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Abstract—The security and privacy concerns along with the amount
of data that is required to be processed on regular basis has pushed
processing to the edge of the computing systems. Deploying advanced
Neural Networks (NN), such as deep neural networks (DNNs) and spiking
neural networks (SNNs), that offer state-of-the-art results on resource-
constrained edge devices is challenging due to the stringent memory
and power/energy constraints. Moreover, these systems are required
to maintain correct functionality under diverse security and reliability
threats. This paper first discusses existing approaches to address energy
efficiency, reliability, and security issues at different system layers, i.e.,
hardware (HW) and software (SW). Afterward, we discuss how to
further improve the performance (latency) and the energy efficiency of
Edge AI systems through HW/SW-level optimizations, such as pruning,
quantization, and approximation. To address reliability threats (like
permanent and transient faults), we highlight cost-effective mitigation
techniques, like fault-aware training and mapping. Moreover, we briefly
discuss effective detection and protection techniques to address security
threats (like model and data corruption). Towards the end, we discuss how
these techniques can be combined in an integrated cross-layer framework
for realizing robust and energy-efficient Edge Al systems.

Index Terms—Artificial intelligence, machine learning, Edge AI, deep
neural networks, spiking neural networks, accuracy, latency, energy
efficiency, reliability, security, robustness, Edge computing, tinyML.

I. INTRODUCTION

The NN-based Al systems have achieved state-of-the-art accuracy
for various applications such as image classification, object
recognition, healthcare, automotive, and robotics [1]]. However,
current trends show that the accuracy is improved at the cost of
increasing complexity of NN models (e.g., larger model size and
complex operations) [2] [3|]. This increased complexity hinders the
deployment of advanced NNs (DNNs and SNNs) on resource-
constrained edge devices [4]. Therefore, optimizations at different
system layers (i.e., HW and SW) are necessary to enable the use
of advanced NNs at the edge [2]]. Besides performance and energy
efficiency, reliability and security aspects are also important to ensure
the correct functionality under diverse operating conditions (e.g., in
the presence of HW faults and security threats), especially for safety-
critical applications like autonomous driving and healthcare [S] [6].
Therefore, the important design metrics for enabling Edge Al include
performance (i.e., latency), energy efficiency, reliability, and security.

A. Key Challenges for Energy-Efficient and Secure Edge Al

We introduce the key challenges for developing Edge Al systems
in the following text (see Fig. [[] for an overview of the challenges).

o Performance: Edge Al systems are expected to have high
performance to provide real-time response. However, due to
memory- and compute-intensive nature of NNs, achieving high
performance is not trivial. Moreover, edge devices have limited
compute and memory resources, which makes it challenging to
map the full NN computations simultaneously on an accelerator
fabric [7]].
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Fig. 1. Overview of challenges for energy-efficient and secure Edge Al

Energy Efficiency: Edge Al systems should also have high

energy efficiency to ensure complete processing within a restricted

energy budget, especially in the case of battery-powered devices.

Therefore, the energy consumption in both the off-chip and on-chip

parts should be minimized. The off-chip part includes the DRAM-

based off-chip memory accesses [7]], while the on-chip part includes

(1) the on-chip memory accesses, and (2) the neural operations like

multiply-and-accumulation (MAC) [_8].

Reliability: Edge Al systems should produce correct outputs even

in the presence of different types of reliability threats [9]. The main

reliability threats are as follows.

— Process variations are the result of imprecisions in the
fabrication process, as manufacturing billions of nano-scale
transistors with identical electrical properties is difficult to
impossible. This causes variations in the leakage power and
frequency in the same chip, across different chips in the same
wafer, and even across different wafers [[10].

— Soft errors are caused by high-energy particle strikes, manifest
as bit-flips at the HW layer, and can propagate all the way to
the application layer and may cause incorrect outputs [[11].

— Aging is gradual degradation of the processing circuits over
time [12]. It occurs due to physical phenomena like Hot
Career Injection (HCI), Time-Dependent Dielectric Breakdown
(TDDB), and Negative/Positive Bias Temperature Instability
(NBTI/PBTI).

Security: Edge AI systems should offer high resilience

against security vulnerabilities such as side channels and HW
intrusions [9)]. Moreover, NN algorithms (e.g., DNNs) have other



security vulnerabilities as well that can be exploited through data
poisoning to cause confidence reduction or misclassification [13]].

The above discussion highlights different possible challenges for
developing energy-efficient and secure Edge Al systems. To address
each challenge individually, various techniques have been proposed
at different layers of the computing stack. However, systematic
integration of the most effective techniques from both the hardware
and software levels is important to achieve ultra-efficient and secure
Edge AL

B. Our Contributions

In the light of the above discussion, the contributions of this paper
are the following.

« We present an overview of different challenges and state-of-the-
art techniques for improving performance and energy efficiency of
Edge Al systems (Section [II).

« We present an overview of different challenges and state-of-the-art
techniques for reliability and security of Edge Al (Section [ITI).

o We present a cross-layer framework that systematically integrates
the most effective techniques for improving the energy efficiency
and robustness of Edge Al (Section [IV).

o We discuss the challenges and recent advances in neuromorphic
computing considering SNNs (Section [V).

II. PERFORMANCE AND ENERGY-EFFICIENT EDGE Al

In the quest of achieving higher accuracy, the evolution of DNNs
has seen a dramatic increase in the complexity with respect to
model size and operations, i.e., from simple Multi-Layer Perceptron
(MLP) to deep and complex networks like Convolutional Neural
Networks (CNNs), Transformers, and Capsule Networks (CapsNet)
[14]. Hence, the advanced DNNs require specialized hardware
accelerators and optimization frameworks to enable efficient and
real-time data processing at the edge. To address this, a significant
amount of work has been carried out in the literature. In this
section, we discuss different state-of-the-art techniques for improving
performance and energy efficiency of Edge Al (see overview in

Fig. ).
A. Optimizations for DNN Models

The edge platforms typically have limited memory and
power/energy budgets, hence small-sized DNN models with limited
number of operations are desired for Edge Al applications. Model
compression techniques such as pruning (i.e., structured [15] [[16]
or unstructured [17]-[19]) and quantization [19]]-[22] are considered
to be highly effective for reducing the memory footprint of the
models as well as for reducing the number of computations required
per inference. Structured pruning [15] can achieve about 4x weight
memory compression, while class-blind unstructured pruning (i.e.,
PruNet [18]]) achieves up to 190x memory compression. Quantization
when combined with pruning can further improve the compression
rate. For instance, quantization in the Deep Compression [19]
improves the compression rate by about 3x for the AlexNet and
the VGG-16 models. The Q-CapsNets framework [22f shows that
quantization is highly effective for complex DNNs such as CapsNets
as well. It reduces the memory requirement of the CapsNet [14]
by 6.2x with a negligible accuracy degradation of 0.15%. Since
model compression techniques may result in a sub-optimal accuracy-
efficiency trade-off (due to lack of information of the underlying
hardware architecture used for DNN execution), HW-aware model
generation and compression techniques have emerged as a potential
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Fig. 2. Overview of the techniques at different system layers for improving
the performance and energy efficiency of Edge AL

solution. Many Neural Architecture Search (NAS) techniques [23]-
[29] have been proposed to generate high accuracy and efficient
models. The state-of-the-art NAS like the APNAS framework [28||
employs an analytical model and a reinforcement learning engine to
quickly find DNNs with good accuracy-efficiency trade-offs for the
targeted systolic array-based HW accelerators [30] [31]. It reduces
the compute cycles by 53% on average with negligible accuracy
degradation (avg. 3%) compared to the state-of-the-art techniques.
Therefore, it is suitable for generating DNNs for resource-constrained
applications. Meanwhile, the NASCaps framework [29]] employs an
NSGA-II algorithm to find Pareto-optimal DNN models by leveraging
the trade-off between different hardware characteristics (i.e., memory,
latency, and energy) of a given HW accelerator. Compared to
manually designed state-of-the-art CapsNets (i.e., DeepCaps), the
NASCaps achieves 79% latency reduction, 88% energy reduction,
63% memory reduction, with only 1% accuracy reduction.

B. Optimizations for DNN Accelerators

To efficiently run the generated DNN models on accelerator fabric,
optimizations should be applied across the HW architecture, i.e., in
the off-chip memory, on-chip memory, and on-chip compute engine.

The Off-chip Memory (DRAM): The main challenges arise
from the fact that a full DNN model usually cannot be mapped
and processed at once on the accelerator fabric due to limited on-
chip memory. Therefore, redundant accesses for the same data to
DRAM are required, which restricts the systems from achieving
high performance and energy efficiency gains, as DRAM access
latency and energy are significantly higher than other operations [32].
Toward this, previous works have proposed (1) model compression
through pruning [15]-[19] and quantization [19] [20]-[22], and (2)
data partitioning and scheduling schemes [33]-[36]]. However, they
do not study the impact of DRAM accesses which dominate the total
system latency and energy, and do not minimize redundant accesses
for overlapping data in convolutional operations. To address these
limitations, several SW-level techniques have been proposed (the
ROMANet [7] and DRMap [37] methodologies). Our ROMANet [7]]
minimizes the DRAM energy consumption through a design space
exploration (DSE) that finds the most effective data partitioning
and scheduling while considering redundant access optimization. It
minimizes the average DRAM energy-per-access by avoiding row
buffer conflicts and misses through an effective DRAM mapping,



as shown in Fig. 5] Our DRMap [37] further improves the DRAM
latency and energy for DNN processing considering different DRAM
architectures such as the low-latency DRAM with subarray-level
parallelism (i.e., SALP [38])). It employs a DSE with a generic DRAM
data mapping policy that maximizes DRAM row buffer hits, bank-
and subarray-level parallelism to obtain minimum energy-delay-
product (EDP) of DRAM accesses for the given DRAM architectures
and DNN data partitioning and scheduling (see Fig. [).
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Fig. 3. Experimental results of (a) the number of DRAM accesses, and (b)
the DRAM access energy for the AlexNet. The ROMANet [7] decreases the
DRAM accesses and the DRAM energy compared to the state-of-the-art (i.e.,
the Caffeine [34]], the SmartShuttle [35], and the BWA [36]).
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Fig. 4. The EDP of DRAM accesses for the AlexNet across different DRAM
architectures (i.e., DDR3, SALP-1, SALP-2, and SALP-MASA) and different
DRAM mapping policies, which have different orders of DRAM mapping
loops. The results show that the DRMap mapping (i.e., Map 3) consistently
obtains the lowest EDP [37]].

The On-chip Memory (Buffer): To efficiently shuttle data
between the DRAM and the on-chip fabric, specialized on-chip buffer
design and access management are important. Here, the scratchpad
memory (SPM) design is commonly used due to its low latency and
power characteristics [7] [39]]. For optimizing buffer access latency
and energy, several SW-level techniques have been proposed (such
as ROMANet [7] and DESCNet [8]). Our ROMANet framework [7]]
exploits the bank-level parallelism in the buffer to minimize latency
and energy of the given buffer access requests, as shown in Fig. E[
Meanwhile, our DESCNet framework [8] searches for different
on-chip memory architectures to reduce the energy consumption,
and performs run-time memory management to power-gate the
unnecessary memory blocks for non-memory-intensive operations.
These optimizations provide up to 79% energy savings for CapsNet
inference.
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Fig. 5. Experimental results of the buffer access latency and energy across
different optimization techniques and different networks. The ROMANet [7]]
effectively reduces the buffer latency and energy over the state-of-the-art (i.e.,
the Caffeine [34], SmartShuttle [35], and BWA [36] techniques).

The Compute Engine (Computational Units): The state-of-the-
art HW-level optimization techniques (e.g., approximate computing)
can provide significant area, performance and energy efficiency
improvements, but at the cost of output quality degradation, which
cannot be tolerated in safety-critical applications. Toward this, we

proposed the concept of curable approximations in [40], which
ensures minimal accuracy degradation by employing approximations
in a way that approximation errors from one stage are compensated
in the subsequent stage/s of the pipeline. When used for improving
the efficiency of compute engine with cascaded processing elements
(PEs), like the systolic array in the TPU [31f], it reduces the
Power-Delay Poduct (PDP) of the array by about 46% and 38%
compared to the conventional and approximate systolic array design,
respectively. To efficiently employ approximations in applications that
can tolerate minor quality degradation, a systematic error analysis
is necessary to identify the approximation knobs and the degree
to which each type of approximation can be employed. Toward
this, several methodologies have been proposed to analyze the error
resilience of CNNs [41]] and CapsNets (i.e., ReD-CaNe [42]). By
modeling the effects of approximations, it is possible to identify
the optimal approximate components (e.g., adders and multipliers)
that offer the best accuracy-efficiency trade-off while meeting the
user-defined constraints. Compared to having accurate hardware, an
efficient design that employs a layer-wise selection of approximate
multipliers can achieve 28% energy reduction [42]. Furthermore, to
find the configurations that offer good accuracy-energy trade-offs, the
ALWANN framework [43|] performs a DSE with a multi-objective
NSGA-II algorithm.

Run-time Optimizations: Several run-time power management
techniques can be employed to further boost the efficiency, e.g.,
the run-time clock gating, power gating, and dynamic voltage and
frequency scaling (DVFS) techniques. For instance, the DESCNet
technique [8|] partitions the SPM into multiple sectors, and performs
sector-level power-gating based on the characteristics of CapsNet
workload to get high energy savings at run time during inference.
Compared to the standard memory designs, the application-driven
memory organizations equipped with memory power management
unit in the DESCNet can save up to 79% energy and 47% area.

III. IMPROVING RELIABILITY AND SECURITY FOR EDGE Al

The Edge Al systems need to continuously produce correct outputs
under diverse operating conditions. This requirement is especially
important for safety-critical applications such as medical data
analysis and autonomous driving. There are mainly two categories
of vulnerability issues that threaten the Edge Al: (1) reliability and
(2) security. In this section, we discuss the state-of-the-art techniques
for improving the reliability and security of Edge Al (see an overview

in Fig. [6).
A. Reliability Threats and Mitigation Techniques

Reliability threats may come from various sources like process
variation, soft errors, and aging. They can manifest as permanent
faults (faults that remain in the system permanently and do not
disappear), transient faults (faults that occur once and can disappear),
or performance degradation (e.g., in the form of delay/timing errors).
To address these threats, conventional fault-mitigation techniques for
VLSI can be employed, e.g., Dual Modular Redundancy (DMR) [44]],
Triple Modular Redundancy (TMR) [45]], and Error Correction Code
(ECC) [46]. However, these techniques incur huge overheads due to
redundant hardware or execution. Hence, cost-effective techniques are
required to mitigate the reliability threats in the Edge Al

Permanent Faults: To mitigate permanent faults in DNN
accelerators, recent works have proposed techniques like fault-aware
pruning (FAP) [47] and fault-aware training (FAT) [47] [48]. They
aim at making DNNs resilient to the faults by incorporating the
information of faults in the optimization/training process. These



Challenges and Solutions for Reliability Challenges and Solutions for Security
° o . . . Run-time Access e Quantization- Noise Filtering-
E|| Reliability- Performance- & Machine Learning- Aging-Aware Monitoring Control Based based Defenses || based Defenses
‘é Aware Reliability-Aware based Reliability Core/Version (Power, Timing, Box me—
2 DVFS Version Selection Management Selection Temperature, Disaster Detection Database HW Property
Communication) Recovery Security Services Checkers
Reliability-Driven || Reliability-Driven el e Reliability- Efficient Data Formal Detection Fine Pruning- Anti

° Instruction Software Task Prioritization Aware Function Mining of Vulnerability Adversarial based Malv.vare or
‘g Scheduling Transformations Scheduling Encrypted Data Analysis Examples Defenses Tf:laf?dto
£ - voic
3 Fa;ltjayvare FaMuIt-a\{vare Range Restriction Evolutlon.alty— Hardware Communication || Adversarial Gy l(\i/lanagemznt Security

raining apping based Training | || certifications || Data Encryption || Training anAI P:rsi::/r:r Breaches

|| || Fault-aware Redundancy H  Algorithm- = 1
Reliability Pruning
Modeling based Fault Hardware Wrappers PUF-based Security-Aware .
[ Radiation Hardening Tolerance for Control Unit Anti-Tampering S . Security
© h . ensor Isolation Threat
H Protection Techniques °
- Processor Reliability Reliable Off-chip & Dynamic Modeling
T P Heterogeneous On-chip Memories Voltage and Side Channel Data Integrity Hardware
Gesiem i e Cores (DRAM, SPM, Caches) | | Freq. Scaling Parametric Analysis Verification Obfuscation

b4 4 4 Data in
3 Ty )T -
T‘g n—substrate 3 8 |_l! L] !U Sy Memory
© Permanent Faults Soft Errors Aging Process Variation Data Poisoning Side Channel Attacks Hardware Intrusion

Fig. 6. Overview of challenges for reliability and security aspects, and the respective solutions on different system layers.

techniques usually require minor modifications at the hardware level
(i.e., additional circuitry) to bypass/disconnect the faulty components,
which results in minor run-time overheads. The key limitation
of FAT is that it incurs a huge retraining cost, specifically for
the cases in which retraining has to be performed for a large
number of faulty chips. Moreover, FAT cannot be employed if
the training dataset is not available to the user. To address these
limitations, we proposed SalvageDNN [49]] that enables us to
mitigate permanent faults in DNN accelerators without retraining.
It achieves this through a significance-driven fault-aware mapping
(FAM) strategy, and shuffling of parameters at the software level to
avoid additional memory operations. Techniques like FT-ClipAct [50]
and Ranger [51]] employ range restriction functions to block large
(abnormal) activation values using pre-computed thresholds. Range
restriction is realized using clipped activation functions that map out
of the range values to pre-specified values within the range that have
the least impact on the output. FT-ClipAct [50] shows that such
techniques can improve the accuracy of the VGG-16 by 68.92% (on
average) at 10~° fault rate compared to the no fault mitigation case.

Transient Faults (Soft Errors): Soft error rates have been
increasing in HW systems [52]. To mitigate their negative impact,
several techniques have been proposed [51]], [|53]-[57]]. Some of these
techniques only cover limited faults [55] and/or incur significant
overheads [53[] [S6]. For instance, techniques in [53] employ a
separate network to detect the anomaly in the output. Other state-of-
the-art techniques employ online SW-level range restriction functions,
like Ranger [51] that rectifies the faulty outputs of DNN operations
without re-computation by restricting the value ranges.

Aging: Aging may result in timing errors, and techniques like
ThUnderVolt [58] and GreenTPU [59] can be employed for mitigating
the effects of timing errors that occur in the computational units of
DNN accelerators. Meanwhile, aging in the on-chip memory (6T-
SRAM), one of the key component in DNN accelerators, has been
addressed by techniques like the fixed aging balancing [60]], adaptive
aging balancing [61], and additional circuitry [62] [63]]. However,
these techniques are designed for specific data distribution and/or

applications, or require additional circuitry in each SRAM cell. To
address this challenge, we proposed DNN-Life framework [64] that
employs novel memory-write (and read) transducers to achieve an
optimal duty-cycle at run time in each cell of the on-chip weight
memory to mitigate NBTI aging.

Besides the HW-induced reliability threats (i.e., permanent faults,
soft errors, and aging), other works have analyzed the resilience
of DNNs against other threats (e.g., input noise). For instance,
the FANNet methodology [65] analyzes the DNN noise tolerance
using model checking techniques for formal analysis of DNNs under
different ranges of input noise. The key idea is to investigate the
impact of training bias on accuracy, and study the input node
sensitivity under noise.

B. Secure ML: Attacks and Defenses

Security threats may come from different types of attacks, such
as side-channel attacks, data poisoning, and hardware intrusion.
These attacks can cause confidence reduction in classification
accuracy, random or targeted misclassification, and IP stealing. To
systematically identify the possible security attacks and defense
mechanisms for Edge Al, a threat model (which defines the
capabilities and goals of the attacker under realistic assumptions)
is required [9]. The attacks can be categorized based on the Edge
Al design cycle, i.e., during training, HW design or implementation,
and inference [9] (the overview is shown in Fig. M)

o Training: The attacker can manipulate the DNN model, training
dataset or tools, to attack the system [[66]].

« HW Implementation: The attacker can steal the DNN IP through
side-channel attacks, or hardware intrusion [66].

« Inference: The attacker can perform side-channel attacks for IP
stealing, or manipulate the input data to achieve random or targeted
misclassification [66].

Therefore, effective defense mechanisms are required to secure Edge
Al from possible attacks. Toward this, both attacks and defenses need
to be explored. In this section, we discuss different security attacks
and some possible defenses (countermeasures) against these attacks.
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Data Poisoning/Manipulation: Data poisoning aims at producing
incorrect output (i.e., misclassification), and it can be performed by
adding crafted noise to the DNN inputs (i.e., training or test data).
Toward this, SW-level methodologies (e.g., TrISec [67], FaDec [68],
and CapsAttacks [69]) have been proposed to explore the impacts of
different data poisoning attacks. For instance, TrISec [67] generates
imperceptible attack images as the test inputs by leveraging the
backpropagation algorithm on the trained DNNs without knowledge
of the training dataset. The generated attacks have close correlation
and structural similarity index with the clean input, thereby making
them difficult to notice in both subjective and objective tests.
FaDec [68] generates imperceptible decision-based attack images as
the test inputs by employing fast estimation of the classification
boundary and adversarial noise optimization. It results in a fast and
imperceptible attack, i.e., 16x faster than the state-of-the-art decision-
based attacks. Meanwhile, CapsAttacks [69] performs analysis to
study the vulnerabilities of the CapsNet by adding perturbations
to the test inputs. The results show that, compared to traditional
DNNs with similar width and depth, the CapsNets are more robust
to affine transformations and adversarial attacks. All these works
demonstrated that DNNs are vulnerable to data poisoning attacks
(which can be imperceptible), thereby the effective countermeasures
are required. Previous works have proposed several SW-level defense
mechanisms. One idea is to employ encryption for protecting the
training data [[70]—[73]]. Another idea is to employ noise filters, as the
FadeML methodology [74] demonstrates that the existing adversarial
attacks can be nullified using noise filters, like the Local Average
with Neighborhood Pixels (LAP) and Local Average with Radius
(LAR) techniques. Meanwhile, the QuSecNets methodology [75]
employs quantization to eliminate the attacks in the input images. It
has two quantization mechanisms, i.e., constant quantization, which
quantizes the intensities of input pixels based on fixed quantization
levels; and trainable quantization, which learns the quantization
levels during the training phase to provide a stronger protection. This
technique increases the accuracy of CNNs by 50%-96% and by 10%-
50% for the perturbed images from the MNIST and the CIFAR-10,
respectively.

Side Channel Attacks: These attacks aim at extracting confidential
information (e.g., for data sniffing and IP stealing) without interfering
with the functionality or the operation of the devices by monitoring
and manipulating the side channel parameters (e.g., timing, power,
temperature, etc.). The potential countermeasures are the obfuscation
techniques, which target at concealing or obscuring the functional
behavior or specific information [[76]]. For instance, the processing
HW can be designed so that the power signals of the operation
are independent to the processed data values, thereby concealing
the secret information [77]. Meanwhile, to protect the devices from
timing attacks, designers can (1) randomize the execution delay of
different operations, or (2) enforce the same execution delay for all
operations, thereby obscuring the underlying operation [77].

Hardware Intrusion: HW intrusion means that the attacker inserts
malware or trojan (typically in the form of circuitry modification)
in the processing HW for performing attacks such as confidence
reduction and misclassification. The potential countermeasures are
the typical HW security techniques, like the built-in self-test (BIST)
to verify the functionality of the processing HW, the side channel
analysis-based monitoring [78]—[80] to detect and identify anomalous
side channel signals, the formal method analysis to quickly and
comprehensively analyze the behavior of the processing HW (e.g.,
using property checker [78|], mathematical model [81]], SAT solver
[182], and SMT solver [83]).

IV. A CROSS-LAYER FRAMEWORK FOR
ENERGY-EFFICIENT AND ROBUST EDGE Al

To develop energy-efficient and robust Edge Al systems, different
aspects related to performance and energy efficiency, reliability, and
security should be collectively addressed. Toward this, we propose
a cross-layer framework that combines different techniques from
different layers of the computing stack for achieving energy-efficient
and secure Edge AI systems (see the overview in Fig. [B). Our
integrated framework employs the following steps.

DNN Model Creation with Secure Training: DNNs for Edge
Al have to meet the design constraints (e.g., accuracy, memory,
power, and energy). This can be achieved through two different
ways, i.e., by employing (1) model compression through pruning [/18]]
and quantization [22]] of the pre-trained DNN model, and (2) multi-
objective neural architecture search (NAS) similar to the APNAS [28]]
and NASCaps [29] frameworks. APNAS [28] searches for a model
that has good accuracy and performance considering a systolic
array-based DNN accelerator [30] through reinforcement learning.
Meanwhile, NASCaps [29] optimizes the accuracy and the hardware
efficiency of a given accelerator for CapsNet inference. To ensure
that the generated model can be trusted, the training process should
be protected from attacks. To do this, several countermeasures can
be employed, e.g., by comparing the redundant trained models [84]],
by performing local training [85] to identify if the trained model
has been attacked, or by encrypting the training dataset [[70]—[73]] to
remove data poisoning attacks (see @ in Fig. .

Efficient Edge AI Design: Once a trusted model is generated,
further performance and energy optimizations are performed (see
® in Fig. . At design time, DRAM latency and energy can be
improved using techniques like ROMANet [7] and DRMap [37].
Meanwhile, the buffer latency and energy can be optimized using
ROMANet [[7] and DESCNet [8]l, and the compute latency and energy
can be optimized using approximation methodologies like CANN
[40], ALWANN [43]], and ReD-CaNe [42]. Moreover, efficiency gains
of the systems can be improved at run time using run-time power
management techniques like clock gating [5]], power gating [_8]], and
DVES [5]. Furthermore, this step should ensure that the employed
techniques do not violate the design specifications, thereby providing
efficient Edge Al

Resilient Edge AI Design: To improve the resiliency of Edge
Al against the reliability threats, effective mitigation techniques
are required (see @ in Fig. . Toward this, the characteristics of
DNN resiliency under the targeted reliability threats are evaluated.
Recent works have studied the DNN resiliency in the presence of
approximation errors [41] [42] and permanent faults [49]. Based
on this information, appropriate fault mitigation techniques can be
identified and deployed. At design time, several techniques can be
employed, such as fault-aware training (e.g., FAP [47] and FAT
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Fig. 8. Overview of our cross-layer framework for energy-efficient and secure Edge Al systems.

[48]), range restriction (e.g., FI-ClipAct [50]), and aging-aware
timing error mitigation (e.g., ThUnderVolt [S8|] and GreenTPU [59])).
Meanwhile, the fault-aware mapping (e.g., SalvageDNN [49]), the
range restriction (e.g., Ranger [51]]), online error monitoring and
adaptive DVFS can be performed to improve the system’s resiliency
at run time. Furthermore, this step needs to ensure that the employed
techniques do not lead to any violation of the design constraints,
thereby resulting in a resilient and energy-efficient Edge Al system.

Secure HW Design/Implementation: Since the HW side also has
vulnerability issues, the HW design/implementation process should
be protected. Toward this, the existing HW security techniques can be
employed (see @ in Fig. . For instance, the side-channel analysis-
based monitoring [78|]-[80] can monitor the side-channel signals that
attackers can exploit. Then, we can leverage the information to devise
defense mechanisms that block the exploitation. Another idea is to
obscure the HW information from the attacker using obfuscation
techniques [86] [87]. The other techniques leverage the formal
method-based analysis (78] [81]-[83] to quickly identify all possible
security vulnerabilities and the corresponding defense mechanisms.
To evaluate the efficacy of the applied defense mechanisms, HW
testing is performed. Furthermore, this step also needs to ensure that
the employed defense techniques still meet the design constraints,
thereby resulting in a secure HW design.

Secure Inference: Since the security attacks can also target the
inference phase, a secure inference is required (see @ in Fig. . Most
of the attacks come in the form of data manipulation. Hence, we can
perform data encryption to block the insertion of perturbations into
the input data. Another idea is to mitigate the input data-based attacks
by employing quantization-based defenses such as, QuSecNets [[75]

and by noise filters like in the FadeML methodology [74].

Note that all the proposed steps can jointly provide an end-to-end
cross-layer framework that performs HW- and SW-level optimizations
at the design-time and run-time. Our proposed framework ensures
that the Edge Al systems have high performance and energy
efficiency, while providing correct output under diverse reliability and
security threats.

V. NEUROMORPHIC RESEARCH CONSIDERING SNNS

SNNs are considered as the third generation of NN models,
which employ spike-encoded information and computation [88].
Due to their bio-inspired operations, SNNs have a high potential
to provide energy-efficient computation. Recent works have been
actively exploring two research directions, i.e., SNNs with a localized
learning rule like the spike-timing-dependent plasticity (STDP) [3],
and SNNs obtained from DNN conversions [89].

A. Improving the Energy Efficiency of SNNs

To improve the energy efficiency of SNNs, several HW- and SW-
level optimizations have been proposed. For HW-level techniques,
SNN accelerators have been designed, such as TrueNorth [90],
SpiNNaker [91], PEASE [92], Loihi [93]], and ODIN [94]. Recent
work (i.e., the SparkXD framework [95]]) optimizes the DRAM access
latency and energy for SNN inference by employing the reduced-
voltage DRAM operations and effective DRAM mapping, leading
to DRAM energy saving by up to 40% (see Fig. [0). For SW-
level techniques, the FSpiNN framework [3] improves the energy
efficiency of SNN processing in the training (avg. 3.5x) and the
inference (avg. 1.8x) through the optimization of neural operations
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Fig. 10. The FSpiNN improves the energy efficiency compared to the standard
unsupervised SNN (Baseline) [98] and the SL-STDP [99] across different
network sizes for both training and inference phases on the MNIST workload.

and quantization, without accuracy loss (see Fig. [T0). The Q-
SpiNN [96] explores different precision levels, rounding schemes,
and quantization schemes (i.e., post- and in-training quantization) to
maximize memory savings for both weights and neuron parameters
(which occupy considerable amount of memory in the accelerator
fabric). The other techniques target at mapping and running the SNN
applications (e.g., DVS Gesture Recognition [89] and Autonomous
Cars [97]) on neuromorphic hardware (i.e., Loihi) to improve the
energy efficiency of their processing compared to running them on
conventional platforms (e.g., CPUs, GPUs). As shown in Fig.
the CarSNN [97]] improves by 2% the N-CARS accuracy, compared
to the related works, while consuming only 315 mW on the Loihi
Neuromorphic Chip, thus making a step forward towards ultra-low
power event-based vision for autonomous cars.

B. Improving the Reliability of SNNs

In recent years, the SNN reliability aspect starts gaining attention
because it is crucial to ensure the functionality of SNN systems.
Moreover, the reliability issues may come from various sources (e.g.,
manufacturing defects, optimization techniques, etc.). For instance,
employing the reduced-voltage DRAM in SNN accelerators can
offer energy savings, but at the cost of increased DRAM errors
which may alter the weight values and reduce the accuracy. Toward
this, the SparkXD framework [95]] improves the SNN reliability
(preserving the high accuracy) by incorporating the information of
faults (i.e., fault map and fault rate) in the retraining process, i.e.,
so-called the fault-aware training (FAT). Furthermore, the ReSpawn
framework [103] mitigates the negative impact of permanent and
approximation-induced faults in the off-chip and on-chip memories of
SNN HW accelerators through a cost-effective fault-aware mapping
(FAM). It places the weight bits with higher significance on the non-
faulty memory cells, which enhances the reliability of SNNs without
retraining, and achieves up to 70% accuracy improvement from the
baseline, as shown in Fig. [[2} In this manner, the ReSpawn can also
improve the yield and reduce the per-unit-cost of SNN chips. Besides
the HW-induced faults, the SNN systems may encounter dynamically
changing environments, which cause the offline-learned knowledge
to obsolete at run-time. Toward this, the SpikeDyn framework [[104]
employs an unsupervised continual learning mechanism by leveraging
the internal characteristics of neural dynamics and weight decay
function to enable an online learning scenario.
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Fig. 11. The CarSNN [97], although being more energy-efficient, achieves
higher accuracy for the N-CARS dataset than the related works like the
HATS [100], Gabor-SNN [101], and HOTS [[102] techniques.
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Fig. 12. The ReSpawn maintains higher accuracy than the fault-aware training
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C. Improving the Security of SNNs

Previous works have studied that SNNs are vulnerable to security
attacks, like data poisoning attacks on traditional image classification
datasets like the MNIST [105] and on event-based datasets [[106]],
showing different behavior under attack, compared to the non-spiking
DNNs. Furthermore, SNNs are also vulnerable to externally triggered
bit-flip attacks. The experiments conducted in [107] show that only 4
bit-flips at the most sensitive weight memory cells are sufficient for
fooling SNNs on the CIFAR10 dataset. Once these memory locations
are found, the attacker can trigger the malicious hardware that
generates bit-flips by inserting a specific pattern in the input images.
To address the security problem, several defense techniques have
been proposed. One technique is exploiting the structural network
parameters, e.g., threshold voltage and time window, to improve the
SNN robustness [108]. By fine-tuning such parameters, the SNNs
can be up to 85% more robust than non-spiking DNNs. Meanwhile,
the R-SNN methodology [[109] employs noise filtering to remove the
adversarial attacks in the DVS inputs. The experiments demonstrate
that such noise filtering slightly affects the SNN outputs for clean
event sequences, while a wide range of filter parameters can increase
the robustness of the SNN under attack by up to 90%.

VI. CONCLUSION

The use of Edge Al and tinyML systems is expected to grow fast
in the coming years. Therefore, ensuring their high energy efficiency
and robustness is important. This paper provides an overview of
challenges and potential solutions for improving performance, energy
efficiency, and robustness (i.e., reliability and security) of Edge Al
It shows that HW/SW co-design and co-optimization techniques at
the design- and run-time can be combined through a cross-layer
framework to efficiently address these challenges.
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