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Abstract—Recently, eFPGA-based redaction has been proposed
as a promising solution for hiding parts of a digital design
from untrusted entities, where legitimate end-users can restore
functionality by loading the withheld bitstream after fabrication.
However, when deciding which parts of a design to redact,
there are a number of practical issues that designers need to
consider, including area and timing overheads, as well as security
factors. Adapting an open-source FPGA fabric generation flow,
we perform a case study to explore the trade-offs when redacting
different modules of open-source intellectual property blocks
(IPs) and explore how different parts of an eFPGA contribute
to the security. We provide new insights into the feasibility and
challenges of using eFPGA-based redaction as a security solution.

Index Terms—Embedded FPGA, Hardware Security, Redac-
tion

I. INTRODUCTION

In response to concerns about the integrity of the integrated
circuit (IC) supply-chain, researchers have proposed numer-
ous design obfuscation and locking techniques to protect
hardware intellectual property blocks (IPs) [1]–[10]. Such
techniques involve supplementing designs so as to induce
errors in the presence of incorrect key inputs (e.g., adding
XOR/XNOR gates randomly [10]) or introducing structures
that legitimate users later populate with elements of the design
that are withheld during fabrication (e.g., restoring withheld
constants [1]). Programmable fabrics have been added to
the repertoire of defenses against reverse engineering and IP
piracy, especially as a counter to Boolean satisfiability-based
(SAT) attacks [11] and variants thereof [2]. In reconfigurable
fabric-based redaction, designers select parts of a design and
implement it by programming a fabric separate from the
remaining design, as shown in Fig. 1. A potentially un-trusted
foundry manufactures the design without the programming
information for the fabric (e.g., the configuration bit-stream)
which the designer withholds. Fabrics include embedded field
programmable gate arrays (eFPGAs) [4], [6], coarse-grained
reconfigurable architectures [12], and transistor fabrics [13].
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Fig. 1. eFPGA-based redaction takes a module of an IP and replaces it with
a reprogrammable fabric that can replace the redacted functionality.

When adopting eFPGA-based redaction for IP protection,
designers are faced with a number of decisions and design
challenges. These include customizing/selecting the fabric
configuration, deciding which of the module(s) in the IP to
move to the eFPGA, and dealing with the overheads that
result from the process of integration and implementation in
the ASIC design flow. Prior work has begun to explore these
challenges by selecting functionality to redact from high-level
(C-based) designs to maximize a security metric until hitting
an area overhead threshold [6] or by choosing a single part of
a design—at the register transfer level (RTL)—which guides
the generation of an eFPGA fabric [4]. As with many security
solutions, there is a trade-off between security and other design
factors, such as area and timing [4]–[6]. Thus far, prior work
has suggested eFPGAs for feasibly redacting an individual
IP [4], [6]; however, given the nascent state of eFPGA-based
redaction, we need more insights into the practical implications
of using this IP protection approach so as to help designers
make better redaction decisions.

In this work, we provide key insights into the use of eFPGAs
for redacting RTL designs through a case study of redacting
different hand-crafted hierarchical RTL IPs, where different
modules are candidate units for redaction. We investigate
adapting an open-source FPGA design flow [14] to produce
different eFPGAs configurations, depending on the module
to be redacted, and assess the impact on a range of open-
source IPs. We explore factors that contribute to the security
offered by eFPGAs-based redaction, and explore the factors
that contribute to the security of eFPGA fabrics. The three
main contributions are:

• insights from a security evaluation of eFPGA-based
redaction based on different redaction decisions, under
an oracle-based, scan-chain accessible attack model
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• results from a case study using open-source IPs to explore
challenges and area/timing trade-offs of different redac-
tion decisions, using an open-source FPGA tool flow [14]

• insights and guidance for future work in eFPGA-based
redaction of RTL designs

In Section II, we provide the context of our work and describe
the potential of open-source eFPGAs for hardware security.
In Section III, we provide an overview of an eFPGA-based
redaction flow, with a particular focus on the decision and
challenges faced by designers. Section IV is our deep dive
into the characteristics of eFPGA fabrics that provide security
benefits of redaction. We present the impact of different
module choices using a set of open-source IPs from lock-
ing/obfuscation work, in Section V, and discuss insights from
our study in Section VI.

II. MOTIVATION AND BACKGROUND

A. Related Work: Intellectual Property Protection

Traditional techniques for hardware IP protection include
locking-based methods, where designers insert additional gates
(controlled by an input key) to thwart reverse engineering [2],
[3], [15]–[17]. When applied at high levels of abstraction,
such as RTL, these methods are effective because they hide
the essential semantics of the design, but entail significant
increases in overhead [1]. However, there is an ongoing back-
and-forth battle between attacks and locking-based defenses,
where Oracle-guided attacks [11], [18]–[21] and existence of
structural artifacts [22], [23] pose considerable challenges to
defenders.

eFPGAs, comprising configurable logic blocks (CLBs) con-
taining look-up tables (LUTs), flip-flops, and routing logic,
can be programmed to implement arbitrary functionality.
This allows a designer to implement “sensitive” parts of the
design in an eFPGA, post-fabrication, by means of setting
the configuration bit-stream— unseen by potentially untrusted
parties during manufacture. Hence, eFPGA-based redaction is
a potential panacea for reverse-engineering attacks; the regular
structure of an eFPGA, avoids apparent structural biases while
appearing to pose a challenge to attackers by introducing a
large key-space (i.e., configuration bitstream) [4], [6]. Using
an eFPGA for redaction offers expressiveness and complexity
compared to focusing on replacing parts of a design with
LUTs [8] or by obfuscating routing structures [7].

However, how to identify portions of a design to redact is an
open issue; the designer must not only identify the “sensitive”
parts but also decide how much of them can be moved onto
the eFPGA. This requires careful evaluation of the security
benefits of eFPGA implementation while limiting overhead.
Prior work studied this problem from a high-level synthesis
(HLS) perspective, where security is explored in terms of
operations redacted and the number of cells on which those
operations are mapped [6], or by mapping the logic that differs
between variants of the same functionality [5]. While HLS
studies provide insight into targets for redaction, they do not
fully characterize practical implications of an eFPGA fabric to
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Fig. 2. Open-source eFPGA design flows: (a) XML-to-layout generation for
chip designers; and (b) Verilog-to-Bitstream generation for end-users.

support redaction; for instance, the eFPGA fabric dimensions
needed and the fabric interfaces are not apparent.

“Designer-directed” redaction at the register transfer level
using a custom fabric generation flow [4] produces a fabric for
parts of the design the designer intuits as “security critical”.
The security analyses show that the fabric offers a promising
level of SAT-attack resilience, but the evaluation is limited to
a small number of designs. Our study sheds light on practical
issues with eFPGA redaction at the register transfer level by
extending the analysis of prior work. We adapt an open-source
FPGA design flow and redact a wider range of IPs.

B. Open Source (e)FPGA Design Flows

The trends in heterogeneous computing have increased in-
terest in embedded field programmable gate arrays (eFPGAs)
fabrics due to their flexibility and adaptability. In commercial
products, FPGAs are tightly integrated to processors in a
single-chip, serving as a co-processor or a programmable
accelerator [24], [25]. Thanks to eFPGAs, the peak perfor-
mance of a System-on-Chip (SoC) can be improved by 3.4×
along with a 2.9× power reduction. Different SoCs require
different eFPGA fabrics from architecture to physical layouts,
depending on the application context. For instance, eFPGAs
designed for machine learning applications require a high
density of Digital Signal Processing (DSP) blocks, embedded
memories, and architectural enhancements which can imple-
ment Multiply-accumulate (MAC) operations efficiently.

Driven by demand, there are a few open-source tools to
prototype customizable (e)FPGAs [14], [26], [27]. Fig. 2
illustrates principles of OpenFPGA framework to prototype
customizable eFPGAs [14]. In the XML-to-layout flow, chip
designers can generate fabrication-ready eFPGA layouts using
well-known XML-based architecture description languages
[28], [29]. The architecture description languages allow de-
signers to customize FPGA architecture down to circuit ele-
ments, supporting standard cells and highly flexible hardware
IPs. The core engine converts the architecture description
to synthesizable or technology-mapped Verilog netlists that



+

Original IP

modules Redacted 
Portion (RTL)

OpenFPGA
flow (customized)

Remaining
Portion (RTL)

eFPGA
macro

Synthesis and 
Place & Route Synthesis and 

Place & Route
Redacted
Design

Fig. 3. An eFPGA-based redaction flow for RTL IP, where the redacted portion (module) is manually picked by a designer. We adapt the OpenFPGA flow
to produce the required eFPGA fabric, which we then treat as a macro to be connected to the remaining portion of the design.

model a complete eFPGA fabric. Then, the auto-generated
Verilog netlists can be fed into established ASIC design tool
suites, especially Place&Route (P&R) tools, for generating
GDSII layouts and performing sign-offs. In addition, self-
testing Verilog testbenches can be automatically generated to
ease pre- and post-layout verification. The Verilog testbenches
can validate the correctness of an eFPGA by simulating a
complete process in practice, including bitstream downloading
and eFPGA operation. As argued in prior work, the ability
to create custom, small, fabrics can provide a better fit for
redaction compared with off-the-shelf eFPGA IP [4].

In the Verilog-to-Bitstream flow, end-users can implement
HDL designs on the eFPGAs. HDL designs are first synthe-
sized by Yosys [30] and physically mapped (packed, placed
and routed) on the eFPGA programmable resources by VPR
[31]. The implemented design is translated to a bitstream
which is compatible with configuration protocols of eFPGAs.

Open-source efforts aim to overcome two major techni-
cal barriers of contemporary eFPGA development: (1) the
time-consuming physical design process—by leveraging the
sophisticated ASIC design tools rather than manual layouts,
and (2) the ever increasing design complexity of associated
electronic design automation (EDA) tool-chain—by using
well-known open-source FPGA architecture exploration tools,
e.g., VPR [31], rather than developing ad hoc, in-house tools.
Previous work has shown that using the design flows in
Fig. 2, the development cycle of a 160k-LUT FPGA layout
is ∼24 hours and its performance is competitive against com-
mercial products [14], [32]. In this paper, we thus investigate
the OpenFPGA framework to implement eFPGA fabrics [14]
for redaction and give insight into our experience.

III. REDACTION AND PRACTICAL CHALLENGES

A. Overview of the Redaction Process

Fig. 3 illustrates a general eFPGA-based redaction flow for
redacting individual, hierarchically designed IPs at the regis-
ter transfer level. Typically, designers redact a module after
designing them [1], [4], which points towards hand-crafted
modules in the IP as the starting point for potential redaction
targets. To prepare the redaction fabric, we run the selected
module through the OpenFPGA framework [14] which selects
and generates the smallest eFPGA fabric configuration given
an architecture definition. We simulate the generated fabric to
verify that the intended functionality is correct, and if so, take
the synthesizable Verilog netlist through a physical design flow
that comprises synthesis, followed by floorplanning, placement

and routing. In contrast to related work [4], we treat the
eFPGA fabric as a macro. After integrating this macro with
the rest of the design, the IP, as a whole, is put through the
design flow, resulting in a final GDSII file.

B. Practical Considerations

There are several practical considerations that designers
need to keep in mind when using eFPGAs for redaction,
including the fabric utilization, impact on timing, and the area
overhead introduced by integrating a fabric.

Resource Utilization: When one redacts an IP, the selected
module(s) (the “redaction modules”) needs to fit into the
eFPGA fabric; designers need to be aware of the resources
available in a particular fabric size, especially if one were
to adopt an HLS-based “top-down” approach to increase cell
usage [6]. The alternative approach is to find a fabric size that
matches the requirements of the “designer-directed” redaction
choice [4]. However, the minimum fabric size is driven by
different factors of the redaction module. The interface of the
module (number of inputs and outputs) will affect the number
of I/O tiles required, while the number of state elements
(registers/flip-flops) will affect the number of CLBs. Either
factor can dominate the final eFPGA size, causing a sub-par
use of the fabric used for redaction.

Timing: The chosen redaction unit can possibly lie in the
critical path. FPGA structures tend to have longer delays
compared to full ASIC designs due to the general nature of the
large pool of available gates for logic and routing. Thus, the
redacted portion in the eFPGA will likely be slower compared
to the same design implemented directly in the ASIC. The
designer should be aware of the impact on the overall IP’s
timing characteristics, including the effect of the redacted
portion, otherwise the targeted performance is compromised.

Area: In addition to timing issues, the introduction of an
eFPGA fabric will have considerable implications on area,
particularly as the number of CLB and I/O tiles increases
non-linearly with each increase in the square eFPGA fabric’s
dimensions. This places another constraint on the design
portion selected for the redaction—a redaction choice that
requires a fabric that encompasses too much area, in the
context of the IP as a whole, could be too impractical. In
a related vein, the module selected for redaction could have
numerous instances in the IP; the designer could possibly
create a larger fabric to redact several instances, instantiate
multiple eFPGAs, or possibly choose to redact only one.

To gain insights into these practical considerations, we
explore the fabrics needed to redact different parts of typi-



cal IPs (presented in Section V). On top of these practical
considerations, we need to consider the security implications
of eFPGA fabrics—we explore this in the next section.

IV. SECURITY ANALYSIS OF EFPGA FABRICS

For more insight into the security offered by using eFPGA-
based redaction, we explore and discuss their characteristics,
in particular, SAT attack resilience, given the miter-based
SAT attack’s strength against other locking/obfuscation ap-
proaches [2]. Previous work has suggested that large FPGA
bitstream lengths make SAT-based attacks impractical [6] and
the results in Mohan et al.’s evaluation appear to support
this claim [4]. In this work, we begin to investigate how
the different structural elements of the eFPGA contribute to
SAT resilience. We also perform a security evaluation of
different fabric sizes in a high performance computing (HPC)
environment, with jobs running on a compute node with an
Intel Xeon Platinum 2.9 GHz with 64–512 GiB of RAM.

A. Threat Model and Assumptions

We consider an attack model favoring an attacker with
access to a fully-scanned and unlocked design (i.e., an oracle)
in addition to the netlist of the IP; this is typical from prior
work [4]. An adversary has to overcome three challenges
before they can launch a reverse-engineering attack. First,
they have to isolate the eFPGA fabric from the rest of the
IP; this is possible since the regular structure of the fabric
stands out from the rest of the design (as seen in Fig. 5).
Second, for oracle access, they should be able to control and
observe the inputs and outputs of the fabric and all the flip-
flops. As a worst-case assessment, we endow the adversary
with these capabilities although there are orthogonal efforts
to mitigate this attack model [10]. Third, the attacker cannot
trivially extract the FPGA bitstream [6]. Physical attacks (e.g.,
optical probing [33]) are out of scope.

B. Why do FPGAs appear to be SAT-attack resilient?

Using this threat model and assumptions, the first hurdle for
an adversary is to formulate the design and miter circuit inputs
to a SAT solver [11], treating the configuration bitstream as the
“key”. SAT solvers fail in the presence of combinational loops
(cyclic designs) [20], producing unstable results or repeatedly
returning distinguishing input patterns. These loops emerge
from the re-configurable routing network of the eFPGA. The
sequence of re-configurable logic represented by the chain of
LUTs/CLBs interconnected by this re-configurable network
adds a polynomial complexity to the SAT formulation.

To launch a SAT attack on designs with (potential) loops,
like eFPGAs, we need to pre-process the netlist to add
constraints to break the loops. Multiple approaches have
been proposed to modify the SAT attack for cyclic designs.
CycSAT [20] and BeSAT [19] are two approaches. However,
eFPGAs have hard combinational loops what CycSAT cannot
resolve. These hard loops are intertwined; even when CycSAT
breaks a loop to make the circuit acyclic, atleast one loop re-
mains. The acyclic constraints generated by CycSAT overlook

TABLE I
THE AMOUNT OF UNROLLING AND THE NUMBER OF CLAUSES WHEN

PREPARING THE EFPGA FABRIC FOR THE SAT-BASED ATTACK

Fabric Unroll Factor # Clauses (millions)

3×3 190 6
4×4 628 67
5×5 1441 324

such loops and live-locks the solver into repeating the same
distinguishing input patterns (DIPs). Be-SAT can break such
loops by pruning the keys leading to live-lock DIPs. However,
it has exponential complexity in key-size. IcySAT [18] is
a practical loop-breaking alternative that finds a subset of
feedback nets that when “removed” make the netlist acyclic.
The circuit is then unrolled with respect to these feedback
nets, with an unroll factor equalling the size of the feedback
set. The unrolled circuit can feed into any SAT attack tool.

C. Security Evaluation Setup

To formulate a SAT attack to recover the eFPGA bitstream,
the eFPGA netlist has to be redefined as a key-controlled
netlist, with the configuration bitstream being the key. In an
eFPGA, a bitstream is loaded into the configuration flip-flops
(FFs) as a sequence of configuration bits. The configuration
FFs are interconnected as a scan-chain driven by a program-
ming clock (prog clk). In our attack setup, we write a script
to expose the configuration FFs as primary key inputs by
traversing along the scan chain.

To identify the configuration scan chain, we do a depth-first
search (DFS) starting from the scan in head port, until we
reach the scan in tail. All FFs in the traversal path driven
by the programming clock (prog clk) store the configuration
bitstream. The order in which the configuration FFs are
detected along the path corresponds to the bitstream order.
The detected configuration FFs are exposed as primary key
inputs to convert the eFPGA netlist into a typical SAT attack
netlist. This key-exposed netlist is fed to our implementation
of IcySAT [18] to unroll the hard loops. To model an oracle,
we use the same netlist, but add constraints to set the key-bits
to the configuration values from the bitstream generated in the
OpenFPGA flow. The unrolled netlist and the oracle netlist are
used with KC2 attack tool [21] in our experiments.

D. Impact of Fabric Size

To better understand the impact of fabric size, we synthe-
sized square eFPGAs fabrics of various configurations, based
on CLBs with eight 4-LUTs (more details in §V-C) surrounded
by I/O tiles, and converted them into unrolled netlists (as
described in the previous section). As attack difficulty cor-
relates with how the circuit is modeled for the SAT attack,
we categorize eFPGA fabrics in terms of number of feedback
nodes to be broken (Unroll Factor) and the clause size of
eFPGA netlist, shown in Table I. The size of IcySAT unrolled
netlist equals the product of unroll-factor and the number of
clauses required to represent the original circuit—both factors



TABLE II
RESULTS FROM ATTACKING DIFFERENT PARTS OF THE BISTREAM

Bitstream Clauses Variables Time Key-size

I/O bits 6197406 2436085 68.7 12
Routing Bits 5951166 2313613 105.96 336
Logic Bits 6043126 2359351 67.4 215

contribute to the clauses added per iteration of the SAT attack
and contributes to attack complexity.

Table III shows the result of attack on different fabric
sizes. FPGA fabrics mapped with multiple designs shown in
Table V was subjected to SAT attack. It was observed that
the complexity of the attack increases exponentially as we
increase eFPGA fabric size. Our attack of the 3×3 fabric was
successful, and was completed on average in 534 s. We tried to
launch similar attacks on the 4×4 and 5×5 fabrics, but these
were not able to complete within 48 hours, which suggests that
at least a 4×4 fabric should be selected, as a minimum, for
redaction. In attempting to launch these attacks, we needed to
increase the amount of RAM available to KC2 (we doubled the
allocation in the HPC system each time); the attack on 4×4
fabric only stopped crashing with 128 GiB of RAM, while
the attack on the 5×5 fabric required 512 GiB. To see if the
attack time of a fabric is affected by the design it implements,
we tried to attack three different designs in the 3×3 fabric.
No significant differences were observed in attack time. This
suggests that, for a fixed fabric, the attack complexity might
be independent of the bitstream. In future, we will extend this
work to validate the observation with results on larger fabrics.

E. Analysis of Different Parts of the Bitstream

Bits in the eFPGA bitstream can be categorized depending
on the part of the eFPGA they configure. We identified
three main parts routing configurations bits comprising Switch
Block and Connection Block configuration bits (i.e., the
logic within tiles for routing signals), logic configuration bits
comprising the configuration bits for the CLBs, and the I/O
configuration bits, which configures the I/O ports to be input
or output in the eFPGA. We attempted a “piece-wise” analysis
of the challenge in recovering the different configuration
bits, assuming all others are known, for insights into which
elements of an eFPGA might be harder/easier to recover. This
can inform redaction-centric eFPGA fabric design in future.

We launched a partial SAT attack on the 3×3 fabric to
recover a particular class of configuration bits while assuming
the others are unknown. Table II shows the recovery time for
different components of the bitstream while assuming other
bits are known. We observed that routing and logic bits have
similar complexity in terms of attack run-time required per
bit of bitstream. This is anticipated as CLBs and routing units
constitute MUX-trees with configuration bits either controlling
select inputs of MUXes or acting as a data input of a MUX
and hence represent a similar logic at gate-level of abstraction.

However attacking I/O bits resulted in a larger attack run-
time per bit. We intuit that this arises from the low output

corruptibility resulting from the I/O bits. For partial SAT
attack, we assume routing and CLB bits are known; this
configures the inputs being used by the eFPGA. For example,
assume an eFPGA configuration that uses 2 out of 10 possible
inputs. Since the eFPGA logic is configured to use the 2 inputs,
changing the don’t-care inputs does not lead to a DIP, as
required by the SAT attack. The SAT solver has to search
for the correct I/O bit configuration such that the two care
inputs can be used to find a DIP. This limits DIP equivalence
class, increasing solver time.

F. Exploring the Impact of Partial Bitstream Recovery

In this section, we explore the security compromise when
an attacker can recover a part of bitstream through a side-
channel, replicating and extending the study in prior related
work [4]. For instance, since the ASIC/eFPGA interface could
be identified from the netlist, the attacker might be able to
guess the I/O configuration bits, thus reducing the key search
space. To explore the security under such a scenario, we
explore how the attack time varies with number of unknown
key-bits. Fig. 4 shows how the attack-time varies with number
of unknown key-bits.

Counter to intuition that attack run-time is proportional to
the number of unknown configuration bits, we found that when
a small subset of configuration bits are known, the attack-time
is greater when compared to the attack-time when all key-bits
are unknown. To confirm that this is not a consequence of the
random nature of configuration bits chosen to be key-bits, we
run two trials choosing different random set of configuration
bits. The information on known key-bits is added to the circuit
formulation as constraints. Consequently, the effective number
of variables remains the same. When there is a substantial
information on the key variables, it reduces the search space
of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[34] within the solver, reducing the solver effort. However,
when a small subset of keys are known, this information may
burden the solver, without significantly pruning the search
space. This may unpredictably increase or decrease the run
time as suggested by this experiment. We conclude that
the attacker needs to recover a substantial number of key-
bits to invalidate the SAT resiliency claim. To verify this
argument from a practical perspective, we launched an attack
assuming that the attacker was successful in recovering all
I/O configuration bits (12/563 bits) in a fabric by snooping at
the ASIC-eFPGA interface and launched an attack with 551
unknown keys and 12 known I/O configuration bits. The partial
SAT attack took about 1045 seconds when compared to 545
seconds for the full SAT attack.

V. EXPERIMENTAL EXPLORATION

A. Experimental Overview

To explore practical issues and feasibility of eFPGA-based
redaction, we consider, as a case study, a set of open-source IPs
that comprise hand-crafted modules. These IPs reflect various
application domains and feature in logic locking/obfuscation
literature. For each IP we examine the modules and their
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configuration bits chosen to be key-bits, for a 3×3 eFPGA fabric.

TABLE III
RESULTS OF SAT ATTACK ON DIFFERENT FABRIC NETLISTS

Fabric
size Circuit Unroll

factor
Bit-

stream # Clauses Time (s) # Variables

3×3 2-bit adder 190 563 5775606 543.5 226668
3×3 1-bit adder 190 563 5775606 529.3 226668

3×3 2-bit
Multiplier 190 563 5775606 527.6 226668

4×4 memory
write 628 1904 TO

5×5 zero
comparator 1441 4184 TO

characteristics. We select several modules to put them through
the OpenFPGA flow to identify the fabric size required to
redact the module, synthesize the fabric to produce an eFPGA
macro, Fig. 5a, and then put the combined IP through the
physical design flow Fig. 5b. For this study, we target the
FreePDK 45 nm technology library [35]. We do synthesis
using Cadence Genus 18.1 and use Cadence Innovus 18.10
for physical design. Synthesis was performed on a server with
AMD EPYC 7551 (32 Core, 512 GB RAM).

B. Case Study IPs

For this study, we redact a variety of RTL IPs to gain a
broader sense of the implications of eFPGA-based redaction.
Table IV shows the IPs, the number of unique RTL modules,
and the ranges of input/output bits in the modules. The
IPs include small designs, like GCD from the OpenRoad
project [36], to larger designs, like GPS from the MIT Lincoln
Labs Common Evaluation Platform [37]. These IPs perform
arithmetic and cryptographic operations and appear as targets
for obfuscation in prior work [1]. Given the number of

TABLE IV
CHARACTERISTICS OF THE CASE STUDY IPS

IP # Modules Module Interfaces (Range in Bits)

Input Bits Output Bits

AES 9 10–128 8–128
GCD 8 8–45 1–18
GPS 12 6–128 1–256

PicoSoC 10 8–96 4–86
12-bit Adder 1 24 13
2-bit adder 1 4 3

modules in each IP at the register transfer level, the designer
has numerous options for redaction. For each IP, we select a
module for redaction, as shown in Table V.

To examine the redaction in the context of an SoC, we use
PicoSoC [38], which includes the PicoRV32, a size-optimized
RISC-V CPU [38]. As the designer has freedom to chose what
to redact, we redact a portion of the design that affects the
CPU function—for our experiments, we redact the logic that
signals whenever the memory is ready.

For AES, from CEP [37], we redact two modules: the
module which generates the valid out signal (which indicates
that the encryption is done and the output is ready to be
read) and the rconst value. In AES encryption, we need to
generate the key for each round (key expansion); this function
requires the rconst value for each round. This rconst value
can be read from the fabric instead of hard-wiring. These
modules are used independently in the AES module. From
the CEP, we also protect GPS IP; we redact the “C/A Code
Civilian Acquisition or Access Code” (CACODE) module.
Additionally, to understand our study not only on larger IPs
but some general purpose IPs, we redact a 2-bit and 12-bit
adder from the GCD IP from OpenRoad project [36]. For the
GCD IP, we redact logic that subtracts/compares data to zero.

C. Using OpenFPGA for eFPGA Generation

The OpenFPGA flow allows a designer to specify various
FPGA architectures, for instance, by choosing different CLB
designs. We selected a simple FPGA architecture that has
appeared in prior work [14], [26], [27], [31] that comprises
CLBs built with eight 4-input LUTs, which we specify in the
.xml architecture file for OpenFPGA (as shown in Fig. 2).

To produce the eFPGA, we replace the “out-of-the-box”
I/Os pads with simpler input and output pins since the fabric
is embedded in an ASIC; in our redactions, the fabric does
not need to be able to communicate with the rest of the
SoC or off-chip. This simplification reduces the area overhead
tremendously (compared to a non-embedded FPGA fabric).
For connections within the fabric we use 2-input multiplexers
whose select line is controlled by the configuration bitstream.
An added benefit of the OpenFPGA flow [14] is that it
automatically generates testbenches for functional verification
as well as the required SDC files to disable combinational
loops during synthesis of the fabric. The eFPGA fabric is
synthesized, placed, and routed separately from the rest of
the IP, to produce an eFPGA macro.

D. Redaction Results

For each IP, we redact a module by replacing its instantiation
in the original IP’s RTL with the fabric macro generated
using OpenFPGA, after simulating the eFPGA fabric to ensure
that the redacted functionality is implemented correctly. The
required fabric size for implementing the redacted module
ranges from 4×4 to 8×8. The overall design is then synthe-
sized, placed, and routed as shown in Fig. 5b. For comparison,
we also synthesized, placed, and routed each IP without redac-



TABLE V
CHARACTERISTICS OF REDACTING VARIOUS IPS

ASIC-only OpenFPGA Redacted IP Area (µm2)

IP Module Critical
Path?

Module
area in
ASIC

Area (µm2) Fabric I/O utilization (%) Resource use (%) Bitstream eFPGA Portion Total

GPS cacode No 296.1 273806.0 6×6 21 81 9237 102312.1 570964.5

GCD
zero comparator No 7.1 403.2 5×5 71 25 4184 45872.5 68531.4

mux No 29.8 403.2 8x8 68 6 16341 185230.4 264534.5
subtractor No 74.5 403.2 8x8 80 20 16341 185230.4 264614.3

AES valid output/rconst No 84.4 283944.9 6×6 67 89 9237 102312.1 562648.1

PicoSoC memory write No 259.0 82705.8 4×4 75 100 1954 21182.4 138115.6

ADDER 12-bit Adder No 227.8 227.8 7x7 71 19 11164 128535.2 128535.2
2-bit adder No 12.1 12.1 3×3 58 100 564 6207.1 6207.1

(a)

eFPGA 

(b)

Fig. 5. (a) 4×4 eFPGA fabric in the bottom-left corner of the floor plan before
placing the rest of the IP. (b) Complete PicoSoc design with the eFPGA fabric
and remaining logic.

TABLE VI
COMPARISON OF AREA, POWER AND DELAY OVERHEAD WITH

INTEGRATION OF DIFFERENT FABRIC SIZES IN PICOSOC

Design Area (µm2) Power (mW) Delay (ns)

PicoSoC 108307 30.0 1.284
PicoSoC + 3×3 116316 40.2 1.878
PicoSoC + 4×4 137330 49.3 2.261
PicoSoC + 5×5 173725 56.3 3.860
PicoSoC + 6×6 259508 68.7 4.708

tion. The post-synthesis area results are shown in Table V,
from reports produced by Cadence Innovus.

1) Area: Table V shows that there is a significant amount of
area overhead associated with the redaction method in general.
This places a burden on the designer to properly select the best
module(s) to achieve their security level with a reasonable
overhead. Depending upon the size of the original design, the
impact can be relatively characterised as practically possible
or not feasible at the allocated budget.

To better understand the area overhead, we take the PicoSoC
IP and randomly pick a module to redact such that the fabric
required will have different sizes. The result of this exploration
is shown in Table VI. Area increases in the range from 10% to
140% suggesting that redacting a function and then integrating

it with ASIC is not a simple addition of two IPs. It requires
different placement, floorplan, and routing of the design due to
the constraints added by the addition of eFPGA and its timing
requirement. Thus the area increases as a non-linear function
of fabric sizes (Fig. 6).

Moreover, during our experiments, we found that some
modules require larger fabrics due to the number of input and
outputs of that module. This forces us to increase the size
of the fabric and impacts the resource utilization in the fabric.
Table V points out this issue; consider the 12-bit Adder, where
due to limited number of I/Os the fabric needs to be expanded
up to 7×7, resulting in only 19% CLB usage. In other cases,
utilisation is better—redaction of AES [37] module, suggests
more efficient fabric utilisation (67% I/O and 89% CLBs)
which is quite acceptable from the designer perspective.

2) Power: Table VI shows the variation in the power
consumption as FPGA fabric varies, as reported by Cadence
Innovus. When we compare the power consumption of the
module to be redacted in ASIC implementation with the same
function mapped to an eFPGA fabric; there is an increase
in the expected power consumption because of the extra
switching gates and routing multiplexers to connect the fabric,
resulting in 30%-130% increases over the original design.
In terms of power consumption, there is an inevitably large

0
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5

3x3 4x4 5x5 6x6

Normalised Area Normalised Power Normalised Delay

Fig. 6. Comparison of area, delay and power overhead of integration of
different fabric size with the original design in PicoSoC. Area normalized to
0.11mm2, Power normalized to 30 mW and Delay normalized to 1.284 ns



penalty, even for small fabrics.
3) Delay: For better understanding the impact of fabric

sizes on delay of the overall IP, we perform a similar ex-
periment as for area Table VI. Delay has a more prominent
impact compared to the impact on area and power, i.e., 50% to
270% increase. This is apparent from the FPGA architecture,
where we need more routing channels to connect tiles to every
other tile in a fabric. This contributes to the additional delay.
Fig. 6 illustrates a comparison of normalised delay with for
the different fabric sizes.

VI. DISCUSSION AND FUTURE OUTLOOK

In this work, we explored the feasibility and other practical
issues of eFPGA-based redaction. We performed a security
analysis to investigate the characteristics of eFPGAs that
contribute towards its SAT attack resilience, and characterized
the impact of redacting different modules in a variety of IPs
at the register transfer level.

As discussed in Section V-A, we explored the redaction of a
variety of IPs for insights into the practicality of eFPGA-based
redaction. Generally, for bigger designs like GPS, AES, and
PicoSoC, the overhead introduced by integrating the eFPGA
is feasible. However, for smaller IPs, the approach is not
feasible; for instance, GCD’s total design area is smaller than
the smallest available fabric (shown in Table V, resulting
in a drastic increase in area. Thus, framing eFPGA-based
redaction as a general IP-level protection mechanism might
not be practical, despite the high-level SAT-attack resilience.

With eFPGA-based redaction, we are “overallocating” re-
sources for redaction (and increasing an attacker’s uncer-
tainty). In future, one may explore feasibility of eFPGA
redaction for multiple IPs at the register transfer level, i.e.,
where modules from different IPs share the same redaction
fabric. Clearly, there is a complex interplay between fabric size
and interface width, fabric utilization by the redacted module,
and impact on ASIC quality-of-results, which entails the need
for an automated approach to assist with redaction decisions.

In some respects, our case study emulates a “designer-
directed” or module-driven approach, in that the module to
be redacted is first selected to decide the fabric. During our
experiments, we observed that even though a module is not in
a critical path for a design, but after integrating it as an eFPGA
with rest of the design, it can dominate the timing. The full
design flow without any prior understanding of the impact can
be very time-consuming—for example, it requires us ∼8hr for
PicoSoC with 6×6 fabric—this suggests that we need a good
way to predict the downstream impact of redaction decisions.

Our security analysis (Section IV-D) suggests that the attack
time depends on the fabric and does not depend on the
component redacted, at least in the context of our threat
model. This suggests that a wider variety of heuristics could
be considered in deciding what to redact. For example, if a
designer is redacting with the intent to “corrupt” the output for
an unauthorized user without the correct bitstream, identifying
what to redact based on the “highest value” portion of the
design (as suggested by Chen et al. [5]) could instead focus on

the part of the design with the most impact on the outputs (e.g.,
identified perhaps through fault analysis). Exploring these
alternative approaches to redaction is our future work.

Finally, our study focused on a single eFPGA architecture
and we expect the findings to apply for other eFPGA im-
plementations. However, it is possible to vary the complexity
of the fabric in terms of blocks and routing, which affects
the area, timing, and power characteristics. Our preliminary
results in Section IV-E point to the fact that different parts of
the eFPGA bitstream potentially impact the attack difficulty
in different ways—in future, we will explore the possibility of
tailoring eFPGA architectures for redaction.

RESOURCES

Data for the study in this paper can be found at [39].
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