
Rethinking Split Manufacturing: An Information-Theoretic
Approach with Secure Layout Techniques

Abhrajit Sengupta†*, Satwik Patnaik†*, Johann Knechtel‡, Mohammed Ashraf ‡, Siddharth Garg†,
and Ozgur Sinanoglu‡

† Tandon School of Engineering, New York University, New York, USA
‡ New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

{as9397, sp4012, johann, ma199, sg175, ozgursin}@nyu.edu

Abstract—Split manufacturing is a promising technique to defend
against fab-based malicious activities such as IP piracy, overbuilding, and
insertion of hardware Trojans. However, a network flow-based proximity
attack, proposed by Wang et al. (DAC’16) [1], has demonstrated that
most prior art on split manufacturing is highly vulnerable. Here in
this work, we present two practical layout techniques towards secure
split manufacturing: (i) gate-level graph coloring and (ii) clustering
of same-type gates. Our approach shows promising results against
the advanced proximity attack, lowering its success rate by 5.27x,
3.19x, and 1.73x on average compared to the unprotected layouts when
splitting at metal layers M1, M2, and M3, respectively. Also, it largely
outperforms previous defense efforts; we observe on average 8x higher
resilience when compared to representative prior art. At the same time,
extensive simulations on ISCAS’85 and MCNC benchmarks reveal that
our techniques incur an acceptable layout overhead. Apart from this
empirical study, we provide—for the first time—a theoretical framework
for quantifying the layout-level resilience against any proximity-induced
information leakage. Towards this end, we leverage the notion of mutual
information and provide extensive results to validate our model.

I. INTRODUCTION

Nowadays, more and more companies rely on external foundries
for cost-effective access to advanced fabrication technologies. How-
ever, as this trend towards globalization of integrated circuit (IC)
manufacturing consolidates, companies are forced to share their
valuable intellectual property (IP) with potentially untrusted parties.
This dependency coupled with currently inadequate protection mea-
sures has led to many security vulnerabilities such as IP piracy,
overbuilding, and insertion of hardware Trojans [2]–[4]. These threats
are becoming an increasing concern for both commercial and military
organizations. In fact, it is estimated that several billions of dollars
are lost each year owing to IP piracy [5].

A. Split Manufacturing and Proximity Attack

Split manufacturing was proposed by the IARPA agency [6] to
thwart the aforementioned threats. Leveraging the asymmetry of the
metal layers, the design is split into two parts: the front-end-of-line
(FEOL), consisting of the active device layer and lower metal layers
(e.g., ≤ M3), and the back-end-of-line (BEOL), that is the remaining
higher metal layers (e.g., ≥ M4).1 The FEOL is manufactured in a
high-end, third-party foundry which is untrusted, whereas the BEOL
is fabricated at a trusted facility on top of the incomplete wafer(s)
provided by the FEOL foundry. This two-step approach helps to
hide the overall functionality of the design from an attacker residing
at the FEOL foundry, thereby hindering her/him from pirating the
design or maliciously modifying it via hardware Trojans. Recently,
different works have successfully demonstrated the feasibility of split
manufacturing [7]–[10].

*A. Sengupta and S. Patnaik contributed equally.
1In accordance with [1], our notion of splitting, e.g., at M2, implies that

metal layers M1 and M2 as well as V23 (i.e., the vias between M2 and M3)
are readily available to fab-based attackers.

Unfortunately, naive split manufacturing falls short of ensuring
security. Commercially available physical-design tools apply certain
heuristics to minimize power, performance, and area, which may
leak certain information. An attacker in the foundry can leverage
this information to retrieve the missing BEOL connections, possibly
undermining the defense intended by split manufacturing. In fact,
Rajendran et al. [11] exploit the physical proximity between the cells
to be connected; they demonstrated a proximity attack that connects
nearby cells to retrieve the missing BEOL connections. Recently, an
advanced network-flow attack was presented by Wang et al. [1]—this
attack has been shown to render most prior protection schemes for
split manufacturing insecure.

The threat model for split manufacturing is depicted in Fig. 1. The
attacker has access to the technology libraries but is oblivious of the
functionality of the IC. Naturally, she/he also cannot obtain a working
IC; the IC is yet to be manufactured.

B. Prior Art and Our Contributions

To thwart proximity attacks, a pin-swapping based countermeasure
was proposed in [11]. In practice, however, many swapped connec-
tions can still be correctly inferred. Jagasivamini et al. [12] showed
that splitting at a lower layer renders the design more secure against
proximity attacks; they propose to split the design at M1. Though
splitting at M1 may render the design secure against such attacks, it
also necessitates state-of-the-art manufacturing facilities at the trusted
BEOL foundry. As a result, the cost of production significantly
increases, defeating one of the promises of split manufacturing, i.e.,
affordable (but secure) IC production [7]–[9]. Besides, Wang et al. [1]
proposed an algorithm for heuristic placement perturbation towards
layout protection. Wang et al. [13] further proposed a routing-based
scheme targeting for 50% Hamming distance between the original
and the reconstructed netlist (to induce the maximal ambiguity for an
attacker). Magaña et al. [14] insert routing blockages to lift wires and,
thus, to mitigate routing-centric attacks. To counter Trojan insertion,
a formal method for “k-security by wire lifting” was proposed by
Imeson et al. [15]; it comes along with a high overhead, e.g., ≈ 200%
for delay.

Apart from this, there has been little to no effort towards a
theoretical model which can quantify the resilience of a design against
proximity attacks in general. In this work, we propose such a model
based on the concepts of entropy and mutual information. Although
the notion of entropy was previously advocated by Jagasivamani et
al. [12], their study lacks specific formulations and, thus, fails to
measure resilience in both theory and practice.

Building up on our theoretical framework, we propose several
placement-centric techniques aiming to make split manufacturing
secure against any proximity attack while ensuring practicality. As
for our baseline approach, i.e., full randomization of the placement,
it provides the highest level of security, but also incurs the highest

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

ar
X

iv
:1

71
0.

02
02

6v
3

 [
cs

.C
R

]
 2

0
D

ec
 2

01
7

http://dx.doi.org/10.1109/ICCAD.2017.8203796

In-house	
design	teams

Untrusted
fab

Trusted
fab End-user

Trusted

Untrusted

Secure	Design	Flow

FEOL

BEOL

Fig. 1. Threat model for split manufacturing, along with our secure design flow (dashed). Note that the untrusted FEOL fab may want to pirate some IP
and/or insert hardware Trojans. In this work, we primarily focus on the former aspect of the threat model.

layout overhead. Thus, to reduce overhead, we propose two novel
techniques based on graph coloring and clustering gates of the same
type. We show empirically that these techniques can attain notably
better trade-offs for layout cost and security.

The contributions of our work can be summarized as follows:
• An information-theoretic framework to gauge the resilience of

a given layout against any proximity attack (Section II).
• Two placement-centric techniques which help to render split

manufacturing-based layouts secure against any proximity attack
at acceptable overhead (Section III).

• A thorough investigation based on the well-known ISCAS’85
and MCNC benchmarks, demonstrating the effectiveness of our
techniques and contrasting with naive randomization and prior
art (Section V). Here we also investigate the cost-security trade-
offs for split manufacturing induced by different split layers; we
look into splitting at M1 up to M6.

II. INFORMATION-THEORETIC METRIC

Recall that split manufacturing is meant to offer protection against
fab-based attacks such as IP piracy, overbuilding, and/or insertion
of hardware Trojans. While the intended protection is based on the
fact that the FEOL and BEOL of the chip are manufactured by
different parties, physical design tools still operate on the entire
design holistically, driven by the strong need for design and cost
optimization. As a result, any partial, FEOL-level layout might leak
certain information which can be leveraged by an attacker to infer the
hidden BEOL connections. Indeed, the notion of physical proximity
between connected cells, among other hints, has been leveraged in
multiple attacks [1], [11], [14].

An attack-based, empirical security evaluation has two major
drawbacks: (1) it can be time-consuming and, thus, ineffective for
large layouts; (2) it is naturally specific to the employed attack and,
thus, fails to quantify the layout’s protection (or the lack of) against
other attacks. Surprisingly, however, there has been very little to
no effort towards measuring the resilience of a layout against an
advanced or even an optimal attack. In this regard, we introduce an
information-theoretic metric to quantify the amount of information
that can be extracted by an attacker from the physical layout.

A. Measures of Information Leakage

To measure the uncertainty of an attacker about the missing
connectivity of a given layout, we leverage the concept of entropy,
which was famously introduced by Shannon. Note that the concept of
entropy has been extensively employed to assess the vulnerability of
cryptosystems in the context of side-channel attacks, such as power
analysis or timing attacks [16], [17].

The entropy of a variable X : X is defined as

H[X] = −
∑
x∈X

Pr[X = x] · log Pr[X = x] (1)

Given another variable Y : Y, the conditional entropy of X denoted
as H[X|Y] can be expressed as

H[X|Y] = −
∑
y∈Y

Pr[Y = y] ·H[X|Y = y] (2)

The attacker’s initial uncertainty about X is H[X], and given a
leakage model denoted by Y , the amount of information leakage—
formally termed as mutual information (MI) [17]—is expressed as

I(X;Y) = H[X]−H[X|Y] (3)

B. Resilience Against Proximity Attacks

Any proximity attack leverages the fact that the distance between
cells reveals information about their connectivity. Thus, by analogy,
the distance between cells constitutes the leakage model which an
attacker tries to exploit. Hence, we define two variables, X and D,
capturing the connectivity and distance between cells as

X =

{
1 if two cells u and v are connected;
0 otherwise

(4)

D = distance(u, v) (5)

Without loss of generality, we apply the notion of Manhattan distance
(sum of horizontal and vertical distance) between cells.

To quantify the amount of information revealed by their distance
about the connectivity between cells and, thus, to quantify the
resilience of a layout against proximity attacks, we determine the
mutual information MI

MI = I(X;D) = H[X]−H[X|D] (6)

Note that the conditional entropy H[X|D] itself can serve a similar
purpose, but it fails to capture the notion of information leakage.

To compute H[X] and H[X|D], we determine the distribution
of X and D for a given layout in a pairwise manner for all gates,
allowing a straightforward and efficient computation of I(X;D).

The MI quantifies the inherent protection of a layout against
proximity attacks; the lower the MI, the lower the correlation between
connectivity X and distance D and, thus, the better the protection.
This correlation is apparent from Fig. 2 where the graph for correctly
recovered connections (by running the proximity attack of [1]) is
plotted over the normalized MI for the c7552 benchmark split at M1.
Here we shuffle the placement of randomly selected cells (from 0 to
100% of all cells, in steps of 10%). This way, we obtain 11 different
layouts with varying and unbiased distributions for the MI. The plot
reveals a linear relation between the MI and the correct connections
(i.e., the attacker’s success rate), validating our hypothesis that a
lower MI implies higher security.

The goal of a security-aware designer is thus to generate layouts
in such a way that the MI is minimized. Also, another interesting
measure could be I(D;X), i.e., the amount of information revealed

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://dx.doi.org/10.1109/ICCAD.2017.8203796

Mutual Information (Normalized)

C
o

rr
e
c
t

C
o

n
n

e
c
ti

o
n

s
(%

)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Fig. 2. Correct connections over normalized mutual information for stepwise
randomized layouts of c7552, split at M1.

by the connectivity about the distance of gates, but it turns out that

I(D;X) = H[D]−H[D|X]

= H[D]− ([H[X|D]−H[X] +H[D])

= H[X]−H[X|D] = I(X;D)

So far, we have considered the distance between cells; thus, the
MI only quantifies the layout’s security when split at M1. Such
findings may not translate well for splitting at higher metal layers
(see also Section V). Nonetheless, the proposed information-theoretic
metric is generic in the sense that it is still applicable to higher
split layers as well—one has to simply consider the distances of
open pins/vias rather than the distances between cells.2 Since these
pins/vias represents parts of the overall routing infrastructure, which
is typically optimized towards short interconnects, they will leak
additional information beyond the placement of cells.

Notably, applying our metric at different layers will guide the
designer which layer he/she should split at, using a precise and
quantified trade-off between security (higher when split at lower
layers) and cost (lower when split at higher layers). As we focus on
placement-centric techniques, here we compute the MI considering
gate distances—our metric readily and accurately evaluates the layout
protection (or lack of) when splitting at M1.

III. OUR SECURE LAYOUT TECHNIQUES

Next, we present different placement-centric techniques for making
a layout secure in the context of split manufacturing and proximity
attacks. Our analysis above elucidates the need to minimize the
layout’s mutual information (MI) of connectivity and distances, to
mitigate any proximity attack.

One obvious and straightforward (thus naive) idea is to completely
randomize the placement of cells in the layout to achieve the
desired effect. The intuition here is that randomizing a layout would
stretch the connected cells apart in an unpredictable manner, thus
successfully eliminating any proximity-induced information leakage.
This is illustrated in Fig. 3 where the distribution of connectivity
is plotted against distance for the original and randomized layout
of c7552, respectively. It is easy to see that the connectivity in the
randomized layout is nearly uniformly distributed over the distance,
unlike the original one which is heavily correlated with distance.
The random layout exhibits a very low MI, and is expected to be
secure even against advanced proximity attacks. However, it also
incurs excessive overhead regarding power, performance, area, and
wirelength, sometimes up to 600%. In Fig. 4, for example, we
plot the correct connections and MI against wirelength overhead
for c7552 when split at M1. The grey-shaded region in the plot

2Open pins/vias describe the open ends of “dangling wires” remaining in
the FEOL after split manufacturing; see also [13].

200

400

600

800

#
 C

o
n

n
ec

ti
o

n
s

Distance

Original
Random

Fig. 3. Distribution of connectivity over distance of c7552 for original (green)
and randomized layout (blue).

marks the desirable solution space having better trade-offs for security
and layout cost when compared to randomization. This raises the
following question: can we develop layout techniques that may
approximate or even improve the security/resilience level of layout
randomization yet at a reasonable cost?

Here we take on this challenge and present two novel layout
techniques, called g-color and g-type. As illustrated in Fig. 4, our
techniques can achieve a similar level of security when compared to
randomization, with much lower wirelength overheads at the same
time (see also Section V-B for more details on layout cost). In the
next two subsections, we present our techniques.

A. g-color

We leverage graph coloring to hide the connectivity information;
coloring a netlist mandates that there be no connectivity between
gates of the same color. The “colored netlist” is then partitioned by
clustering all cells of same colors together and the placement of cells
is confined within their respective clusters. These constraints naturally
mitigate the information leakage to a great extent, thereby making the
layout more secure, albeit in a cost-effective manner.

The coloring technique is described in Algorithm 1. (The reader is
also referred to Section IV for further details on layout generation.)
We extend the greedy coloring strategy discussed in [18]. The process
is illustrated in Fig. 6 where we show the coloring of a full-adder
circuit (see also Fig. 5 for the latter). For the sake of simplicity,
the inputs and outputs are also considered as vertices/gates, as they
are likely connecting to other cells in the overall design. The first
vertex is selected at random and the rest of the vertices are colored
iteratively.3 After coloring all the vertices/gates, they are clustered

3Note that this random selection of the first vertex allows us to obtain
different versions of protected layouts for the same design.

0 100 200 300 400 500 600
Wirelength Overhead (%)

0

2

4

6

8

10

12

14

16

18

20

Co
rre

ct
 C

on
ne

ct
io

ns
 (%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ut

ua
l I

nf
or

m
at

io
n

(N
or

m
al

iz
ed

)g-color
g-type1
g-type2

Fig. 4. Correct connections and mutual information versus wirelength
overheads, when splitting c7552 at M1. For layout randomization (represented
by the blue line and the dark-yellow, dashed line), gates are randomly selected
in steps of 10% and have their locations shuffled.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://dx.doi.org/10.1109/ICCAD.2017.8203796

Algorithm 1: Algorithm for g-color
Input : Flattened netlistN
Output: Partitioned netlistN′
G ← convertToDAG(N) /*convertN to a directed acyclic graphG*/
L ← getListOfV ertices(G) /*parse the list of vertices*/
C ← φ /*initialize the set of colors*/
while isNotEmpty(L) do

u
$←− getNextV ertex(L) /*pick start vertex randomly*/

if notColorable(u) then
C ← addNewColor() /*requires new color for u*/

u.color ← getMinColor(C) /*find the color with fewest cells and color u*/
L′ ← getAdjacencyList(u) /*list neighbors of u*/
while isNotEmpty(L′) do

v ← getNextV ertex(L′) /*color all neighbors of u*/
if notColorable(v) then

C ← addNewColor()

v.color ← getMinColor(C)
delete(v, L′)
delete(v, L)

delete(u, L)

N′ ← partitionByColor(N,C) /*partition the netlist according to color*/
returnN′

1

2

4
3

5
S

COUT

CIN

A

B

XOR

XOR

OR

AND

AND

Fig. 5. Graph representation of a full-adder circuit.

together according to their colors as indicated by the encapsulating
boxes in Fig. 6.

Initially, we observe that selecting the first available color for the
next vertex may produce largely unbalanced clusters (Fig. 6a). In turn,
this can cause the design tool to place the different types of partitions
(small/large, little/largely interconnected with other partitions) in a
manner which may leak information about the underlying connec-
tivity of the gates. We thus adapt the algorithm to select the color
corresponding to that with the so-far lowest number of associated
cells, yielding more balanced partitions in practice (Fig. 6b).

So far, we select the same color for all the neighbors of a vertex
v; all the neighbors/cells are consequently assigned to the same
partition. However, as these neighbors/cells are all driven by the
same cell (the vertex v), any layout tool seeks to place them in
close proximity within their partition. Thus, we further adapt the

1

5

3

4
S

A

B

1x 1x

5x

4x 2
AND

OR

NAND
AND

XOR

XOR
NOR

NOR

XORNAND

1

2

4
3

5
S

COUT

A

B

CIN

COUT

COUT CIN

1x

(a) Naive, unbalanced coloring.

1

2 4

3

5
S

COUT CIN

A

B

2x2x 2x

4x

2x

AND

OR
NAND

AND

XOR

XOR
NOR

NOR

XORNAND

1

2

4
3

5
S

COUT

CIN

A

B

(b) Balanced coloring, also with different colors for neighbours.

Fig. 6. Applying g-color to a full adder, with the resulting design partitions
and their system-level connectivity (right).

Algorithm 2: Algorithm for g-type
Input : Flattened netlistN
Output: Partitioned netlistN′
L ← parseNetlist(N) /*list the set of vertices*/
H ← φ /*initialize gate-types*/
while isNotEmpty(L) do

u ← getNextV ertex(L)
if u.type == BUF or INV then

H
$←− u /*place u uniformly randomly*/

H ← hash(u, u.type) /*partition u according to its type*/
delete(u, L)

N′ ← partitionByType(N,H) /*partition the netlist by gate-types*/
returnN′

1
3

COUTCIN

A

B
2x

NAND

1x

XOR

NOR

S

COUT

5

1
3

COUTCIN

A
B

2x

2x
2

4
AND

NOR

S

COUT

OR
5

1x

1x

1

4

3

5
S

COUT

CIN

A

B

AND
XOR

OR
NAND

NOR

2x 1x

2x

2x
1x

1x

2

Fig. 7. Applying g-type to a full adder, with the partitions.

algorithm to explicitly color all the neighbors differently, thereby
“decoupling” cells from their driver.4 The assignment of different
colors to neighbors is streamlined with the balance-aware color
selection; see Fig. 6b for an example.

B. g-type

We observe empirically that the connectivity amongst the same
type of gates is rather low; even in case where particular structures
such as “AND trees” are present, they seldom dominate the overall
design. Thus, our second approach (independent of g-color) is to
cluster and partition all gates of the same type.

Our technique called g-type is outlined in Algorithm 2 and illus-
trated in Fig. 7. It comes in two flavors—we either consider (i) only
the functionality of the gates (g-type1), or (ii) both the functionality
of the gates as well as the number of their inputs (g-type2), e.g.
here we do differentiate between a 2-input NAND gate and a 3-input
NAND gate. The latter is motivated by our experimental results which
indicate that utilizing more partitions renders a design more resilient
against proximity attacks in practice. Note that we do not account for
driving strengths during partitioning. Doing so would be superfluous
since design tools scale up gates as needed (and/or insert buffers)
during later stages.

IV. METHODOLOGY

Here we describe the steps for the layout generation utilizing our
secure techniques. The steps are generic and can be easily embedded
into any design flow. As an example, two protected, cell-level layouts
of c7552 are shown in Fig. 8.

First, we obtain the gate-level, technology-mapped netlist of the
design to protect (using the Cadence RTL compiler along with the
NanGate Open Cell Library [20]). Next, we apply (one of) our
proposed techniques on that netlist to obtain the related design
partitions. Given these partitions, we generate a layout where all
partitions are mapped to mutually exclusive layout regions called
fences. A fence confines the corresponding partition’s cell placement
within its boundaries. This is an important step as it ensures that
placement optimization cannot undermine the physical separation
of cells dictated by partitions. The actual system-level arrangement
of all fences—which can be considered as floorplanning—is done
automatically using Cadence Innovus. Finally, the layout is routed

4Conceptually, we now realize coloring of a hyper-graph [19].

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://dx.doi.org/10.1109/ICCAD.2017.8203796

(a) g-color (b) g-type2

Fig. 8. Protected layouts for c7552. Cells corresponding to particular
clusters/partitions have identical colors.

and finalized. We like to emphasize the fact that we target for a
DRC-clean layout by adapting the utilization target as needed. We
resolve any outstanding DRC issues, if any, and report the power,
performance, and area (PPA) numbers.

As the concept of split manufacturing hinges on two foundries,
we split the DEF file into the FEOL and BEOL parts using a custom
script. One aspect of our study is to investigate the cost-security
implications at different split layers; we thus obtain multiple sets of
FEOL and BEOL parts, for splitting from M1 up to M6.

V. EXPERIMENTAL RESULTS

Setup: Our secure layout techniques are implemented using Java
OpenJDK 1.8.0 121 64-bit Server VM. The layouts are generated
using custom in-house scripts for Cadence Innovus 15.1 using the
NanGate 45nm Open Cell Library [20] with ten metal layers. Note
that all metal layers are leveraged across all benchmarks for the sake
of fair comparison. The PPA analysis is carried out at 0.95V for
the slow process corner. We evaluate the resilience of our protected
layouts against the network-flow attack by Wang et al. [1]. For the
latter, we run experiments on an 8-core Intel Xeon i7-4790 CPU,
at 3.60GHz and with 16GB RAM. The operating system is Ubuntu
16.04.2 (xenial). We conduct our experiments on the ISCAS’85 and
MCNC benchmark suites (Table I). While all those benchmarks
are fully combinatorial, our techniques can be readily applied to
sequential circuits as well.

A. Security Analysis

Reduction in mutual information: The reduction in MI for
our different techniques, when compared to the original layouts, is
presented in Table II. As expected, random placement enables the
largest reduction in MI and, thus, presumably the best protection.
However, recall that this specific assessment is only applicable for
splitting at M1. As for higher split layers, one should rather consider
the distance between remaining open pins/vias. These distances will
be shorter on average, due to design tools (routers) seeking to shorten

TABLE I
BENCHMARKS SELECTED FROM THE ISCAS-85 AND MCNC SUITES,

ALONG WITH THEIR PROPERTIES

Benchmark Inputs Outputs Gate Count

apex2 39 3 610
apex4 10 19 5,360
c432 36 7 160
c880 60 26 383
c1908 33 25 880
c2670 233 140 1,193
c5315 178 123 2,307
c7552 207 108 3,512

des 256 245 6,473
ex1010 10 10 5,066

TABLE II
REDUCTION IN MI (IN %) FOR THE PROPOSED TECHNIQUES COMPARED

TO ORIGINAL LAYOUTS, WHEN SPLIT AT M1
Benchmark Random g-color g-type1 g-type2

apex2 96.11 75.00 89.44 92.22
apex4 96.67 90.00 96.67 93.33
c432 93.44 91.03 82.41 89.31
c880 96.84 88.42 86.84 89.47
c1908 95.00 79.29 85.71 85.71
c2670 97.22 85.56 89.44 94.44
c5315 98.00 92.00 94.00 92.00
c7552 98.89 91.11 90.00 88.89

des 98.25 92.5 90.00 90.00
ex1010 96.67 93.33 93.33 93.33

Avg. 96.61 87.43 87.33 89.56

interconnects wherever possible, thereby bringing the open pins/vias
closer together (or even routing some of the nets already completely
within the FEOL). Hence, the MI as calculated for splitting at M1
will become less expressive for higher layers.

The above expectation—random placement is most secure, at least
while splitting at lower layers—is corroborated while conducting the
attack [1] across various split layers (Fig. 9; see also below for further
discussion). While random placement is the most secure technique at
lower split layers, it becomes less and less effective for higher layers,
until the point (at M6) where even the original, unprotected layouts
are more resilient. In general, we observe the higher the split layer,
the more connections are correctly inferred and, thus, the lower is
the actual resilience.

Resilience at M1: It is evident from Fig. 9a that only a few
connections are recovered correctly across all benchmarks. Thus, the
resilience when splitting at M1 is generally high. Still, as expected,
we find that the original layouts are easiest to attack. This reiterates
the fact that design tools shall be reinforced with the help of security
metrics (such as MI) once split manufacturing is considered.

We observe that randomization enables the highest resilience. This
is in agreement with our findings above, i.e., randomization achieves
the largest reduction in MI. Again, this is expected as we “dissolve”
the hints of connectivity by randomly perturbing the placement of all
gates. Unfortunately, randomization comes at a hefty cost for PPA
(up to 600%); see also Section V-B.

Our proposed partitioning techniques perform quite well for se-
curity; we are able to significantly reduce the percentage of correct
connections when compared to original layouts. In fact, we observe
on average reductions of 6.54×, 3.86×, and 5.41× for g-color, g-
type1, and g-type2, respectively. As illustrated in Fig. 9a (and Fig. 4),
we can achieve similar resilience when compared to randomization
(with lower wirelength overheads at the same time).

Resilience at M2 and M3: As expected, the resilience generally
decreases across all techniques and benchmarks when compared to
M1 (Figs. 9b and 9c). Interestingly enough, the advances of our
techniques still carry over to a great extent. On average, we reduce the
correct connections by 2.73–3.47× and 1.64–1.85× while splitting at
M2 and M3, respectively, as opposed to original layouts. Moreover,
for relatively large benchmarks under consideration (i.e., apex4, des,
and ex1010), our techniques are even on a par with randomization.

Resilience at M4 and above: Once we split at layer M4 or above,
we still achieve average reductions by 1.4×, 1.3×, and 1.2× over
original layouts (Figs. 9d, 9e, and 9f). For relatively large benchmarks
(apex4, des, and ex1010), we even achieve reductions by 1.52–1.75×.
Also note that our techniques are on average on a par with layout
randomization for M4 and M5, and notably excel it for M6, by
1.2×. This clearly indicates that only thoughtful placement-centric
protection schemes can imply some resilience also for higher split
layers and relatively large benchmarks.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://dx.doi.org/10.1109/ICCAD.2017.8203796

0

2

4

6

8

10

12

14

16

18

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

Original
Random

g-color
g-type1
g-type2

(a) Split at M1

0

10

20

30

40

50

60

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

(b) Split at M2

10

20

30

40

50

60

70

80

90

100

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

(c) Split at M3

20

30

40

50

60

70

80

90

100

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

(d) Split at M4

20

30

40

50

60

70

80

90

100

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

(e) Split at M5

30

40

50

60

70

80

90

100

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

(f) Split at M6

Fig. 9. Correct connections (representing the attacker’s success rates) for original and varyingly protected layouts, evaluated against the attack [1] when split
at different layers.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://dx.doi.org/10.1109/ICCAD.2017.8203796

0

10

20

30

40

50

60

c432
c880

c1908

c2670

c3540

c5315

c7552

A
vg

R
ed

u
ct

io
n

 i
n

 C
o

rr
ec

t
C

o
n

n
ec

ti
o

n
s

(%
)

[1]
gcolor

gtype-1
gtype-2

Fig. 10. Reduction in correct connections achieved for the protection scheme
in [1] and our techniques, for splitting at M4. The data for [1] is quoted from
their recent publication [13] which is also based on the same attack as in [1].

Comparison with Wang et al. [1]: We compare our work to the
most recent in placement-centric protection by Wang et al. [1] in
Fig. 10. Note that we compare for splitting at M4 since the layouts
provided to us indicate this split layer. We lower the number of correct
connections on average by 21.9–25.1% when compared to the original
layouts—this is an improvement of ≈8× over [1].

Besides that, we cannot directly compare with other studies such
as [13], [14]; these are routing-centric protection techniques and we
are also not made aware of all essential details of their protected
layouts (such as the technology files). However, the data presented
in [13] indicates that our techniques are still competitive.

B. Layout-Level Cost Analysis

Area overheads: Recall that we adapt the utilization rates as
needed to enable DRC-clean layouts; the reported area cost accord-
ingly captures the effect of upscaling die outlines. While layout
randomization enables the most resilient layouts on average, it incurs
prohibitive overheads (Fig. 11). We note that area cost scales up
significantly for relatively large benchmarks under consideration (i.e.,
apex4, des, and ex1010); however, these benchmarks are still decent
in size when compared to state-of-the-art industrial designs. Hence,
randomizing layouts is not scalable. In contrast, we observe that our
techniques g-color and g-type1 induce on average 60% area cost.
Applying g-type2, however, results in larger overhead, sometimes
comparable to randomization. Since g-type2 induces on average more
partitions, the system-level routing for those partitions becomes more
challenging and congested, which can only be managed by larger die
outlines. It is easy to see that routability poses a major challenge
for any protection scheme “dissolving” the connectivity of gates and
their placement. Naturally, a larger die outline also lengthens wires
to some degree, which may also impact power and performance.

Power and performance overheads: As for layout randomization,
both the power and delay overhead are prohibitive. Again, recall that
randomization deliberately and uncontrollably “rips apart” connected
gates. Even sophisticated design optimization in later stages (timing-
driven routing, clock gating, etc., see also [19]) may handle the related
overhead only to some degree.

As for our novel layout techniques, we obtain significantly lower
overheads. We observe average power overheads of 50% across
all benchmarks, which is an improvement of 1.6× over layout
randomization. Further, we observe average delay overheads less than
18% in all the benchmarks under consideration; this translates to an
improvement of 5× over randomization.

Comparison with Wang et al. [1]: While the respective layouts
are available to us, we have not been made aware of the technology

0

100

200

300

400

500

600

apex2
apex4

c432
c880

c1908
c2670

c3540
c5315

c7552
des ex1010

Avg

A
re

a
O

ve
rh

ea
d

(%
)

Random
g-color
g-type1
g-type2

0

50

100

150

200

250

300

350

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

P
o

w
er

 O
v

er
h

ea
d

 (
%

)

0

50

100

150

200

250

300

350

400

apex2

apex4

c432
c880

c1908

c2670

c3540

c5315

c7552

des
ex1010

A
vg

P
er

fo
rm

an
ce

 O
v

er
h

ea
d

 (
%

)

Fig. 11. Layout overheads for various techniques in contrast to the original,
unprotected layouts.

files and the specifics of the physical-design setup. Hence, we cannot
reasonably contrast the PPA cost at the layout level. Further, PPA cost
is also omitted in [1] itself. While the wirelength numbers reported
in [1] may be lower, it is well known that wirelength is only one
aspect among many others to impact PPA cost [21].

C. Discussion

Impact of technology libraries: We also investigate the impact
of different technology libraries on both security and cost when
using our placement-centric techniques. For these experiments, we
additionally synthesized the c7552 circuit using a library constrained
to the three essential gates: NAND, NOR, and inverters.

First, note that g-color is agnostic with respect to the library; the
partitioning is solely dictated by connectivity. For g-type, however,
there is an interdependency between the library and the final layout
since partitions are based on gates of the same type. We observe a
direct relation between protection and the number of partitions (i.e.,

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://dx.doi.org/10.1109/ICCAD.2017.8203796

TABLE III
CORRECT CONNECTIONS (IN %) FOR c7552, PROTECTED USING G-TYPE,

AND FOR DIFFERENT LIBRARIES AND SPLIT LAYERS

Split layer Full library Constrained library
g-type1 g-type2 g-type1 g-type2

M1 4.3 3.3 16.1 13.9
M2 17.1 13.2 45.5 37.8
M3 39.3 36.4 59.5 53.7
M4 57.9 51.3 75.5 69.3
M5 62.5 57.7 76.9 71.4
M6 70.7 70.4 89.6 85.6

gates in the library): the fewer partitions, the lower the resilience
(in terms of more correctly recovered connections, see Table III).
Besides the adverse impact on security, it should be noted that such
a significantly constrained library is not practical as it offers very
little room for design optimization. In short, an enriched library not
only offers significantly more room for design optimization, but it
also enables higher resilience while using g-type.5

Trade-off for cost and security: We note that the layout re-
silience varies greatly across the different split layers and different
benchmarks. While splitting at M1, M2, or even M3 still offers a
reasonable protection also for relatively small benchmarks (which are
easier to attack in general), splitting at M4 or above can only protect
relatively large benchmarks in comparison. In general, splitting at
higher layers implies lower commercial cost, since the trusted BEOL
fab is then only required to handle few metal layers having relatively
large pitches [6], [11].

Determining the design-specific “sweet spot” for cost and security
is thus an essential challenge for split manufacturing. Towards
this end, we advocate our metric (mutual information) as another
design criteria for future, security-aware tools. Moreover, we like to
emphasize the fact that only thoughtful placement-centric schemes
like ours (and unlike layout randomization) can provide some degree
of protection at higher split layers as well.

Towards better protection at higher split layers: While our
techniques already provide comparable protection to randomization
at lower layers and even translate to better protection at higher layers,
we still observe the general trend of increasingly successful recovery
once the attack targets at higher layers. Thus, an interesting question
arising is whether one can further strengthen our placement-centric
schemes also for higher layers. We believe that this requires applying
both placement- and routing-centric techniques in conjunction; this
will be the scope of future work.

VI. CONCLUSION

In this work, we first formulate an information-theoretic metric—
the mutual information between the connectivity and distances of
gates—which helps to analyze the protection of physical layouts
against proximity attacks. Our metric can measure the security in
an objective and efficient way, as compared to empirical and attack-
based evaluation schemes. We show further that randomizing the
layout/placement can reduce the mutual information, but only at an
excessive overhead. Thus, we also present two effective, placement-
centric techniques (namely, g-color and g-type) which enable compet-
itive (sometimes even superior) protection along with an acceptable
layout cost. For future work, we plan to extend our approach towards
protection at both the FEOL and BEOL end.

5Depending on both the design to protect and the library, there may be cases
where only a few gates remain within a partition. This might undermine the
resilience of g-type to some degree, as the arrangement of very small partitions
may leak their underlying connectivity. As a countermeasure, these partitions
could be balanced by adding dummy gates as needed. Note that this would
also prevent leaking the functional composition of the design [10], [12].

ACKNOWLEDGMENTS

The authors are grateful to Tri Cao and Jeyavijayan (JV) Rajendran
(University of Texas at Dallas) for providing their network-flow attack
and their protected layouts of [1].

This work was supported in part by the National Science Founda-
tion (NSF) under Grant 1553419, the Computing and Communication
Foundations (NSF/CCF) under Grant 1319841, a grant from the
Semiconductor Research Corporation (SRC), and the New York
University/New York University Abu Dhabi (NYU/NYUAD) Center
for Cyber Security (CCS). Any views expressed are the authors’ own
and do not necessarily reflect the views of the NSF or SRC.

REFERENCES

[1] Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The cat and mouse in split
manufacturing,” in Proc. Des. Autom. Conf., 2016, pp. 165:1–165:6.

[2] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: Identifying and classifying hardware trojans,” Computer,
vol. 43, no. 10, pp. 39–46, 2010.

[3] “iPhone 5 A6 SoC reverse engineered, reveals rare hand-made
custom CPU, and tri-core GPU,” 2012. [Online]. Available: http:
//www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-
engineered-reveals-rare-hand-made-custom-cpu-and-a-tri-core-gpu

[4] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[5] “Innovation is at risk as semiconductor equipment and materials
industry loses up to $4 billion annually due to IP infringement,”
2008. [Online]. Available: http://www.marketwired.com/press-release/
innovation-is-risk-as-semiconductor-equipment-materials-industry-
loses-up-4-billion-850034.htm

[6] “Trusted integrated chips (TIC) program,” Intelligence Advanced
Research Projects Activity, 2011. [Online]. Available: https:
//www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6

[7] K. Vaidyanathan et al., “Building trusted ICs using split fabrication,” in
Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2014, pp. 1–6.

[8] ——, “Efficient and secure intellectual property (IP) design with split
fabrication,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2014, pp.
13–18.

[9] K. Vaidyanathan, B. P. Das, and L. Pileggi, “Detecting reliability attacks
during split fabrication using test-only BEOL stack,” in Proc. Des.
Autom. Conf., 2014, pp. 1–6.

[10] C. T. O. Otero et al., “Automatic obfuscated cell layout for trusted split-
foundry design,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2015,
pp. 56–61.

[11] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proc. Des. Autom. Test Europe, 2013, pp. 1259–1264.

[12] M. Jagasivamani et al., “Split-fabrication obfuscation: Metrics and
techniques,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2014, pp.
7–12.

[13] Y. Wang, P. Chen, J. Hu, and J. Rajendran, “Routing perturbation for
enhanced security in split manufacturing,” in Proc. Asia South P. Des.
Autom. Conf., 2017, pp. 605–610.

[14] J. Magaña, D. Shi, and A. Davoodi, “Are proximity attacks a threat to
the security of split manufacturing of integrated circuits?” in Proc. Int.
Conf. Comp.-Aided Des., 2016, pp. 90:1–90:7.

[15] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, “Securing
computer hardware using 3D integrated circuit (IC) technology and split
manufacturing for obfuscation,” in Proc. USENIX Sec. Symp., 2013, pp.
495–510.

[16] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in Proc. Comp. Comm. Sec., 2007, pp. 286–296.

[17] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for
the analysis of side-channel key recovery attacks,” in Proc. Eurocrypt,
2009, pp. 443–461.

[18] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2000.
[19] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:

From Graph Partitioning to Timing Closure. Springer, 2011.
[20] “NanGate FreePDK45 Open Cell Library,” 2011. [Online]. Available:

http://www.nangate.com/?page id=2325
[21] R. S. Shelar and M. Patyra, “Impact of local interconnects on timing

and power in a high performance microprocessor,” Trans. Comp.-Aided
Des. Integ. Circ. Sys., vol. 32, no. 10, pp. 1623–1627, 2013.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
The definitive Version of Record is published in Proc. International Conference On Computer Aided Design (ICCAD) 2017

http://dx.doi.org/10.1109/ICCAD.2017.8203796

http://www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-hand-made-custom-cpu-and-a-tri-core-gpu
http://www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-hand-made-custom-cpu-and-a-tri-core-gpu
http://www.extremetech.com/computing/136749-iphone-5-a6-soc-reverse-engineered-reveals-rare-hand-made-custom-cpu-and-a-tri-core-gpu
http://www.marketwired.com/press-release/innovation-is-risk-as-semiconductor-equipment-materials-industry-loses-up-4-billion-850034.htm
http://www.marketwired.com/press-release/innovation-is-risk-as-semiconductor-equipment-materials-industry-loses-up-4-billion-850034.htm
http://www.marketwired.com/press-release/innovation-is-risk-as-semiconductor-equipment-materials-industry-loses-up-4-billion-850034.htm
https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6
https://www.fbo.gov/utils/view?id=b8be3d2c5d5babbdffc6975c370247a6
http://www.nangate.com/?page_id=2325
http://dx.doi.org/10.1109/ICCAD.2017.8203796

	I Introduction
	I-A Split Manufacturing and Proximity Attack
	I-B Prior Art and Our Contributions

	II Information-Theoretic Metric
	II-A Measures of Information Leakage
	II-B Resilience Against Proximity Attacks

	III Our Secure Layout Techniques
	III-A g-color
	III-B g-type

	IV Methodology
	V Experimental Results
	V-A Security Analysis
	V-B Layout-Level Cost Analysis
	V-C Discussion

	VI Conclusion
	References

