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Abstract—Accurate capacitance extraction is becoming more
important for designing integrated circuits under advanced pro-
cess technology. The pattern matching based full-chip extraction
methodology delivers fast computational speed, but suffers from
large error, and tedious efforts on building capacitance models
of the increasing structure patterns. In this work, we propose an
effective method for building convolutional neural network (CNN)
based capacitance models (called CNN-Cap) for two-dimensional
(2-D) structures in full-chip capacitance extraction. With a novel
grid-based data representation, the proposed method is able to
model the pattern with a variable number of conductors, so that
largely reduce the number of patterns. Based on the ability of
ResNet architecture on capturing spatial information and the
proposed training skills, the obtained CNN-Cap exhibits much
better performance over the multilayer perception neural network
based capacitance model while being more versatile. Extensive
experiments on a 55nm and a 15nm process technologies have
demonstrated that the error of total capacitance produced with
CNN-Cap is always within 1.3% and the error of produced
coupling capacitance is less than 10% in over 99.5% probability.
CNN-Cap runs more than 4000X faster than 2-D field solver on
a GPU server, while it consumes negligible memory compared to
the look-up table based capacitance model.

Index Terms—full-chip parasitic extraction, capacitance model,
pattern matching, machine learning, convolutional neural network

I. INTRODUCTION

With the continuous down scaling of process technologies,
the interconnect wires in integrated circuit (IC) become smaller,
closer to each other, and the integration density becomes higher.
As a result, modeling effects of the interconnect parasitics
(mainly including resistance and capacitance) is increasingly
important and crucial for guaranteeing the performance of
integrated circuits [1]–[3]. Nowadays, the parasitic modeling
(called parasitic extraction) has become one of the essential
steps in the design flow, which is the basis of accurate timing
analysis and other performance verification [4].

As billions of transistors are placed on a chip, it is chal-
lenging to perform the parasitic extraction for tens of billions
of interconnect segments. To solve the full-chip parasitic ex-
traction problem, the pattern matching based techniques are
the most widely used, such as in StarRC of Synopsys, QRC
of Cadence, and other commercial tools. Another approach of
parasitic extraction is based on field solver [5]–[9], which has
the highest accuracy. However, due to excessive computational
cost, the field-solver based approach is not suitable for the full-
chiap extraction problems.

The pattern matching approach divides an interconnect lay-
out into small geometries and then calculates the capacitances
of each geometry with pre-built empirical formulas or look-
up tables of capacitance. A pattern refers to the geometries
sharing similar topology or formula of capacitance. For a given
process technology, a pattern library is pre-characterized by
enumerating millions of sample geometries and solving the
capacitances of each geometry with field solver. Then, the
capacitance values are fitted into formulas associated with
geometry, or stored as look-up tables. At the time of extraction,
through pattern matching the capacitances of input geometries
can be calculated quickly and the capacitances of nets are
obtained by assembling the capacitances of these geometries.

However, the pattern matching approach is facing the follow-
ing challenges. 1). The number of patterns increases with the
advancement of process technology, and it becomes difficult to
make the patterns covering all possible interconnect typologies
in real design. 2). The look-up table based approach storing
capacitance values of sample geometries consumes enormous
or unaffordable memory space for achieving good accuracy,
while the error of empirical formulas increases as well. 3). the
pattern matching approach needs a large number of capacitance
values produced by field solver, which often takes longer time
for a process technology as the metal/dielectric configuration
becomes complex [3]. So, there is a strong need for new
capacitance modeling technique to improve the performance
of pattern matching based method.

Although the process of fitting capacitance formulas for
a structure pattern is a regression problem and deep neural
networks (DNNs) have achieved notable successes in many
classification and regression problems in recent years [10], only
a few of published work are about employing DNN in the
area of parasitic extraction [11]–[15]. Moreover, most of them
either deal with the numerical computing in the field-solver
approach [12], or do not involve the capacitance calculation for
a given interconnect geometry [14]. The most relevant work to
the capacitance modeling or calculation is [13], where a neural
network based method is presented for several structure patterns
in three-dimensional (3-D) ICs. Nevertheless, it only considers
single-dielectric structures with simple multilayer perception
(MLP) neural networks, and the demonstrated error on total
capacitance can be larger than 10% [13]. The practicality and
effectiveness of the technique in [13] is obviously not good.

ar
X

iv
:2

10
7.

06
51

1v
1 

 [
cs

.L
G

] 
 1

4 
Ju

l 2
02

1



Instead of directly calculating capacitances, an MLP neural
network based approach was proposed to improve the pattern
matching based capacitance extraction through automatic pat-
tern classification and capacitance formula building [15].

In this work, we propose a convolutional neural network
(CNN) based capacitance modeling method for improving the
pattern matching based extraction methodology. The major
contributions are as follows.

• A grid-based data representation and the corresponding
DNN modeling approach are proposed for 2-D structure
pattern with a variable number of conductors. It separates
the tasks of calculating total capacitance and coupling
capacitance, so as to potentially reduce the difficulty of
training accurate model for capacitance extraction. More-
over, allowing a pattern to include a variable number of
conductors largely reduces the number of patterns and
therefore the efforts on building capacitance models.

• A CNN model called CNN-Cap, which is derived from the
ResNet architecture and inherits the ability of capturing
spatial information, is proposed for predicting the capaci-
tances of the pattern with a variable number of conductors.
A training approach including a loss function for more
accurate coupling capacitance is proposed to make CNN-
Cap suitable for modeling the pattern capacitances.

Extensive experiments with two process technologies demon-
strate that the proposed CNN-Cap has much better accuracy
on capacitance calculation than the counterpart model based on
MLP neural network. For all the tested pattern structures, CNN-
Cap is able to predict all total capacitances with less than 1.3%
error, and over 99.5% of coupling capacitances with error less
than 10%. The sensitivity of the model’s performance to the
size of training data is also studied, which shows that CNN-
Cap performs well with less training effort. Finally, CNN-Cap
runs 4693X faster than 2-D field solver on a GPU server, while
it consumes negligible memory compared to the look-up table
based capacitance model.

II. BACKGROUND

A. Full-Chip Capacitance Extraction Based on Pattern Match-
ing and 2.5-D Extraction Method

For full-chip capacitance extraction, directly using the 3-D
field solver is infeasible due to its excessive cost of memory
and CPU time. To obtain good tradeoff between accuracy and
efficiency, the 2.5-D extraction method with pattern matching
technique is widely used. The pattern matching based extraction
methodology include three major modules: 1) pattern genera-
tion, 2) capacitance model building, and 3) layout capacitance
extraction [2], [9], [15]. It is illustrated as Fig. 1. For a given
process technology, the work of 1) pattern generation and 2)
capacitance model building are carried out just once.

The 2.5-D extraction method refers to the method considers
3-D geometric effects on capacitance with 2-D interconnect
patterns through sweeping 3-D geometry of interconnects in
two perpendicular directions [16], [17]. It is adopted by the
OpenROAD project for parasitic extraction [18]. During the
layout capacitance extraction, extraction windows are generated
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Fig. 1. The pattern matching based full-chip parasitic extraction [3].

along the interconnect line (called master net or master conduc-
tor) whose capacitances are of concern. Each window includes
a segment of the master net and its neighbor conductors (called
environmental conductors). The techniques of 2.5-D extraction
and pattern matching are employed to calculate the capacitances
among the conductors in the window. Take the structure shown
in Fig. 2 as an example, where a wire with name m2 crosses
over a wire named m1. Along direction A, a 2-D cross-
section view is shown in the middle of Fig. 2. Along direction
B, the other 2-D cross section is shown to the right. If the
capacitances in the two 2-D cross-section views are known, we
can approximately compute the capacitance between m1 and
m2 with the 3-D effects taken into consideration. Suppose the
2-D capacitance between m1 and m2 in the view along A is

CA = C1f1 + C1o + C1f2, (1)

where C1f1 and C1f2 are two fringe capacitances, and C1o is
the overlapping capacitance. Similarly,

CB = C2f1 + C2o + C2f2, (2)

for the view along B. Then,

Cm1,m2 = CAw1 + (CB − C2o)w2, (3)

where w1 and w2 are widths of wires m1 and m2, respectively.

The details of numerical techniques for solving the
electric field will be introduced in Section 3.3, albeit in a
3D manner.

3.2. 2.5D Method and Commercial Capacitance Extraction
Tool

The 2.5D (also called qausi-3D) method goes a step further
than 2D extraction. Its main idea is to calculate the
capacitance of several cross sections (using the 2D
method) and combine the 2-D results into the final capa-
citance value.

A typical 2.5D capacitance extraction method is also
called the ‘‘(2 � 2)D method’’, in which any 3D structure is
swept in two perpendicular directions and by considering
the geometry overlapping, 3D structure can be modeled
more accurately (see Fig. 8).

In Fig. 8, an m2 wire crosses an m1 wire. Along
direction A, a 2D cross-sectional view is shown in the
middle. Along direction B, the other 2D cross section is
shown to the right. Solving the two orthogonal strictly 2D
problems numerically, we obtain CA¼C1f1þC10þC1f2, CB

¼C2f1þC20þC2f2 (see Fig. 8). Then, Cm1, m2¼CA � w1þ

(CB�C20) � w2, where w1, w2 are the widths of wires m1

andm2, respectively. However, this method is still not very
accurate. The error could be more than 10%, especially for
coupling capacitance, which is very important for signal
integrity analysis.

Obviously, true 3D extraction is a straightforward
method to achieve high precision. However, the 3D elec-
trostatic Laplace equation must be solved numerically
within a complicated 3D structure. This consumes exten-
sive computational effort. 3D capacitance extraction
(usually called the ‘‘field solver’’) is actually not a trivial
extension of the 2D case. This aspect is discussed further
in Section 3.3.

For the current task of capacitance extraction in mod-
ern IC design, using the 3D extraction method directly is
impossible because of its huge expense of memory and
CPU time. To obtain a good tradeoff between accuracy and
efficiency, modern capacitance extraction tools utilize spe-
cial techniques for the full-chip extraction task, which is
usually divided into three major steps:

1. Technology Precharacterization. Given a descrip-
tion of the process cross sections, tens of thousands
of test structures are enumerated and simulated
with 2D and/or 3D field solvers. These structures
are of medium dimensions. The resulting data are

collected either to fit some empirical formulas or to
build lookup tables (either type is called a ‘‘pattern
library’’). In Ref. 3, analytical equations are used for
model fitting. A good fit would require fewer simula-
tion points. The number of patterns can be reduced
by pattern reduction techniques. Arora et al. [4]
present a pattern compression technique that re-
duces the total number of precharacterizaiton pat-
terns. With this technology, the capacitance in some
layout pattern can be extrapolated from the capaci-
tance values in two simpler precharacterization
patterns, without losing much accuracy. Capaci-
tance field solvers employ different numerical algo-
rithms, and they may give different answers for
certain special layout structures depending on the
problem setup and boundary conditions. Therefore,
the precharacterizaiton software should have the
flexibility to incorporate any third-party field sol-
vers. This first step should be performed only once
per process technology. The challenge in this area
includes the handling of increasingly complex pro-
cessing technology, such as low-k dielectric, air-
bubble dielectric, nonvertical conductor cross sec-
tions, conformal dielectric (see Fig. 9), and shallow
trench isolations.

2. Geometric Parameter Extraction. This is also an
integral part of precharacterization. If a geometric
pattern requires 10 parameters to describe, there is
a corresponding precharacterization of 1 � 510

(B10,000,000) patterns to simulate. This is assum-
ing that five sample points are taken in each of the
10 parameters, resulting in a 10-dimensional (10D)
table of the dimensions given above. This is clearly
not feasible. On the other hand, if a geometric
pattern can be described by very few parameters,
then it is difficult for it to be accurate. In a full-chip
situation, the runtime of geometric parameter ex-
traction can be very time/space-consuming, with
millions of interconnect polygons to analyze. Time/
space-efficient geometric processing algorithms are

A

B

Top view Cross section view A Cross section view B

C2f1 C2f 2C2o
C1f1 C1f 2C1o

w2

w1

m2

m1

Figure 8. 2.5D capacitance for a crossover structure.

Conformal dielectric

Figure 9. A realistic vertical cross section of IC interconnect. We
see that conductors on layers 1–5 are trapezoidal, and there is a
conformal dielectric on top of the top layer metal (passivation).
(SEM photograph courtesy of IBM Corp. r Copyright IBM Corp.
1994, 1996.)
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Fig. 2. 2.5-D capacitance calculation for a crossover structure [16].
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Fig. 3. Two typical 2-D interconnect structure patterns (multi-dielectric envi-
ronment is not drawn). (a) Pattern-A: “sandwich” structure with three parallel
wires. (b) Pattern-B: three metal layers with a fixed number of conductors.

With this method, one can only consider the capacitance
models for the 2-D cross-section structures. These structures
are regarded as the instances of pre-defined 2-D patterns. Two
kinds of typical structure patterns are shown in Fig. 3. Pattern-
A shown in Fig. 3(a) is a “sandwich” structure including
two big-plane conductors and three parallel wires in between.
The red block denotes the master conductor, and the whole
structure is usually left-right symmetrical. Pattern-B’s structure
is more general than A, where the conductors on the top
and down metal layers are not required to be a big plane
across the extraction window. On the layer where the master
conductor lies, there are two conductors on the left and right
side of the master respectively. At the very bottom, there is
an extra big-plane conductor representing the substrate ground.
Although not shown in Fig. 3, the multi-dielectric environment
is considered in these structure.

Usually in a window, only the conductors located on the
nearest metal layers above and blow the master conductor
are considered. Due to the proximity effect of electrostatic
field, this brings little error to the capacitances of the master.
Therefore, most patterns are defined by three metal layers
(containing master conductor and its neighbour conductors) in
a given process technology, and the numbers of conductors on
each layer. A capacitance model for a pattern is built through
computing the capacitances of a lot of instance structures with
field solver and then building capacitance models with look-up
tables or curve fitting techniques.

B. Neural Network Based Capacitance Extraction

The neural network with multiple hidden layer of neurons
is often refers to as deep neural network (DNN). Let x ∈ Rn

be the input data and y ∈ Rm be the output data, then, the
DNN can be viewed as a function f(x;θ) : Rn → Rm with
parameters θ. The form of the function f determines the type
of DNN. The training of a DNN and the prediction with a
trained DNN are illustrated in Fig. 4. During the training, a
large amount of input data along with the corresponding outputs

Prepare training dataset

Design loss function

and train on dataset

Check if model converges

Obtain DNN model:

A function 𝑓(𝑥; 𝜃)

No

Yes

Training Stage

Input 𝑥

Predict

𝑦 = 𝑓(𝑥; 𝜃)

Prediction Stage

(a)                                                      (b)

Fig. 4. The work flow of a DNN: (a) training stage, (b) prediction stage.

(called labels) are fed to the network. The network parameters θ
are optimized to minimize the difference between f(x;θ) and
the corresponding labels. When the difference is sufficiently
small, the network is trained to become a good regressor, which
can be used to do prediction (see Fig. 4(b)).

The MLP neural network is a simple yet popular neural
network, as shown in Fig. 5 where only one hidden layer is
drawn. Suppose there are nl hidden layers. Let h(i) be the
variables residing at i-th hidden layer’s neurons. Those on
the input layer and output layer can be denoted by h(0) and
h(nl+1), respectively. The input data elements are assigned to
each neuron in the input layer and feed-forward to the next layer
iteratively until they reach the output layer. For the i-th layer, it
means h(i) = gi(h

(i−1)) where gi is a function to represent the
feed-forward process. In general, gi is a compound function of
a nonlinear activation function and a linear function including
weight parameters.

input

hidden

output

Fig. 5. An example of MLP network. The yellow, white, and blue circles stand
for neurons in the input, hidden, and output layers.

The MLP network has been studied in capacitance extraction
of several 3-D structures [13]. The idea is straightforward
and can be applied to build the capacitance model of the 2-
D patterns. For Pattern-A, there are just three width/spacing
parameters for describing the structure: w1, w2 and s (see Fig.
3(a)). For the example of Pattern-B (see 3(b)), the parame-
ters are widths w1, w2, w3, w4, w5, and location coordinates
x2, x3, x4, x5. This makes the regression model well defined;
the input x is just a vector including these geometry parameters,
and the output y is a vector including the total capacitance
and coupling capacitances. With a lot of sample structures
for a pattern and corresponding capacitances results from field
solver, the MLP based model can be trained.



Besides training approach and model architecture, different
loss function also affects the difficulty of optimization process
and the performance of trained model. Usually the mean square
error (MSE) is employed as the loss function for minimization:

MSE =
1

N

N∑
i=1

‖f(x(i);θ)− y(i)‖2, (4)

where N is the number of training examples, x(i) indicates the
i-th example, and y(i) is the corresponding label.

III. BUILDING EFFECTIVE CAPACITANCE MODELS BASED
ON CONVOLUTIONAL NEURAL NETWORK

In this section, we first propose the idea of leveraging CNN
to improve the capacitance modeling of structure patterns.
Then, we present a grid-based data representation, the CNN
architecture and the training approach in details. Finally, we
present the data generation approach and other details.

A. The Basic Idea

In all existing methods, a pattern in the 2.5-D extraction
flow is determined by a combination of metal layers and the
numbers of conductors on these layers. And, the geometric
parameters characterizing a pattern increases with the number
of conductors in the pattern. For a pattern with a large quantity
of parameters, building an accurate model with either traditional
approaches or the MLP based approach becomes difficult. To
overcome this issue, we view the 2-D cross-section structure
as a kind of image, and try to characterize capacitance related
information within it with the convolutional neural network
which performs very well in image processing applications.
So, in this way, we can allow a pattern including a variable
number of conductors and thus largely reduce the number of
patterns.

This considered pattern is illustrated by Fig. 6. Its structure
is more general than that of Pattern-B. The master conductor is
still at the center of the middle layer. Although the conductors
can lie on more than three metal layers, we assume they are
just on three metal layers (with index i, j and k) in the rest
of this paper. The proposed method can be easily extended to
the patterns with more than three metal layers. The structure
in Fig. 6 is referred to as Pattern-C.
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Fig. 6. A structure of three metal layers with a variable number of conductors
(dielectric environment not depicted). The structure is referred to as Pattern-C.

B. Grid-Based Data Representation

Inspired by the idea of encoding the layout of interconnect
wires with density-based features in the design for manufacture
(DFM) research [19], we propose to evenly divide the width

of extraction window into L grid cells. Thus, the conductor
placement of a metal layer can be depicted by an L-dimensional
vector. The value of vector element is the density, i.e. the ratio
of conductor occupying the grid cell. See the example in Fig.
7, where the horizontal placement of three conductors (labeled
1, 2 and 3), the grids, and the corresponding density map
are shown. For a Pattern-C structure, the conductor placement
can be described with three L-dimensional vectors. Notice this
representation is not ambiguous if we guarantee that the grid
size is less than the minimum spacing between wires on the
metal layer.

0 0 1 1 1 0.1 0.8 1 1 0.4 0.3 1 1 0.9 0

0 0 1 1 1 0.1 1.8 2 2 1.4 0.3 1 1 0.9 0

0 0 -1 -1 -1 -0.1 1.8 2 2 1.4 0.3 1 1 0.9 0

0 0 1 1 1 0.1 1.8 2 2 1.4 -0.3 -1 -1 -0.9 0

12 3

Density map

Feature for C11

Feature for C12

Feature for C13

Fig. 7. Grid-based data representation for a metal layer in a pattern. A case
with three conductors is shown in the first row. The following rows are the
density map and the data representations for the calculation of total capacitance
and coupling capacitances.

This grid-based representation cannot identify the master
conductor. So, we must encode more information regarding the
pattern into it. Suppose the structure includes nc conductors.
Our problem is to extract one total capacitance, and nc − 1
coupling capacitances. Consider the density-based representa-
tion for one metal layer: d ∈ RL. We modify it to obtain
an L-dimensional vector x for a sub-problem of calculating
total capacitance. The scheme of the modification is that, if the
master conductor covers the i-th grid, we have xi = di + 1.
The obtained feature vector x is shown as the third row in
Fig. 7. For calculating the coupling capacitance between the
master and an environmental conductor, a unique feature vector
is also generated by modifying d. Besides adding 1 to the
elements corresponding the cells overlapped with the master,
another modification is applied to identifying the environmental
conductor. If the environmental conductor covers the i-th grid,
we make that xi = −di. Now, for calculating different coupling
capacitance there is a different feature vector for data represen-
tation. In Fig. 7, the last two rows show the feature vectors for
the sub-problems of calculating coupling capacitances C12 and
C13.

Because the values of total capacitance and coupling capac-
itance can differ for several orders of magnitude, the accuracy
demand for them is usually different. In this work, we dis-
tinguish the problems of calculating total capacitance and of
coupling capacitances, and trains two models for them respec-
tively for a given Pattern-C. This ensures the overall accuracy
of capacitance extraction. With this idea and the proposed
grid-based data representation, our method for building the
capacitance models can be depicted as Fig. 8. Notice that a
sample structure is converted to nc data inputted to the two
models in the training stage. And, in the prediction stage,
the trained model Model-CC for coupling capacitance will be
evaluated for nc − 1 times to output the nc − 1 coupling
capacitances.
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Fig. 8. The proposed method for building capacitance models for Pattern-C.
(a) The training stage. (b) The prediction stage.

C. CNN Architecture and Training Approach

Because the CNN is able to capture the spatial information
in the data, it is expected to perform better than MLP neural
network for the problem of capacitance calculation. So, we
develop the CNN base models (called CNN-Cap) for predicting
the capacitances of Pattern-C structures. There are two models
with same architecture used for total capacitance and coupling
capacitance, respectively.

The architecture of CNN-Cap is shown in Fig. 9, which
is derived from the famous ResNet architecture [20]. In our
problem, the input data (pattern structure with extraction in-
formation) is vectors, instead of the matrices in image related
problem. So, we just use 1-D convolutional layer (shown as
colored block in Fig. 9) in CNN-Cap. Notice that the number
of metal layers in the pattern is like the concept of “channel”
of image data. A batch normalization and a ReLU layer are
inserted after every convolutional layer. The input data will
reach the last convolutional layer through stacked convolutional
layers. Then, it will be pooled into a fixed-length vector by an
average pooling layer. Finally, the fixed-length vector will be
fed to the fully-connected layer with an output dimension of
one to predict capacitance. In Fig. 9, the convolutional layer
captioned “1x3 conv, 64” means it has 64 channels and a
kernel size of 3. “/2” means to halve the input length (by a
1-D pooling layer or a 1-D convolutional layer with a stride
of 2). The convolutional layers with the same color mean they
have the same input length. Whenever a 1-D convolutional layer
halves the input length, the input channel will be doubled. The
key point of CNN-Cap is the shortcut connection, which takes
a shallower vector h1 and a deeper vector h2 as input and
takes F(h1) + h2 as output. The function F is an identity
mapping in most cases (solid line). The dotted shortcut takes a
1-D 1x1 convolutional layer (equivalent to linear projection) as

the mapping function when the shape of two input vectors is
mismatched. Without the shortcut connection, a deeper DNN
model will have both higher testing error and training error.
The higher training error means that it is difficult to train a
deep plain model. The shortcut connection can preserve the
low-level features all the time, which makes training easier.
Thanks to the advanced modules, i.e., 1-D convolutional layer
and shortcut connect, our CNN-Cap has better learning ability
than the MLP neural networks. This will be revealed with
experimental results.

We have tested three architectures derived from ResNet-18,
ResNet-34, and ResNet-50. We found out that derived from
ResNet-34 is consistently better than that from ResNet-18, and
performs similarly to that from ResNet-50. So, the ResNet-34
derived architecture is chosen in this work.

For training CNN-Cap, the stochastic gradient descent (SGD)
optimizer and the Adam optimizer [21] are considered. Our
experimental results show the Adam optimizer makes conver-
gence easier to reach and the trained model perform better. So,
it is employed in this work.

The approach of grid search is used to find the appropriate
learning rate and batch size, which affect performance of the
obtained CNN-Cap model. The value range of learning rate
is from 10−5 to 10−2, and the batch size is enumerated in
{16, 32, 64, 128}.

For the cost function, in addition to the MSE loss function
(4), we have tried the following loss function.

MSRE =
1

N

N∑
i=1

(1− f(x(i);θ)

y(i)
)2 , (5)

where N is the number of training data, x(i) indicates the i-th
input data, and y(i) is the corresponding label. The division
of (5) stands for an element-wise operation. This MSRE loss
function includes the relative error, so that the optimization
could possibly attain a better accuracy. However, it may bring
difficulty to the convergence of training process. We have done
extensive experiments, and found out that the loss function

Input Layer

1x7conv, 64, /2

1x3conv, 64

1x3conv, 64

1x3conv, 64

1x3conv, 64

1x3conv, 64

1x3conv, 64

pool, /2

1x3conv, 128

1x3conv, 128

1x3conv, 128

1x3conv, 128

1x3conv, 128

1x3conv, 128

1x3conv, 128

1x3conv,128,/2

1x3conv,256,/2

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv,512

1x3conv, 512

1x3conv, 512

1x3conv, 512,/2

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv, 256

1x3conv,512

1x3conv, 512

Output Layer: fc, 1

Avg Pool

Fig. 9. The architecture of proposed CNN-Cap.



MSRE is better than MSE for the task of training the Model-CC

for coupling capacitance.

D. Dataset Generation and Other Discussion

In this work, a data is a 2-D structure of cross-section view
with the proposed data representation, and the label includes
the capacitances computed with a field solver.

For a given process technology and a specified triple of (i,
j, k) of metal layer indices, we can generate random sample
structures of Pattern-C. We ensure that the data complies
with the rules of minimum width and minimum spacing of
the process technology. As the structure is a cross-section
view along the interconnect line, we let the width of master
conductor be a smaller value with larger probability and not
exceed 10 times of the minimum width. Similarly, the random
data can be generated for the conventional patterns, like Pattern-
A and Pattern-B. Notice we can also build the CNN-Cap model
for a conventional pattern.

The whole width of the extraction window is determined
with a simulation experiment to detect how far if an envi-
ronmental conductor is away from the master conductor the
coupling capacitance between them decreases to 1% of the total
capacitance.

Fig. 10 shows the geometries of the conductors in two data
generated with our approach. Fig. 10(a) stands for a data for
Pattern-B and Fig. 10(b) is for Pattern-C.

(a) (b)

Fig. 10. Two randomly generated data for: (a) Pattern-B and (b) Pattern-C.
The dielectric environment is not depicted.

The existing approach with MLP neural network cannot
handle Pattern-C, because the structure involves a variable
number of conductors. Instead, we can combine the MLP with
the grid-based data representation. It means we connect the
three vectors to a form a long vector and then input it to
the MLP network. However, this hybrid model cannot have
high accuracy, because the spatial information in the grid-based
representation is lost. The comparison experiments in Section
IV.B validate this.

IV. EXPERIMENTAL RESULTS

2-D pattern structures are generated following two process
technologies. One is a 55nm process technology from industry,
while the other is the 15nm process technology in FreePDK15
[22], [23]. The width of structure (extraction window) is set
to 56w̃min, where w̃min is the minimum width of the metal
layer where the master conductor resides. For the structures,
we obtain the capacitance results (as labels of data) with the
golden-standard capacitance solver Raphael [24]. All tested

DNN models are implemented with PyTorch, and all exper-
iments are carried out on a Linux server with 2 Intel Xeon
Silver 4214 CPU at 2.2GHz and 8 Nvidia RTX2080Ti GPUs.

The geometric parameters for the metal layers in the two
process technologies are listed in Table I.

TABLE I
THE GEOMETRIC PARAMETERS OF THE METAL LAYERS IN THE TWO

TESTED PROCESS TECHNOLOGIES (IN UNIT OF µm)

Layer index 55nm Tech. 15nm Tech.
thickness wmin smin thickness wmin smin

1 0.1 0.054 0.108 0.06 0.028 0.036
2 0.16 0.081 0.08 0.06 0.028 0.036
3 0.2 0.09 0.09 0.06 0.028 0.036
4 0.2 0.09 0.09 0.06 0.028 0.036
5 0.2 0.09 0.09 0.06 0.028 0.036
6 0.2 0.09 0.09 0.13 0.056 0.056
7 0.85 0.36 0.36 0.13 0.056 0.056
8 - - - 0.13 0.056 0.056
9 - - - 0.13 0.056 0.056

10 - - - 0.13 0.056 0.056

For the two technologies, we randomly choose some three-
metal-layer combinations to generate the 2-D patterns. For
each pattern, we generated 50000 sample structures with the
approach in Section III.D to form a dataset. Each dataset is then
randomly split into a training subset (with 90% of the samples)
and a testing subset (with 10% of the samples). For CNN-
Cap which utilizes the grid-based data, we convert a sample
structure to nc data where nc is the number of conductors in
the sample. The number of grid cells (L) is set to 1024, which
ensures that the grid size is less than the half of minimum
spacing at any metal layer. To avoid the interference of very
small coupling capacitance, the coupling capacitance whose
value is less than 1% of the corresponding total capacitance
is not considered in the training stage and the prediction stage.

To tune the hyper-parameters for CNN-Cap, we randomly
choose a layer combination under the 55nm technology to
generate a dataset of Pattern-C. With it we tune the hyper-
parameters to make the CNN-Cap’s performance on the testing
subset of this dataset best. The obtained hyper-parameters
include batch size set to 64, learning rate set to 10−4 for
predicting total capacitance and 10−5 for predicting coupling
capacitance.

In the following subsections we will first evaluate the perfor-
mance of CNN-Cap on Pattern-B structures, and then evaluate
its performance on Pattern-C structures. Finally, we will study
the effect of training subset’s size and other evaluation metrics.

A. Results for Pattern-B Structures

For Pattern-B structures, the MLP-based model presented in
Section II.B can be used as the baseline. We call it MLP-Cap.
Similar tuning is also applied to MLP-Cap, with a dataset of
Pattern-B. For the architecture, we tried different numbers of
hidden layers and different numbers of neurons respectively.
After some heuristic trials, we finally use an architecture with
three hidden layers, and 256, 256 and 512 neurons are set in the
three layers respectively. Three nonlinear activation functions:
ReLU, Sigmoid and Tanh are tested. The results show that Tanh
function consistently surpass the other two. The grid search



is used to find the appropriate learning rate and batch size.
Finally, the batch size is set to 32, and the learning rate is set
to 10−5. Besides, the loss functions fo MSE (4) and MSRE (5)
are tested with MLP-Cap. The results show that with the MSE
loss function makes MLP-Cap perform better.

In this experiment, the pattern is the same as that in Fig.
3(b) which includes 1, 3 and 1 conductors on three metal
layers respectively. And, the structure can be described with
9 geometric parameters, which are the input to MLP-Cap.

The results for predicting total capacitance and coupling
capacitance, for eight datasets from the both technologies, are
shown in Table II and Table III, respectively. In the tables,
every two rows correspond to a data set generated for a pattern.
Erravg means the average of the relative error’s absolute value.
Errmax means the maximum of the relative error’s absolute
value. Ratio(Err>5%) in Table II means the ratio of the number
of total capacitances with error larger than 5% to the number
of all total capacitances predicted. Ratio(Err>10%) in Table III
means the ratio of the number of coupling capacitances with
error larger than 10% to the number of all coupling capacitances
predicted. Here, we regard relative error of 5% as the accuracy
criterion for total capacitance, and the relative error of 10% as
the accuracy criterion for coupling capacitance.

The experimental results show that CNN-Cap always per-
forms better than MLP-Cap. In more details, both CNN-Cap
and MLP-Cap can predict total capacitance with less than 1%
relative error on average, while the maximum relative error of
CNN-Cap is not larger than 1.3%. However, the maximum rela-
tive error of MLP-Cap is often larger than 5%. As for predicting
coupling capacitance, the maximum relative error of MLP-Cap
is always larger than 10% and can be as large as 114%. On
the contrary, only a very few of coupling capacitances (at most
0.1% of all coupling capacitances) computed with CNN-Cap
have relative error larger than 10%.

TABLE II
DNN MODELS’ PERFORMANCE ON TOTAL CAPACITANCE FOR PATTERN-B

Tech. Node Layers Method Erravg Errmax Ratio(Err>5%)
55nm (2, 3, 6) MLP-Cap 0.8% 8.1% 0.4%
55nm (2, 3, 6) CNN-Cap 0.2% 1.2% 0
55nm (2, 4, 6) MLP-Cap 1.2% 11.4% 0.7%
55nm (2, 4, 6) CNN-Cap 0.2% 1.0% 0
15nm (1, 3, 5) MLP-Cap 0.5% 3.8% 0
15nm (1, 3, 5) CNN-Cap 0.2% 1.3% 0
15nm (1, 3, 8) MLP-Cap 0.5% 5.2% 0.0%
15nm (1, 3, 8) CNN-Cap 0.2% 1.1% 0

TABLE III
DNN MODELS’ PERFORMANCE ON COUPLING CAPACITANCE FOR

PATTERN-B

Tech. Node Layers Method Erravg Errmax Ratio(Err>10%)
55nm (2, 3, 6) MLP-Cap 3.3% 114% 6.6%
55nm (2, 3, 6) CNN-Cap 2.4% 13.5% 0.1%
55nm (2, 4, 6) MLP-Cap 2.5% 89.2% 4.4%
55nm (2, 4, 6) CNN-Cap 1.4% 11.8% 0.0%
15nm (1, 3, 5) MLP-Cap 2.5% 87% 3.7%
15nm (1, 3, 5) CNN-Cap 1.1% 9.6% 0
15nm (1, 3, 8) MLP-Cap 2.0% 49.0% 1.4%
15nm (1, 3, 8) CNN-Cap 0.9% 14.3% 0.1%

Fig. 11 shows the coupling capacitances calculated with
MLP-Cap and CNN-Caps respectively, along the relative error
of each capacitance. From the figure we see that CNN-Cap can
accurately predict most coupling capacitance, and the few ex-
amples of inaccurate prediction usually corresponds to a small
coupling capacitance. This means reasonable and acceptable
accuracy. On the contrary, the MLP-Cap is unsatisfactory in
many cases, and its maximum error is very large as shown in
Fig. 11(a).

More dataset for different layer combinations have been
generated and tested. The results show that for all the tested
datasets, the average relative error of CNN-Cap on total ca-
pacitance and coupling capacitance are just 0.22% and 1.36%,
respectively. This experiment demonstrates the good accuracy
of CNN-Cap for Pattern-B structures.
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Fig. 11. The calculated coupling capacitance versus relative error for Pattern-
B. The dataset corresponds (2, 3, 6) layer combination in the 55nm technology.
(a) Results of MLP-Cap. (b) Results of CNN-Cap.

Another capacitance modeling approach which may have
good accuracy is based on look-up table and the bilinear
interpolation. For the considered Pattern-B structures, if each
parameter takes 20 sample values the total numbers stored in
the look-up table would be 209 = 5.12 × 1011, which leads
to unacceptable memory cost in reality. This demonstrates the
advantage of capacitance modeling technique based on neural
networks.

B. Results for Pattern-C Structures
For generating the sample structures of Pattern-C, we assume

the total number of conductors on the up and down metal layers
ranges from 6 to 8. Such a pattern with a variable number of
conductors cannot be handled by a single MLP-Cap. So, we
consider the hybrid method discussed at the end of Section III
as the baseline. It is called Grid+MLP model. It utilizes the
grid-based data representation and shares the same architecture
and hyper-parameters as MLP-Cap. And, it is trained with the
same approach for MLP-Cap.

The results of CNN-Cap and Grid+MLP model for four
datasets of Pattern-C are listed in Table IV and Table V.
The results show that CNN-Cap performs much better than
Grid+MLP. The maximum relative error of CNN-Cap on total
capacitance is not larger than 1.2%. As for coupling capaci-
tance, the performance of the Grid+MLP is much worse and
unacceptable, with the maximum error as large as 542%. On
the contrary, the relative error derived from the CNN-Cap is
less than 10% for more than 99.5% predicted capacitances.



TABLE IV
DNN MODELS’ PERFORMANCE ON TOTAL CAPACITANCE FOR PATTERN-C

Tech. Node Layers Method Erravg Errmax Ratio(Err>5%)
55nm (2, 3, 6) Grid+MLP 0.4% 7.5% 0.1%
55nm (2, 3, 6) CNN-Cap 0.1% 1.0% 0
55nm (2, 4, 6) Grid+MLP 0.7% 7.7% 0.1%
55nm (2, 4, 6) CNN-Cap 0.2% 1.1% 0
15nm (1, 3, 5) Grid+MLP 0.7% 4.3% 0
15nm (1, 3, 5) CNN-Cap 0.2% 1.1% 0
15nm (1, 3, 8) Grid+MLP 0.5% 5.4% 0.1%
15nm (1, 3, 8) CNN-Cap 0.2% 1.2% 0

TABLE V
DNN MODELS’ PERFORMANCE ON COUPLING CAPACITANCE FOR

PATTERN-C

Tech. Node Layers Method Erravg Errmax Ratio(Err>10%)
55nm (2, 3, 6) Grid+MLP 10.4% 542.4% 27.1%
55nm (2, 3, 6) CNN-Cap 1.2% 38.6% 0.3%
55nm (2, 4, 6) Grid+MLP 9.1% 489.3 % 22.7%
55nm (2, 4, 6) CNN-Cap 1.2% 14.4% 0.1%
15nm (1, 3, 5) Grid+MLP 9.8% 492.8% 24.8%
15nm (1, 3, 5) CNN-Cap 1.8% 38.8% 0.4%
15nm (1, 3, 8) Grid+MLP 11.4% 390.4% 30.8%
15nm (1, 3, 8) CNN-Cap 1.5% 12.4% 0.0%

Fig. 12 shows the calculated coupling capacitance (by CNN-
Cap) versus relative error for Pattern-C structures. It reveals
again that CNN-Cap has very good accuracy on coupling
capacitance for most structures. For example, for the test data
corresponding to layer combination (2, 3, 6) in the 55nm
technology, only 0.3% of all coupling capacitances has error
larger than 10%.
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Fig. 12. The calculated coupling capacitance versus relative error for Pattern-C.
(a) Results of CNN-Cap for layer combination (2, 3, 6) in the 55nm technology.
(b) Results of CNN-Cap for layer combination (1, 3, 5) in the 15nm technology.

More dataset for different layer combinations have been
generated and tested. The results show that, for all the tested
datasets the average relative error of CNN-Cap on total ca-
pacitance and coupling capacitance are just 0.18% and 1.38%,
respectively. This experiment demonstrates the good accuracy
of CNN-Cap for Pattern-C structures.

C. The Effect of Training Set’s Size and More Comparisons

An additional experiment is carried out to evaluate the effect
of training set’s size on CNN-Cap’s accuracy. We change the
ratio of the training subset from 90% to 80%, 70%, down
to 10%, and then rerun the training process for a dataset of
Pattern-C, respectively. For each resulted CNN-Cap model, we
examine it with the testing subset. The average relative error on

coupling capacitance and the ratio of the coupling capacitances
with error larger than 10% are plotted in Fig. 13. From it we
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Fig. 13. The accuracy of CNN-Cap on coupling capacitance vs. the size of
training subset.

see that, when the ratio of training subset is 50% or larger
(meaning with 25000 data or more) the trained CNN-Cap model
always has fairly good accuracy. Similar results are observed
for the total capacitance. Therefore, a training set with 25000
data through 45000 data is usually sufficient for building an
effective CNN-Cap model.

We compare the prediction time of CNN-Cap with Raphael,
i.e. the 2-D field solver rc2 within Raphael. For a dataset
including 50000 Pattern-C structures, we extract the capaci-
tances of them with CNN-Cap and Raphael respectively. Their
average runtimes per structure are listed in Table VI. From the
table we see that CNN-Cap runs 4693X faster than Raphael.
Even though we can run multiple processes of Raphael on the
machine, say 32 processes, calculating capacitance with CNN-
Cap can still be 147X faster than running the 2-D field solver.

TABLE VI
THE AVERAGE RUNTIMES OF CNN-CAP AND RAPHAEL FOR

CALCULATING THE CAPACITANCES OF A PATTERN-C STRUCTURE

Method Time (ms) Speedup
Raphael 704 –

CNN-Cap 0.15 4693X

As for the model size, a CNN-Cap model has 14473418
parameters occupying 13.8 MB storage, which is much smaller
than the look-up table based model. The training time for a
CNN-Cap model is about 1.3 hours. Considering various layer
combinations for a given process technology with 10 metal
layers (like that in FreePDK15), we see that building all CNN-
Cap models can be completed within a week on a GPU server
with 8 Nvidia RTX2080Ti GPUs. And, the CNN-Cap models
deliver much better accuracy than the existing methods for
pattern capacitance modeling.

V. CONCLUSIONS

In this work, a CNN based capacitance model called CNN-
Cap and the corresponding model-building techniques are
proposed. They include a grid-based data representation for



2-D pattern structures, and a ResNet-like CNN architecture
and corresponding training approach. CNN-Cap is able to
predict the total capacitance and coupling capacitances for
the 2-D pattern with a variable number of conductors. This
largely reduces the number of patterns and the corresponding
capacitance models employed in the pattern matching based
full-chip capacitance extraction. Extensive experiments have
demonstrated the advantages of CNN-Cap over MLP based
models and traditional model-building approaches.

In the future, the proposed method may be extended to build
capacitance models for 3-D interconnect structures.
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