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Abstract—Continuous enhancements of connected products 

make them able to generate and communicate a huge amounts of 

middle-of-life data streams to their producers. This affordance 

also creates a challenge for current data analytics tools unable to 

keep up with the heterogeneous nature and characteristics of these 

type of data. Accordingly, a function able to combine data from 

multiple data streams and analyze them as one source of 

information is definitely needed in a next-generation data analytics 

toolbox to support product enhancements by designers. As a result 

of a recent Ph.D. project, this paper presents the conceptualization 

and the implementation of a novel function of merging middle-of-

life data streams. The implemented computational mechanism (i) 

acquires middle-of-life data streams, (ii) pre-processes them 

individually, (iii) merges information from the concerned streams, 

(iv) derives recommendation based on the merged information, 

and (v) send a recommendation as a message to the designer. The 

performance of the computational implementation was tested in 

an application case of data steaming and management to white 

goods designers for enhancing a connected washing machine. 

From a computational point of view, the testing proved that the set 

of proprietary algorithms designed for the realization of 

computational merging, together with the existing ones taken from 

the literature, were able to efficiently perform the subtasks. The 

advantages of merges were: (i) it provides more information than 

the one obtained by processing sensors’ data individually, (ii) it 

reflects the condition of the product with a higher fidelity, (iii) it 

communicates information about the product while it is in use by 

the customer, (iv) it reduces the sensors analyses time and effort, 

and (v) it provides recommendation as an action plan concerning 

the product at hand. The outcomes of this study will be used in a 

follow up research to develop a comprehensive smart data 

analytics toolbox to support product designers in product 

innovation. 

Keywords—data analytics; middle-of-life data; data merging; 

semantic interpretation; product designers; white goods 

I.  INTRODUCTION 

During the last decades, data merging has become a rapidly 
evolving topic in various application fields [1]. It is defined as a 
synthesis of information provided by multiple data sources. Its 
objective is to establish a relatively consistent and complete 
description through a more complete and accurate set of 
information [2]. The need for data merging, especially for 
semantic fusion of middle-of-life data streams (MoLD-Ss) was 

reported by product designers in an investigation that we 
conducted to determine the needs, satisfaction and expectations 
of white goods designers concerning a next-generation smart 
data analytics toolbox (SDATB) [3]. Designers concretely 
required (i) semantic interpretation of data analytics outputs, as 
well as (ii) merging different data streams from different 
sources. To explore the need in a multi-disciplinary manner, we 
combined five implicative theories based on the principles of the 
axiomatic theory fusion (ATF) approach [4]. The specific 
theories considered for fusing were dedicated to (i) professional 
needs of product designers, (ii) advanced technological enablers, 
(iii) evolution of data analytics, (iv) combined creative problem 
solving and decision-making, and (v) functional and structural 
interoperability of enablers. The process of the ATF consisted of 
five main stages, (i) selecting theories based on their usefulness 
as source theories, (ii) axiomatic discretization of component 
theories which consists of semantic discretization of theories, 
and  arrangement and composition of axioms and postulates 
structures, (iii) semantic and visual capturing of relationships 
that is done in three steps: creation of relationship network, 
matrix representation and rearrangement, and deriving 
propositions in a given context, (iv) actual fusion of the 
component theories that is done in three steps: syntactic 
processing and merging of component theories, deriving 
propositions based on units of resultant theory, and transferring 
propositions into a narrative description, finally (v) validation of 
the new theory in the context of the planned application. In this 
sense The results of the ATF confirmed the relevance of the 
hypothesis that semantic merging of MoLD-Ss and offering 
recommendation to designers based on combined data streams 
is a computational function that needs to be provided a SDATB.  

According to published works, implementation of a multi-
sensor-based data merging approach (i) improves the probability 
of proper detection, (ii) extends the spatial and temporal 
coverage, (iii) reduces ambiguity, (iv) enhance systems 
reliability, and (v) increases system robustness [5]. However, 
computational is a complicated task, especially when semantic 
merging is targeted. This is a so-called high-level merging and 
is difficult to realize for two reasons [6]. First, inferring semantic 
knowledge needs the transformation of a low-level 
data/information into higher-level ones, which typically suffers 
from information deficit. Second, understanding semantics by a 
system requires the ability of (i) working towards a set purpose, 



(i) acquiring context awareness, and sharing pertinent 
knowledge. These characteristics are typically thought of as 
features of human beings. 

The proposed merging function complements semantic 
merging by offering an action plan to the designer. This will be 
evidenced in the rest of the paper. Section 2 presents the 
recommendation function supporting the realization of semantic 
merging. Section 3 focuses on the conceptualization from a 
computational perspective, including both a functional 
specification and a conceptual architecture. Section 4 deals with 
the specification and implementation of the algorithms. Section 
5 demonstrates the use of the developed function in an 
application case. It includes the setting up, the conduct, the 
results of the testing and interpretation of the computational 
performance. Finally, Section 6 discusses the outcomes of the 
reported work, concludes about the overall findings, and 
presents the plans for short-term and longer term research 
activities. 

II. RECOMMENDATION FUNCTION FOR MERGING MIDDLE-

OF-LIFE DATA STREAMS 

The computational function that we have developed not only 
computationally fuses MoLD-Ss but also provides 
recommendations to the designer about what to do and how to 
do with the merged data streams. Therefore, it is named 
“recommendation for merging middle-of-life data streams”., 
Below, we refer to it by the symbol FSB1, where the subscript SB 
stands for ‘smart basic’ function. The basic functions are 
operational functions that are directly related to data analytics. 
As such, they are derived from fundamental requirements, which 
need to be satisfied by the SDATB. They do not include data 
management, interaction, or communication operations. In the 
above symbol, index “1” indicates that it is the first one of the 
many computational functions implemented for the SDATB. 

Computationally, FSB1 is supposed to merge semantically 
interrelated MoLD-Ss generated by different sensors of the same 
product. By doing so, it facilitates gaining additional 
information and deriving knowledge from the data streams to 
support decision-making in various contexts of product 
enhancement. The distinct data streams may complement each 
other. Thus, the merged MoLD-Ss can provide additional 
semantic information that is initially not conveyed by any one of 
the MoLD-Ss. However, eliciting semantic information requires 
appropriate inferring techniques. The proposed function adopts 
the principles of high-level multi-sensor data merging. It 
contextualizes the information conveyed by MoLD-Ss and 
analyzes their meanings in that context. Eventually, the 
recommendations concerning possible enhancement 
opportunities are based on the pieces of information generated 
by context-based reasoning. This content of recommendation is 
deduced by analyzing the outcomes of the merging in the 
specific context and is displayed for the designer as a displayed 
message. 

To realize the proposed function, a neural network-based 
approach has been adapted to merging MoLD from multiple 
different sources. The fact of the matter is that there are specific 
implementations of neural networks (NNs) that are appropriate 
to this purpose [7]. In addition, also devising a recommendation 
can be done by using a NN-based approach [8]. In order to find 

the neural network that can predict the required output 
dependably, an optimization process has been proposed 
considering gradient descent [9]. This entails the use of a multi-
layered NN that can be efficiently trained with stochastic 
gradient descent. Given a fixed amount of data, generalization 
can be improved by changing the architecture of the neural 
network. 

III. CONCEPTUALIZATION OF THE COMPUTATIONAL 

MERGING OF MIDDLE-OF-LIFE DATA STREAMS 

The realization of FSB1 required the specification of three 
elements: (i) the inputs provided by the designers (MoLD-Ss), 
(ii) the outputs expected from the function, and (iii) the 
computational procedures to execute FSB1. The expected outputs 
were the message(s) displayed to designer about the resultant 
MoLD-S and the action plan. The first step of realization was 
the decomposition of the function into a lower level functions 
and elementary functions considering a possible computational 
workflow. The decomposition resulted in five sub-functions: (i) 
acquiring real-time sensor MoLD-Ss (FSB1,1), (ii) individually 
pre-processing the selected MoLD-Ss (FSB1,2), (iii) merging 
information from the chosen middle-of-life data streams (FSB1,3), 
(iv) deriving recommendation based on the captured information 
(anomalies) (FSB1,4), and (v) formulating the recommendation as 
a message for the designer (FSB1,5).  

The sub-function FSB1,1 locates the product sensors and 
forwards their MoLD-Ss to the SDATB. The forwarded data 
streams may be stored on the background storage devices of the 
computer hosting the SDATB, or on a separate storage device 
(in the cloud). In order to get a confirmation from the designer, 
the sub-function FSB1,2 visualizes the data streams for the 
designer using various means offered by the SDATB (for 
example, plots and histograms). In addition, it pre-processes the 
single-modality data streams by selecting and applying 
particular processing rules. In the case of complicated data 
streams with unknown patterns, a comprehensive structural pre-
processing (filtering or ordering) is applied. In the case of less 
complicated data streams, the sub-function FSB1,2 reduces to data 
normalization. The computational merging of the MoLD-Ss is 
eventually done by the sub-function FSB1,3. The principle of 
fusion is correlating the data in the streams based on their time 
stamps. First, the sub-function generates intermediate 
representations to reduce time-dependent data into a compact 
fixed length vector. Then, it combines the data streams and 
generates a behavior descriptor according to the merged MoLD-
Ss. 

With a view to facilitating the application of machine 
learning, the sub-function FSB1,3 embeds the fused MoLD-Ss in 
a latent space (also called hidden space) of the neural network 
that is used for machine learning. In this space, data are mapped 
so as the similar data points are closer to each other. The latent 
space representations can be used to transform complex forms 
of raw data into simpler forms that are easier to analyze. The 
mapping to the latent space also help cluster similar cases. The 
sub-function FSB1,4 (i) detects anomalies in the merged data 
streams, (ii) matches the anomalies to the pre-programed 
knowledge in the SDATB, (iii) orders them according to their 
similarity, (iv) makes a report on each of the ordered anomalies 
based on the merged MoLD-Ss, and (v) converts the outcome 



into a specific recommendation. Sub-function FSB1,5 (i) retrieves 
a template for message construction, (ii) constructs a 
recommendation message for the designer accordingly, (iii) uses 
the retrieved template to construct the message, and (iv) 
communicates the message to the designer. In line with the 
merged data, the message informs the designers about what is 
improper concerning the product. As a complement of the 
recommendation, a plan of actions is generated to resolve the 
detected operational anomalies of the product. 

As a next step towards the computational algorithms of FSB1, 
a conceptual architecture was specified. The overall architecture 
of FSB1 is shown in Fig. 1. The main constituents are: (i) the user 
interface, (ii) the database, (iii) the anomaly explorer, (iv) the 
pre-processing unit (including the manager, the configurator and 
the executor), (v) the merging unit (including the executor, the 
detector, the similarity calculator, and the organizer), (vi) the 
query manager, (vii) the search engine, and (viii) the 
recommendation unit (including the generator and the agent). 
The user interface enables the communication between the 
designer and the SDATB and transfers the inputs and the outputs 
to and from the toolbox. The database (also referred to as 
knowledge warehouse) stores (i) the data streams, (ii) the rules 
and the conditions for analyses, and (iii) the results of merging 
data streams. The MoLD-Ss explorer is responsible for the 
exploration of the data streams to be analyzed. The MoLD-Ss 
pre-processing unit communicates with the designer, and 
receives and processes the individual MoLD-Ss. The MoLD-Ss 
manager visualizes the data streams stored in the database and 
makes them available for the search engine. The pre-processing 
configurator determines the pre-processing rules and conditions 
to be applied to the individual streams by the pre-processing 
executor. These two components use the knowledge stored in 
the database. The pre-processed MoLD-Ss are transferred to the 
merging unit. Its semantic similarity calculator compares the 
explored anomalies with those stored to determine 
resemblances. The anomalies organizer manages the weights 
and, based on them, filters and organizes the anomalies for the 
recommendation generator. The recommender agent converts 
the information generated by the mentioned components into 
recommendation contents. The message generator produces 
messages to the designer using the recommendation contents. 
Finally, the query manager converts the generated 

recommendation message to human language and 
communicates it in this form to the designer. 

IV. IMPLEMENTATION OF THE ALGORITHMS FOR MERGING 

MIDDLE-OF-LIFE DATA STREAMS  

The computational workflow (CWF), which shows the 
operational relationships among the algorithms is shown in Fig. 
2. The computational implementation of merging of MoLD-Ss 
needed twenty algorithms of various complexities. Three of 
them were needed to realize the sub-function FSB1,1. Algorithm 
A1 of the SDATB requests the list of sensors to be analyzed by 
from the designer. Algorithm A2 accesses the location and the 
sources of data streams. Algorithm A3 acquires the MoLD-Ss 
either from a remote storage (for example, a cloud environment) 
of from the local storage the SDATB. For the sub-function 
FSB1,2, two algorithms were needed. Algorithm A4 provides 
visualization means (plotting) to help comprehend the data 
despite their raw format. Algorithm A5 normalizes the MoLD-
Ss to make a proper use of the data streams in further analyses 
possible. It removes the anomalies such as deleting data (e.g. 
removing correlated time series) that might complicate the 
analysis. This algorithm (i) inserts additional information (e.g. 
by applying one hot encoding for categorical features), or (ii) 
updates existing data (e.g. clipping outliers). 

For the sub-function FSB1,3, four algorithms were needed. 
Algorithm A6 processes the normalized MoLD-Ss time series 
using a statistical model. This is needed to generate a length 
invariant representation of MoLD-Ss and, this way, to reduce the 
computational overheads in the follow up steps. In order to 
provide a recommendation based on a multi-stream dataset, we 
annotate past anomalies with descriptions called labels. The 

 
Fig. 1.    The overall architecture of the recommendation function for merging 

middle-of-life data streams 

 
Fig. 2.    The computational workflow of the merging of middle-of-life data 

streams  



unique labels assigned to the anomalies are used for clustering a 
predefined set of classes. For the implementation of the 
computational function, The triplet loss function was considered 
for the neural network, Furthermore, for each anomaly, we 
defined a set of incidents to provide sufficient data for training 
the model but to avoid overfitting. The triplet loss training is 
capable to fit a dataset of 8 million unique labels and to achieve 
higher than 95% of classification accuracy [10]. 

The neural network chosen for the purpose of computations 
realizes Algorithm A7, that is used to predict the importance 
weights of the sensors for forward pass (which influence the 
calculation process as well as the values of the output layers 
generated based on the input data). Algorithm A7 calculates or 
estimates the importance of the sensors from the perspective of 
the analyzes. It is needed only in those cases in which the data 
of a large number of sensors are to be merged and analyzed. By 
considering a lower number of relevant data streams, the 
interpretative predictions are improved. The outcomes of this 
steps are used by Algorithm A8, which merges the data streams 
(obtained from various sensors and captured in the same time 
frame). Algorithm A8 also considers the weights allocated to the 
sensors and selects for merging those ones, which have the 
highest weight values. In other words, it orders the sensors 
according to the estimated fusion weights and considers only a 
the most relevant portion of MoLD-Ss in the merging procedure. 
Algorithm A9 jointly processes the MoLD-S and embeds 
information in a new latent space, in which a distance reflects a 
measure of semantic similarity. The behavior descriptor is 
sensor and source independent. 

For the computational implementation of sub-function FSB1,4, 
six algorithms were needed. Algorithm A10 estimates the 
probability of anomalies. It is a preliminary step to a more 
thorough search through the knowledge database, which 
contains a list of pre-recorded anomalies. The algorithm 
calculates the distance to known anomalies in the database. 
Algorithm A11 gathers similar past anomalies from database. It 
performs a search for similar descriptors by iterating through the 
pairs of detected anomalies and past anomalies. Algorithm A12 
calculates the pairwise distance between the detected and the 
past anomalies. These anomalies are ranked by Algorithm A13 
and retrieved by Algorithm A14. Algorithm A15 executes the 
semantic merging of the retrieved anomalies. In addition, it 
generates a recommendation and an action plan concerning the 
product. Finally, sub-function FSB1,5 needs five algorithms to be 
realized. Algorithm A16 selects the template for the 
recommendation message from the database. Algorithms A17 
and A18 successively convert the detected anomalies and the 
action plan into the components of the recommendation 
message. Algorithm A19 orders the appearances of the individual 
anomalies and includes the action plan in the recommendation 
message. Algorithm A20 integrates the ordered components of 
the message into the template and provides the recommendation 
message. 

Due to the serious page limitation in this paper, the above 
introduced algorithms cannot be detailed further on pseudo-code 
or instruction level. Notwithstanding this, their use in a 
particular application case is demonstrated in the next section. 
According to the operational scenario circumscribed above, after 
locating the sensors and selecting the data streams for analysis 

and merging, the data contents of the MoLD-Ss are transferred 
to the SDATB. It completes the analysis and the merging. As the 
next step, the data contents are visualized and presented to the 
designer, who can repeatedly visualize the data streams in 
various plotted forms. To prepare for the merging, Algorithm A6 
(the sliding window algorithm) is used to iterate over the MoLD-
Ss. This algorithm selects a consequent time frame for the data 
and normalizes the data along the time axis. Afterward, the 
single-stream encoder part of the used NN is applied, and single-
sensor latent representation is generated in the attention layer of 
the NN. In the next step of the data processing, the single-sensor 
representation is rescaled according to the importance weights. 
These rescaled representations are concatenated into a two-
dimensional matrix, and the behavior encoder part of the NN is 
applied. Furthermore, to find the past anomalies that are at the 
closest distances to the current descriptor, the toolbox makes a 
database query. If the distance to past anomalies stored in the 
database is small, then a confidence interval including the 
current time window and its descriptor allow selecting the 
anomaly candidate. Otherwise it is skipped. If the algorithm 
finds no more window to analyze, then it starts a similarity 
search. In this context, the descriptors are compared to the ones 
stored in the database of the SDATB. The distances between the 
anomaly pairs are estimated, and the matches are sorted 
according to the computed distances. Afterward, a ranked list of 
the anomaly candidates is retrieved based on the contents of the 
database. In combination with this, the relevant sensors of past 
anomalies are identified based on the causality matrix. 
Concerning the anomaly candidates, the one that has the smallest 
distance to a relevant past anomaly is selected. Concerning the 
best candidate, this module provides a ranked list of past 
anomalies and an ordered list of the sensors related to the past 
anomalies. The latter list is compiled based on the importance 
weights assigned to the sensors. As a next step, considering the 
faulty sensors and the possible improvement patterns, this 
module selects a template for generating a recommendation 
message. Then, the fault descriptions for each selected sensor 
and the improvement (or maintenance) actions for each anomaly 
are retrieved. In a next step, they are arranged according to the 
importance of the sensors and the anomaly distance values, and 
used to generate the actual recommendation message, 
addressing both the contained faults and the action plan. As the 
very last computational action, this message is displayed to the 
designer. 

TABLE I.      EXAMPLES OF MAPPING BETWEEN ANOMALIES, SENSORS AND 

RECOMMENDATION MESSAGE TABLE STYLES 

Anomaly  
number 

Description 
Related 
sensors 

Recommended 
action 

Anomaly 

1 

Mechanical worn out of mostly 

used components in the washing 
machine (washing drum, brakes 

to stop the drum, and related 

components). 

S1 or S2 
or S3 or 

S4 

Mechanical control, 

adjustment or 
replacement of 

components are 

needed 

… … … … 

Anomaly 

5 

Abnormal temperature values, as 
well as heating time deviation, 

and potentially sporadic device 

terminations. This can be caused 
by overheating, or under-heating 

issues. 

S11, S12, 

S13 

Water heater 
element should be 

cleaned or replaced 



V. VALIDATION OF THE PERFORMANCE OF THE 

ALGORITHMS FOR MERGING MIDDLE-OF-LIFE DATA STREAMS 

Functionality validation of the algorithms of the merging 
middle-of-life data streams module started with the definition of 
the application context. The chosen reference application case 
was enhancing a connected washing machine by white goods 
designer. We assumed that this washing machine had 13 sensors: 
(i) force gauge on the axle bearings of the washing drum (S1), 
(ii) force gauge on transmission belt (S2), (iii) brake shoes 

position sensor (S3), (iv) force gauge on brake spring (S4), (v) 
spinner time control clock (S5), (vi) washing timer control clock 
(S6), (vii) detector of spinning R.P.M setting (S7), (viii) water 
level indicator (S8), (ix) inside temperature sensor in the housing 
(S9), (x) solid deposition indicator in the outlet of the waste water 
pipe (S10), (xi) switch on/off detector counter (S11), (xii) heater 

temperature thermometer (S12), and (xiii) heating time counter 
(S13). Since we do not have access to real-life data streams, we 
created artificial data streams (some of them with anomalies, 
while others without). In addition, we incorporated some prior 
knowledge about product anomalies. In total, five different 
sensor failures were considered. To support design changes and 
enhancement, various action recommendations were generated 
based on merging multiple MoLD-Ss. Actually, the pieces of 
information about the anomalies and the related sensors were 
mapped to recommendation messages. Examples of this 
mapping are presented in Table I. For the purpose of testing we 
also generated a more complex but consistent MoLD-Ss. 
Assumed to be conveyed by the data streams, examples of 
normal and faulty behaviors are presented in Table II. The 
characteristic differences between the normal and the faulty 
behaviors of sensors made the interpretation of MoLD-Ss easier. 
An example of a visual representations of normal and faulty 
behavior of sensor 1 is given in Fig. 3.  

The algorithms of the merging middle-of-life data streams 
module were implemented using the resources offered by 
Matlab. The computationally crucial algorithms were tested in 
the above-defined application case. To facilitate their testing, we 
also developed a simple GUI to visualize the outcomes of the 
algorithms for the designer. The main screen of the GUI includes 
two actions (two possible buttons to press by the designer) (i) 
“Data” containing one option called “Select Sensors” to choose 
the sensors to analyze, since our sensors are already located in 
the platform, and (ii) “About” which displays general 
information about the function. Once the designer clicks on the 

 

Fig. 5.    Visualization of combined sensors 11, 12 and 13 

 

Fig. 3.    Visual representation of the normal and faulty behavior of sensor 1 

 
Fig. 4.    “Select Data Stream(s)” screen of the merging of middle-of-life data  

streams module 

 
Fig. 6.    Recommendation message communicated to the designer 

TABLE II.    NORMAL AND FAULTY BEHAVIORS FOR SOME OF THE 

CONSIDERED SENSORS 

Sensor 
code 

Normal behavior Faulty behavior 

S1 
Constant force during the whole 
washing cycle. 

Abnormal force at some 

moments during the washing 

cycle. 

S2 

Constant force during the whole 

washing cycle, with a bigger 

deviation than washing drum 
force gauge axle. 

Abnormal force at some 

moments during the washing 

cycle, correlated with S1 faulty 
activity. 

… … … 

S13 

Same as in S11, a positive voltage 

for a start of heating state 
change, and a negative voltage 

for the end of it. 

More changes in heating states. 

 



“select sensors” items, he is taken to the next screen, which 
shows each available MoLD-Ss together with their 
corresponding codes and a short description. 

At this stage of using the SDATB, the designer chooses the 
sensors he intends to merge (the option “select all” is also 
available) or to choose only one sensor, if he wants to analyze a 
particular one. Then, (as shown in Fig. 4), he either presses 
“OK” to continue with the visualization, or clicks on “Cancel” 
to go back to the initial screen. After the designer makes his 
choice, the selected MoLD-Ss are activated (transferred) for 
analysis. (For the sake of this description, let us assume that the 
designer selects the sensors S11, S12 and S13). The following 
screen, called “Visualization”, allows him to select the data 
streams that he wants to see in graphical form. This can be 
achieved by pressing the button “Visualize”. He can choose to 
see the streams one by one or all of them together plotted 
alongside. In the latter case, the visualized data streams share the 
same time axis as illustrated in Fig. 5. This step may be skipped 
if the designer does not want to check the contents of the MoLD-
Ss and starts the merging directly. Once the inspection of 
represented plots is finished, the designer can return to the 
previous window by pressing “X” and can select the button 
dedicated to the initiation of merging data streams. The details 
of the merging process are not visualized on the GUI. Within 
seconds, a final textual recommendation is presented to the 
designer. 

The recommendation message (i) contains an explanation of 
the detected anomalies, (ii) identifies the concerned sensors, and 
(iii) recommends an action plan. The latter is semantically 
related to the anomalies explored with regard to the different 
sensors. The communicated message is based on the choices 
assumed above and presented in Fig. 6. It can be seen in Fig. 6 
that S11 was not mentioned in the message. This means that no 
anomalous behavior was detected on this particular sensor. If the 
user of the washing machine would turn it on and off more often, 
than the sensor S11 would have recorded it. In this case, different 
recommendation and measures would be advised. It must be 
noted, that not only the water heater element can be an issue, but 
the whole electrical system of the washing machine can be 
faulty. To check the appropriateness of the analyses, we repeated 
the data merging for the same sensors three times. The results 
evidenced that the algorithm explored the same anomalies and 
offered the same recommendation. 

VI. CONCLUSIONS 

The functionality testing proved that this computational 
mechanisms was correctly implemented. From a computational 
point of view, the integration of the newly designed algorithms 
and the ones taken from the literature did not lead to any 
inconsistences. Based on the results shown in Fig. 6, it was 
observed that reasoning with and learning from the MoLD-Ss, 
as semantic operations, played a significant role in the 
formulation of the recommendation messages delivered to the 
designer. The message could cover not only the detected 
anomalies, but could also recommend certain actions for the 
designer. We could conclude that the conditions concerning the 
conversion of faulty behaviors of the MoLD-Ss into a concrete 
action plan for the designer were correctly incorporated in the 
computational mechanism. The function for merging middle-of-

life data streams (i) provides more information than that is 
conveyed by the sensors’ data individually, (ii) reflects the 
condition of the product more realistically, (iii) communicates 
information about the product while it is in use by the customer 
(iv) reduces the time and effort of sensor analyses, and (v) 
provides recommendation as an action plan for the product at 
hand. Offering this function to product designers will allow them 
to continually analyze the behaviors of their products and to 
come up with enhancement solutions in a short while. 

However, based on the analysis of the research activities and 
the testing of the implemented function some limitations were 
recognized. The lack of publications concerning a 
comprehensive understanding of the procedure of semantic 
inferring in the context of product enhancement made it difficult 
to select and deploy the best algorithms and techniques. The 
need to incorporate prior knowledge about product anomalies 
resulted in an inclination in the implementation towards 
maintenance type of action plans. The development of 
algorithms which are able to automatically generate rules and to 
be aware of the dynamic changes in context and data streams, 
was supported by preprogrammed means. This reduces the time 
and efforts needed for building scenarios and training the 
algorithms. The use of simulated MoLD-Ss made it possible to 
complete various tests, but could not replicate true application 
cases in which the presence of unexpected data patterns can be 
assumed. The last observed limitation concerns the usage of the 
deep learning toolbox of Matlab for the implementation of the 
computational function. The fact of the matter is that it made 
implementation process more time consuming in comparison 
with other computational solutions such as offered by Python in 
which pre-defined operations can be adapted or even directly 
used. 
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