s3,4,
s4,4, s5,4, sHX,1} and for the following sizing parameters:
{AHX = 0.15 m2, DHX = 0.005 m, LHX = 0.2 m,
Fa = 0.66 kg/s, C1 = 0.07 m·s·K0.5, C2 = 0.07 m·s·K0.5}.
When LEARNCONS is instead used to eliminate a larger set
of conflicting assignments based on the topology balance
equations, the same optimum can be obtained using only 2
discrete iterations and a total of 22 minutes, i.e. more than
one order of magnitude improvement in execution time. This
shows that our algorithm is indeed able to drastically reduce
the search space and the number of calls to OPTSIZE. The
average execution time of OPTSEL is on the order of a few
milliseconds.

Finally, we ran the proposed algorithm with an increasing
number of allowed duct configurations in Tab. I to test its
scalability as the size of the library L increases. As shown
in Tab. II, design spaces including up to 1.5 million discrete
configurations could be explored in less than 2 hours, while
the full-enumeration method would timeout after 18 and 24
hours, respectively, for a library including 12 and 15 duct
configurations. For a library of 9 configurations, LEARNCONS
almost shows a 20× improvement in runtime performance
with respect to full enumeration, while achieving the same
optimum.

VI. CONCLUSIONS

We proposed an optimization-based methodology for
cyber-physical system architecture selection and sizing, which
uses a two-level iterative scheme to traverse a hybrid discrete-
continuous design space in a scalable way. Our algorithm can
substantially reduce the optimization time when applied to an
industrial case study such as an aircraft environmental control
system. As future work, we would like to further investigate
the complexity of the proposed scheme and its integration with
our framework for optimized selection of topologies subject to
reliability constraints [6].
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