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Abstract—Non-cooperative game problems such as pursuit-
evasion require a solution approach that takes into consideration
the strategy of the opponents. To predict the strategy of an
opponent in a game, its full information is required and more
computation time would be spent. However, this requirement of
the opponent’s full information is not realistic. Also, the com-
putation time required by the game-theoretic algorithm (GTA)
could make the controller unimplementable for some systems.
Conversely, Model Predictive Control (MPC) could be use to
solve the same problem using only the states information on the
opponent by solving minimization or maximization cost functions.
In this paper, we compared the GTA and MPC algorithm
using two autonomous nonholonomic ground robots. Several
simulations were conducted in the absence and presence of
obstacles, using different initial conditions. The results obtained
showed that the MPC algorithm can achieve similar performance.

Index Terms—Game-theory, MPC, Obstacles avoidance, PEG,
Mobile Robotics.

I. INTRODUCTION

Pursuit-evasion game is the most popular example of non-
cooperative games which has several applications in the fields
of mobile robotics such as surveillance, navigation, conflict
and combat operations, and so on. In a two player pursuit-
evasion game, the pursuer is trying to catch the evader in
minimum time while the evader tries to avoid the pursuer
or maximize the time of capture. Nash equilibrium is a best
strategy pair for each player such that deviating from the
equilibrium point would not enhance the player’s chance of
winning. Therefore each player strives to find its Nash equilib-
rium. Formal solution of pursuit-evasion game was introduced
in [1] along with its descriptions and applications. However,
the solution concepts was argued in [2] that it resembles
the dynamic programming approach due to the inability of
the authors to make excessive use of classical variational
techniques. A solution based on variational techniques was
then proposed as a solution of differential games without
treating any specific example.

Solutions of pursuit-evasion games with more than one player
in a team have been reviewed in [3]. In [4] and [5] safe
reachable area minimization was presented to capture a single
evader using a group of pursuers. Voronoi partition was
employed to determine the safe reachable area of the evader

and then propose cooperative pursuit strategy. The drawback
of this method is the computational difficulties due to area
computation especially for nonholonomic systems. Geometric
solution was proposed in [6] using Apollonian circle for
holonomic robots only. The authors in [7] developed a hybrid
algorithm of dealing with pursuit-evasion problem depending
on presence of an obstacles in the region of each player
using the concept of potential field. In [8], several proportional
navigation guidance schemes were described, analysed and
applied on physical wheeled robots. Same approach was also
compared with safe reachable area minimization method in
[4].

The paper [9] employed Non-linear Model Predictive Tracking
Control (NMPTC) to solve a symmetric PEG between two
fixed wing air-crafts in 3-D space. The game was symmet-
ric in the sense that the game can be switched such that
pursuer can become an evader and vice-versa. Each aircraft
predicts both its optimal trajectory and that of the opponent
assuming to have full information of the game. In [10], the
authors approached PEG between two heterogeneous players,
the unmanned ground vehicle (UGV) and unmanned aerial
vehicle (UAV) using NMPC. The states information of the
players were not considered, rather it considered the states of
the game which translate as the error between the positions
of the two players. Both players are assumed to have full
information about the opponent dynamics. However, states
constraints cannot be imposed and obstacles avoidance cannot
be incorporated. In our earlier paper [11], we used NMPC
based game-theoretic algorithms to solve PEG in the presence
of obstacles. Game-theoretic algorithms were developed for
both players, thus knowledge of full information is assumed.
The game was set-up based on the agility and speed difference
of the robots. Results obtained showed that an agile robot
has more advantage than a faster robot. The main drawback
of game-theoretic algorithms is the computation time due to
double optimization which is very important for physical im-
plementation of algorithms. Also, the assumption of knowing
full information of the opponent to find the Nash equilibrium
of the game is not realistic. Therefore it is important to find out
if it is possible to achieve the same performance with states
based MPC alone. We employed the structure of game of kind
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Fig. 1. Unicycle robot

where the capture time is the payoff of the game and assumed
that the pursuer have higher speed and manoeuvrability for
the purpose of terminating the game. We compare a game-
theoretic algorithm with the MPC algorithm in simulation
under several initial conditions with and without obstacles and
compute the capture time in each game. For this purpose we
present the robot’s model and defined the problem statement in
II. The game-theoretic and the MPC algorithms are presented
in section III. Simulation results are shown in section IV.
Finally, we present some conclusions and future work based
on the obtained results in Section V.

II. PROBLEM STATEMENT

Consider a pursuit-evasion game between two non-
holonomic robots of unicycle type in Figure 1. The game
is to be conducted in the interior of a polytope, 2 € R?
in the presence and absence of obstacles. The aim of the
pursuer is to capture the evader in a shortest time possible
by moving towards the evader while the aim of the evader
is to maximize the capture time. Assuming that the pursuer
faster than the evader, capturing is guaranteed in finite time.
Both players should have the ability to avoid an obstacle in
the environment. The kinematic model of each wheeled mobile
robot as represented in [12] is given in (1).

I; = v;cosb;
¥ = v;sinb; (D
9L = Wi

where the subscript i stands for ‘" player such that i €

{p, e}, denotes pursuer and evader respectively. The states
(w4,y;) € Q and 6; are the position and orientation of i*"
player respectively, while (v;,w;) € U; represents the linear
and the angular speeds respectively, which acts as a control
inputs for the i player. U; denotes the set of feasible control
inputs for the i*” player and is assumed to be constrained.

To define the capture condition, let’s denote t. as the capture
time, r, 4 as the relative distance between the pursuer and the
evader, r. as capture radius (which is equal to the sum of the

radii of the two robots) and p(t) and e(t) as the state vectors of
the pursuer and the evader at time ¢ respectively. The capture
condition for the pursuer is given by

rr.d(tc) S Te, tc 2 0 (2)

where

rralt) = [p(t) = e(t)] 3)

Therefore, the pursuit problem can be defined as:

a) Problem 1: Given an initial configuration
p(0), e(0) € Q, with r.4(0) > 7., find a set of feasible
pursuer inputs u, €& U, such that the capture time is
minimised, assuming that the evader is playing its best
strategy.

Conversely, the evasion problem can be defined as:

b) Problem 2: Given an initial configuration
p(0), e(0) € Q, with 7. 4(0) > 7, find a set of feasible evader
inputs u. € U, such that the capture time is maximized,
assuming that the pursuer is playing its best strategy.

III. CONTROL ALGORITHMS
A. Model Predictive Control

Model Predictive Control is an online optimization tech-
nique which allow controller to compute new control variables
at each decision instant. The main motivation for employing
MPC technique was its ability to handle Nonlinear dynamics,
Multi-Inputs Multi-outputs (MIMO) systems, states and inputs
constraints as well as incorporating obstacles avoidance [11],
[13]. In MPC, a controller is obtained by minimizing a cost
function subject to constraints which comprises the dynamic
model of the system. The controller output is a sequence
of open loop controls predicted ahead over a finite horizon
window called prediction horizon, N. Only first part of the
controller is applied to close the loop at the particular decision
instant 7Ts and the rest of the solution is ignored. At every
decision instant, the prediction horizon is shifted one step
and the process is repeated to obtain the new optimal control
sequence.

Mathematically, the general form of the optimal control prob-
lem to solve is:

minJ = ||a(N)=r (NG + D (k) =r(R)|I+[|u(k)]|7
k=0

subject to the following constraints: @
z(k+1) = f(z(k),u(k)), k=0,1,...,N —1 (5a)
Tmin < T < Tmaz (5b)

Umin < U < Umag (50

The first part of the cost function is the terminal cost for
stability purposes, while the second part is the running cost. x,
r, and u stands for the states, reference and input parameters
respectively. N is the prediction horizon, k stands for the in-
stantaneous discrete time while @), @ and R are the weighing
matrices. The constraint in (5a) stands for the system dynamics



which can be linear of non-linear, while the constraints in (5b)
and (5¢) represents states and inputs bounds respectively. At
every decision instant, the systems is re-initialised using the
new states measurements.

z(0) = xo (6)
So that the output is a sequence of control inputs
u = [u(k),u(k+1),..u(N - 1) (7)

The first part v = u(k) is applied to the system, while the
others are discarded.

The controller parameters N, @), @y and R can be tuned to
stabilize the system depending on the relative importance of
the states and on the computation time.

We can use this algorithm in our PEG in which each player
only required states information of its rival to compute its
strategy. The opponent’s states is used as a reference (k). The
nonlinear models in (1) is employed and used as the model of
both systems. Thus, our control algorithm is Nonlinear Model
Predictive Control (NMPC).

1) Pursuer’s MPC Algorithm: The solution of problem 1
is the pursuer’s controller which is a single NMPC block
that accept states information of both players as an input and
then give out the optimal strategy as an output by solving the
following cost function:

N-—-1
min J = || X, (N) =Xl o+ S 113, ()= Xel B+ 10, ()

k=0
(®)
subject to:

Xp(k+1) = f,(X,(k), Up(k)), k=0,1,.N—1

\/(Ilg+1 - Iobs)2 + (y§+1 - yobs)2 > (Robs + Rrob)
X, . <X,(k+1) <X

Pmin —

U, <Uy(k+1) <7,

Pmin —

max

max

9

2) Evader’s MPC Algorithm: The solution of problem 2 is

the evader’s controller which is also a single MPC block that

accepts the states information of both players and give out the
optimal strategy by solving the following the cost function:

N—1
max J = || Xe(N) =Xl + Y IXe(h) =X, |+ 10 (k)1
¢ k=0

(10)
subject to:

Xe(k+1) = fe(Xe(k),Ue(k)), k=0,1,.N —1
\/(xlg+l - xobs)2 + (y§+1 - yobs)2 Z (Robs + Rrob)

Xe'm.z'n S Xe(k + 1) S Xemaa;
Uenlin S Ue(k + 1) S Uemam

(11
In order to include obstacles avoidance in the control algo-
rithm, an additional constraint in (12) was imposed.

\/(xz - xobs)2 + (yz - yobs)2 Z (Trob + robs)

12)

where z;, y; refer to the position of ith player, x,ps, Yobs Stand
for the coordinate position of the obstacle and r,5s denotes the
radius of the obstacle.

B. Game-theoretic Formulation

In game theory, systems are modeled as intelligent rational
decision makers where an agent considers the opponent’s move
before deciding own strategy. The agent predict the opponent’s
best response which is the worst case from the agent’s point
of view and then computes its optimal strategy according to
that. Game-theoretic solution is called Nash equilibrium which
no player has an incentive to deviate from. In our pursuit-
evasion problem, the sum of the two objective function can
be expressed as:

Jp(Up, Ue) + Je(Up, Ue) =0 YU, €Uy, Uc €U, (13)

where [J,,, J.l, [Up,Uc] and [U,, U,] are the cost function, the
control strategy and the admissible control strategies for the
pursuer and evader respectively. Given this special structure,
zero-sum games are usually expressed in terms of a single
objective function ¢ [14].

O(Up, Ue) = Jp(Up, Ue) = —Je(Up, Ue) (14)

The solution of our differential game is double optimization:
p* ey _ s D TTE\ _ : D 7TE
¢(U,U® ) = minmax ¢(U?, U®) = maxmin o(U”, U)
5)
The strategy pair [U*,UZ] is a Nash equilibrium if:

o(U:,U,) < $(UZ,UY) < ¢(U,,UY) (16)

1) Pursuer’s Game-theoretic Control: In this algorithm, the
control of each systems must firstly predict the strategy and
the next move of the opponent so as to reduce the capture time.
For this intelligent thinking, an additional MPC block is used
based on assumption that the player knows full information
about the opponent. Instead of sending the current position of
the opponent to the control block, the predicted position is
used. The computation times for each MPC block is summed
at each instant. The solution of problem 1 is therefore in two
steps:

Step 1: Predict evader’s next move by solving the following
cost function:

N-1
max J = 1 X (N)=Xp [+ D 11 Xe (k)= X5+ U ()| %
¢ k=0
(17)
subject to:
Xo(k+1) = fo(Xo(k),Us(k)), k=0,1,.N—1
\/(zlg+1 - xobs)2 + (y§+1 - yobs)2 > (Robs + Rrob)
Xepin < Xe(k+1) < Xe, ..
Ue?nin S Ue(k + 1) S Ue'mam
(18)

The output of this block is a vector of predicted states of the
evader denoted by X.



Step 2: Compute the pursuer’s strategy by the solving the
following cost function:

N—1
min J = 1Xp(N) =X |3+ D 11X (k) =X+ Un(R)|I
P k=0

19)
subject to:

Xp(k+1) = fp(X,(k), Up(k)), k=0,1,.N—1
\/(33];+1 - xobs)Q + (y§+1 - yobs)2 > (Robs + Rrob)

Kppin < Xplk+1) < Xp, .
Uppin S Up(k+1) <Up,,,

(20)
The output of this block is the pursuer’s Nash equilibrium
strategy, i.e Uy = [v;w]” which stands for the linear and
angular speeds respectively.

2) Evader’s Game-theoretic Control: The solution of prob-
lem 2 is direct opposite to the above. In this case the
evader first predict the optimal strategy and next move of the
pursuer by solving minimization problem and then use the
first block outputs to compute its optimal strategy by solving
maximization cost function with its dynamics. Similarly, the
solution is in two steps:

Step 1: Predict pursuer’s next move by solving the following
cost function:

N-1
min J = || X, (N)=Xe[ G+ Y 11X (k) = Xe| 5 +[Up (B)I%

k=0
(21

subject to:
X,(k+1) = f,(X,(k), Up(k)), k=0,1,.N—1
\/(x/ngl - mobs)Q + (y’ec+1 - yobs)2 2 (Robs + Rrob)
X <Xpk+1) <X

Pmin —
Uppin < Up(k+1) < U

max

max

(22)

The output of this block is a vector of predicted states of
the pursuer denoted by X 7.

Step 2: Then compute the evader’s strategy by the solving
the following cost function:

N-1
max J = 1Xe(N) =X 1[G+ Y 11 Xe(B) =X [[H+Ue (k)7

k=0
(23)

subject to:
Xe(k + 1) = fe(Xe(k)a Ue(k))v k=0, 1, N -1
\/(m/ngl - xob5)2 + (y§+1 - yobs)2 Z (Robs + Rrob)
X, <X (k+1)<X

U <Udk+1)<U.

€min —

€mawx

mazx

(24

The output of this block is the evader’s Nash equilibrium

strategy, i.e U = [v;w]? which stands for the linear and
angular speeds respectively.

IV. RESULTS

The game was set up and implemented in MAT-
LAB/Simulink environment. The controllers were coded using
CasADi software [15], an open source symbolic framework
for automatic differentiation and optimal control. An Interior
point optimizer (IPOPT) was interfaced provide a solution.
The game is played in the presence and absence of an
obstacle. In each scenario (either with or without obstacle),
four games are played such that in the first game, both players
use the game-theoretic algorithms for control. In the second
game, the pursuer uses game-theoretic algorithm while the
evader use MPC algorithm. In the third game, the pursuer
uses MPC algorithm while the evader uses game-theoretic
algorithm. Finally, in the fourth game both players employ
MPC algorithm. In each game, the relative distance between
the two players are computed at every time instant as in (3),
while the capture time is when (2) is satisfied.

The radius of each robot is R,.,, = 8cm, the constraints on
the pursuer’s control variable are |v,| = 1m/s, |w,| = 7/3
while the constraints on the evader’s control variables are
|ve| = 0.6m/s, |we| = /4. The pursuer has higher speed
and manoeuvrability for the purpose of terminating the game
in a finite time.

The weighting matrices were tuned and the best values ob-
tained are R = [1;0.5]7, Q = diag(1;1;0.001]) and Qn =
100000+ Q. The prediction horizon N = 4 while the sampling
time T's = 0.1. The states constraints is the dimension of
the polytope 10m by 10m, therefore the constraints on both
x — axis and y — azis from —5Hm to +5m and is applied to
both players.

A. Simulation in Obstacle-free environment

In Figure 2, PEG was played in the absence of obstacles
but in a constrained environment. The initial conditions of the
pursuer is (1,1,0) while the initial condition of the evader is
(3,3,7/2). These initial conditions are used for all the games
in this scenario. In all the games, the left figure is the trajectory
of the game while the figure at the right is the game pay-
off. The capture time in all the cases is obtained at the point
of intersection of the relative distance 7,4 between the two
players and the constant threshold distance (sum of the radii of
the two robots) r;;, = 0.16. Both players used game-theoretic
algorithms in 2(a), the capture time is 5.5 secs. Despite that
the pursuer deviates from Nash equilibrium by using MPC
algorithm in 2(b), the capture time is 5.5secs still. In Figure
2(c), the evader deviated from the Nash equilibrium and used
MPC algorithm but still the capture time is 5.5 secs. Also in
the figure 2(d), both payers deviated from the Nash equilibrium
by employing MPC algorithm and still the capture time is 5.5
secs. Several simulation were conducted using many initial
conditions with the pursuer behind the evader in each case.
In all the simulations conducted, the capture time used to be
approximately the same for all the four games.
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B. Simulation in an environment with obstacles

In order to improve the game condition to a more realistic
situation, an obstacle avoidance capability was Incorporated.
A spherical obstacle with 2m diameter is placed at the center
of the game field (0,0). The players are placed in a strategic
position so that the evader must encounter the obstacle before
the end of the game. The results is presented in Figure 3. The
initial conditions of the pursuer is (—4.5, —4.5,0) while the
initial condition of the evader is (—2, —2,7/4). These initial
conditions are used for all the games in this scenario. In all
the games, the left figure is the trajectory of the game while
the figure at the right is the game pay-off. The capture time
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Fig. 3. PEG with Game-theoretic algorithm and MPC in the presence of an
obstacles.

in all the cases is obtained at the point of intersection of the
relative distance r,. ;4 between the two players and the constant
threshold distance (sum of the radii of the two robots) r;, =
0.16. Both players used game-theoretic algorithms in 3(a),
the capture time is 6.3 secs. Despite that the pursuer deviate
from Nash equilibrium by using MPC algorithm in 3(b), the
capture time is 6.3secs still. In Figure 3(c), the evader deviated
from the Nash equilibrium and used MPC algorithm but still
the capture time is 6.3 secs. Also in the figure 3(d), both
payers deviated from the Nash equilibrium by employing MPC
algorithm and still the capture time is 6.3 secs.



V. CONCLUSION

This work studied pursuit-evasion games for nonholonomic

mobile robots using game-theoretic and MPC algorithms. The
game-theoretic algorithm required that each player must know
the full information on its opponent to compute its Nash
equilibrium which is difficult and consumes a lot of time. The
MPC algorithm on the other hand, required only the current
states information of the opponent. To show the performance
of the algorithms, the game was played in the presence and
absence of obstacles. In each scenario, four games are played
with the players alternating their strategies between the game-
theoretic and MPC algorithms. The game terminates when the
relative distance between the two players reaches a threshold
value, and the capture time is obtained at that point in each
game. Based on simulations, the results obtained shows that
MPC algorithm could achieve same performance.
As future work, we are presently working on implementing the
controllers on physical systems to validate the results obtained
in this work. For this purpose, the speed limits and some few
modifications are inevitable. Also, we would like to extend the
work to cooperative pursuit problem where a team of pursuers
cooperate to capture a single evader.
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