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Abstract—Oracles are of paramount importance for Deep
Neural Networks training. In this paper, an oracle developed for
landing reusable launch vehicles is created from a linearizing
feedback control law that can perform a prescribed landing
trajectory tracking. The oracle is then used to train a Deep
Neural Network that can be used as a guidance system for landing
maneuvers. Verification is performed by Monte-Carlo.

Index Terms—Neural networks, Oracles for training, Feedback
linearizing, Reusable Launch Vehicle

I. INTRODUCTION

A. Problem Background

The objective of this work is to find landing trajectories for
a reusable launch vehicle (RLV), and then train a Deep Neural
Network (DNN) to perform the task. Landing is understood to
be the last part of reentry, when the RLV is at a few kilometers
from the ground in an off-set position in relation to the landing
site, traveling with a know descending velocity and showing
a small inclination angle in relation to the site vertical. The
problem is solved, in a vertical landing plane, for a RLV with
lateral thrusters in addition to the gimbaled thrust engine.
Using a vertical landing model a control solution provides
smooth descending trajectories, including dynamical states and
actuators responses. Moreover, a DNN is trained with validated
solutions for different flight conditions and control parameters.
Verification is done by Monte-Carlo techniques. Guidance is
obtained through a feedback linearizing transformation and
the use of lead-lag feedback controllers, that can be tuned
to generate all the signals needed for the landing maneuver
planned. Constrains to the problem satisfaction are used for
ruling out from training undesired or unfeasible maneuvers.

The problem is solved using the concept of an oracle. An or-
acle is, in general, an entity capable of solving some problem,
which for example may be a decision problem or a function
problem. A test oracle (or just oracle) is a mechanism for
determining whether a test has passed or failed. In this context,
a landing oracle is a computational procedure able to generate
all the signals needed to guide a vehicle during landing. This
trajectory will be validated by the oracle and then used to
supervise the training of a digital twin, in this case, a suitably
trained DNN [1]. In a more general philosophic perspective an
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oracle is an entity capable of providing prophetic predictions
including precognition.

Using landing trajectories provided by a DNN during flight
avoids solving real time optimization problems and performing
complex computations of systems dynamic for prediction.
Landing runs with a reduced computational burden without
pre-storing trajectories. The DNN is trained offline with vali-
dated data generate from the proposed landing approach and
gather from a comprehensive set of state initials conditions,
the Landing Oracle. The main advantage relies on fact that
once trained the DNN provides online the trajectory values in
a fast way.

B. Literature Review

In the literature, there is a considerable number of relevant
papers and thesis dedicated to the RLVs landing problem,
about ANN training for guidance during landing, and V&V
(Validation and Verification) for supervised learning of ANNs
acting as controllers. For instance, in [9] a real-time successive
convexification algorithm for a generalized free-final-time 6-
degree-of-freedom powered descent guidance problem is pre-
sented. It represents a novel formulation in optimal control,
and enables a number of interesting applications, includ-
ing velocity-triggered angle of attack constraints and range-
triggered line of sight constraints. The algorithm converts the
resulting generalized powered descent guidance problem from
a non-convex free-final-time optimal control problem into a
sequence of tractable convex second-order cone programming
subproblems. With the aid of virtual control and trust region
modifications, these subproblems are solved in succession until
convergence is attained. In [7], the effectiveness of optimizing
a deep recurrent neural network with gated recurrent unit
modules to control a sophisticated and highly nonlinear flight
vehicle is demonstrated. An optimization procedure that lever-
ages ideas from Lyapunov funnels and robust nonlinear control
to create a robust and high performance controller that tracks
time-varying trajectories is described. The controller is trained
to negate uncertainties in the aerodynamic tables that leads
to significant error reduction compared to typical baseline
controllers for flight control systems.

A supervised learning framework to approximate a model
predictive controller (MPC) with reduced computational com-
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plexity and guarantees on stability and constraint satisfaction
is proposed in [5]. The framework can be used for a wide
class of nonlinear systems. Any standard supervised learning
technique (e.g. neural networks) can be employed to approx-
imate the MPC from samples. In order to obtain closed-loop
guarantees for the learned MPC, a robust MPC design is
combined with statistical learning bounds. The MPC design
ensures robustness to inaccurate inputs within given bounds,
and Hoeffding’s Inequality is used to validate that the learned
MPC satisfies these bounds with high confidence [5]. The
result is a closed-loop statistical guarantee on stability and
constraint satisfaction for the learned MPC that can be run
with a reduced computational load. In [11] a new method
to design the controller for Mars capsule atmospheric entry
using deep neural networks and flight-proven Apollo entry
data is presented. The controller is trained to modulate the
bank angle with data from the Apollo entry simulations.
The neural network controller reproduces the classical Apollo
results over a variation of entry state initial conditions. The
deep neural network is only trained with data from Apollo
reentry simulation in an Earth model and works in both
Earth and Mars environments. It achieves the desired landing
accuracy for a Mars capsule. This method works with both
linear and nonlinear integration and can generate the bank
angle commands in real-time without a pre-stored trajectory.

C. Paper Organisation and Contribution

The contribution of this work consists of a case of study on
the use of an oracle based on linearization based oracle, for
training deep neural networks, for the guidance, in the landing
phase of a RLV.

This paper is organized as follows, after the introduction,
in section 2, the RLV nonlinear model is presented and a
simplified version for small angles is obtained, the assumptions
made are also discussed. Feedback linearizing control is briefly
discussed in section 3, furthermore, the exact linear model
and controls for the RLV are derived. In section 4, DNN
training is explained and results are validated using Monte
Carlo. Conclusions are drawn in section 5.

II. RLV LANDING MODEL

In this section, after introducing a simplified nonlinear
model for landing, a suitable exact linearized model is obtained
to be used later to generate landing trajectories from a control
strategy.

Some simplifying assumptions must be made to write a low
complexity landing RLV dynamic model [3], [10]:

• the model is developed in a vertical plane and the vehicle
is trimmed;

• A simplified formulation of the aerodynamics forces is
considered, and the effects of the wind are not embedded
into the guidance problem;

• The center of pressure is considered as constant in the
body-fixed frame, and the center of mass is considered
constant during flight;

• The vehicle is equipped with a rocket engine that can
be gimballed symmetrically about two axes up to a
maximum gimbal angle, and side nitrogen gas thrusters
mounted in top of the vehicle;

• The engine can be throttled between minimum and max-
imum thrust values and, once the engine is ignited, it
cannot be shut off until the terminal condition is reached;

• The side gas thursthers can be used during the final
landing maneuver for some time;

• The launcher is modelled as a rigid-body;
• The moment of the inertia of the rocket is considered to

be constant during the flight.
• Mechanical higher order terms like flexible modes and

sloshing are neglected for the guidance model;
• The time of flight is fixed;
• The planetary rotation effects are neglected due to the

relatively short duration of the studied problem.

It is worth mentioning that, for instance, Falcon 9 [8] is
equipped with a total of 8 nitrogen cold gas thrusters that
are mounted towards the top of the first stage. There is one
pod on each side of the rocket, each containing 4 thrusters.
Like the gimbaled main engines, the cold gas thrusters are
used to control the orientation of the rocket. In falcon 9, these
thursters are particularly useful for the flip maneuvers after
stage separation because of the large lever arm between the
thrusters and the rocket center of mass. The cold gas thrusters
are also used to control the rocket at times during the flight,
when the gimbaled main engines are shut off.

Considering all the assumptions and Fig. 1, the vertical
plane XZ landing model is given by

mv̇x = FT sin (θ + ϕ) + Fs cos θ +D(z, V ) sin θ

mv̇z = FT cos (θ + ϕ) + Fs sin θ −mg +D(z, V ) cos θ

Jω̇ = −FT sinϕ(l1 + ln cosϕ) + l2Fs

JT ϕ̈ = τ, (1)

where θ is a pitch inclination angle, with angular rate ω, the
vehicle is aligned with the vertical Z axis, ϕ is the gimbal
angle, if ϕ > 0 the vehicle should tilt to the left, about
the center of gravity. Velocities vx and vz are the velocities
components in X and Z directions, and x and z are the
position in Z and X . The thrust force is FT and Fs = Fl−Fr
is the lateral thrust. Drag is given by D(z, V ). Solving for
translational and rotational forces in X , Z directions, and as
well for (rotational) pitch torque with respect to the rocket’s
COG yields these equations. Additionally,

ṁ = − FT

Isg0
− αsFs −AnPamb (2)

is the mass depletion, where Is (specific impulse in vacuum),
g0 (Earth’s gravity), An (noozle exit area) and Pamb (atmo-
spheric pressure) are parameters. Details can be found in [9].
The atmospheric drag force component is obtained using:

D(z, V ) =
1

2
CDρ(z, Tamb)V

2SD, (3)
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being V 2 = v2x + v2z the velocity magnitude in XZ, and
ρ(z, Tamb) the atmospheric density. A simplified model can
be obtained for small angle deviations considering cosα ≈ 1
and sinα ≈ α, for α << 1

mv̇x = FT (θ + ϕ) + Fs +D(z, V )θ

mv̇z = FT (1− θϕ) + Fsθ −mg +D(z, V )

Jyω̇ = −FTϕ(l1 + ln) + l2Fs

JT ϕ̈ = τ. (4)

This simplified model will be useful for designing a nonlinear
landing control law in the next section.

Fig. 1. RLV schematics. The center of gravity and center of pressure are
marked with red dots.

III. CONTROL STRATEGY FOR THE ORACLE

A control strategy devised for the RLV model is twofold.
First, an exact linearizing transformation is derived. Second,
for the linear and decoupled dynamics, three single-input
single-output controllers are tuned to produce smooth closed-
loop trajectories. More information about feedback linearizing
control can be found in [6].

The vehicle landing model is nonlinear, and it is
affine by considering the actuators input vector v =
[ FT FTϕ Fs ]T , and so

ẋ = f(x) + g(x)v, (5)

with x = [ θ ω z vz x vx ]T . Using a feedback
linearizing approach for writing the control law with input
uθ, yields for pitch

ω̇ = uθ

ϕ =
l2Fs − Jyuθ

Fl(l1 + ln)
. (6)

Using the same procedure for altitude and distance it yields

v̇z = uz

FT =
(uz + g)m+ Fs −D

1− θϕ
, (7)

and

v̇x = ux

Fs = ux − FT (θ + ϕ)−D. (8)

Defining the transformation W (θ)E = B(u,x), where 0 l1 + ln −l2
1 −θ −1
θ 1 1

 FT

FTϕ
Fs

 =

 −Jyuθ
m(uz + g)−D
mux −Dθ

 ,

(9)
with determinant ∆ = det(W (θ)),

∆ = −(θ + 1)l1 − (θ2 + 1)l2 − (θ + 1)ln ̸= 0, ∀θ. (10)

Further, the transformation is well-posed except when FT

approaches zero, in that case, the controllability from the
gimbal angle will be lost. The assumption needed is that the
vehicle will not touch the ground and by so FT ≥ FTmin > 0.
If the simplified model with the transformation are considered,
the model is exact linearized with relative degree of one [6],
and

ẋ = Afx+Bfu, (11)

where x = [ θ ω z vz x vx ]T ,
u = [ uθ uz ux ]T are respectively the states and control
inputs. Furthermore,

Af =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 Bf =


0
1
0
1
0
1


.

(12)

Note that mass depletion nonlinear state is not observable
in (11) and remains in the dynamics [6].

The feedback controllers can be chosen as lead-lag, filters
given by

ξ̇ = − 1

τp
ξ +

kp
τp

e

c =

(
1− τz

τp

)
ξ + kp

τz
τp

e, (13)

where e = r − y is the error between the reference and
the output, c is the control action, and τp, τz > 0 are time
constants. The outputs are, as already mentioned, pitch θ,
descending velocity vz , and distance x.
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The reference value for the pitch is θr = 0, for the distance
xr = x(0)(1− t

Tf
), and for velocity vzr(t) = −λdz(0)e

−λdt,

where λd =
ln z(0)−ln z(Tf )

Tf
, and Tf the landing time duration

(final time).
The landing maneuver can now be calculated after tuning

the three controllers, given the initial conditions and refer-
ences, for a fixed final time. All the trajectories are computed
using the nonlinear model eq. (1).

One example, after reentry, consists of the last stage of
the descent that starts at 2 kilometers high and finishes at
the landing location, hovering at approximately 1 meter from
the ground. Fig. 2 depicts the trajectory found for a 100
meters offset distance, and a 5 m/s descending velocity. Table I
contains the numerical values for the RLV parameters.
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Fig. 2. Landing trajectory at XZ vertical plane, obtained using exact feedback
linearization.

TABLE I
RLV PARAMETERS.

RLV parameters
Value Units

m 10.0× 103 kg
Jy 8.4× 104 kgm2

g 9.8 ms−1

l1 3.5 m
l2 5.0 m
ln 0.5 m
D 1.5 m
SD 1.8 m2

CD 0.075 adm.

As mentioned before, the landing trajectories must be tested
and validated against a landing envelope, that includes safety,
operational and physical constraints. Passing the validation
they can be included in the oracle for training. When a vehicle
is pushed, for instance by diving it at high speeds, it is said to
be flown ”outside the envelope”, something considered rather
dangerous.

The oracle can produce many different trajectories from
a smooth stable nominal one, just by considering initial

conditions dispersion in a certain interval, different tuning
parameters, and different final times. The result is collected
or discharged by the landing envelope test. In this case,
only typical constraints for the actuators along with the pitch
constraint were included in the landing envelope, given by

0 N ≤ FT ≤ 2× 105 N

−1000 N ≤ Fs ≤ 1000 N

−15◦ ≤ ϕ ≤ 15◦

−10◦ ≤ θ ≤ 10◦. (14)

IV. DNN TRAINING

In this section a DNN is trained using the landing oracle
as supervisor. Once trained and a V&V performed, the neural
network can act as a guidance block, or high-level control, as
depicted in Fig. 3.

Fig. 3. Guidance block diagrams. The neural network acts as a high-level
control able to send command signals to low-level control.

A feedforward neural network (FNN) [4] is a composition
of many functions, more precisely h+1, where h is the number
of hidden layers or functions, known as depth, given by

y = fy ◦ fh ◦ . . . ◦ f1(u). (15)

In each hidden layer (i = 1, . . . , h) following operation is
performed

zi = fi(vi) = fi(wizi−1 + bi) (16)

where zi collects in a vector all the outputs of layer i, and wi

is a matrix of weights. When i = 1, z0 ≡ u, the first layer is
the input layer, and fh is the element-wise activation function
for the hidden layers

fi(z) =
[
σ(vi1) σ(vi2) . . .

]
, (17)

where σ(vij) is the sigmoidal logistic function and vij the
activation signal for neuron j in layer i. For the output layer

y ≡ zh+1 = fy(whzh + bh+1), (18)

again, where, fy is the activation function for the output layer,
usually linear.

The FNN goal is to approximate some function f∗, that
maps u 7→ y, y = f∗(u), according to [2]. A FNN defines
a mapping yNN = fNN (u;W ), using the values of the
weights in W , that results in the ’best’ function approximation
(yNN (u) ≈ y(u)). The weights, W , are obtained using
the backpropagation algorithm that solves numerically the
following optimal problem [4],

min
W

J(y0, u0,W0) =
1

2
(y − y0)

T (y − y0)

s.t.

y(u0;W ) = fy ◦ fh ◦ . . . ◦ f1(u0) (19)
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where y0, u0 are training vectors presented to the algorithm
in a batch. These batches of data are typically arranged in
sequences that contains the corresponding maps from the
inputs to the outputs. In each cycle of training, an epoch, all
data is used. Training is done in several hundreds of epochs,
allowing the weights to converge.

In this work a deep feedforward neural network, with two
hidden layers of 10 units, 8 inputs (states x), and 3 outputs
(commands u), was trained using the oracle data for landing
described in the previous section as a supervisor. The oracle
produced 200 different trajectories from a nominal one, just
by randomizing uniformly the initial conditions up to ±10%
of their nominal values, collect in pairs (xO,uO).

Fig. 4 to Fig. 6 show the output results of the DNN for
a single trajectory provided from the oracle developed and
described in the previous section. The remaining figures (Fig. 7
to Fig. 10) depict the Monte-Carlo test for the trained DNN.

Looking into the results, it can be concluded that DNN train-
ing is possible using the procedure proposed in the previous
sections. In this case training data is obtained by testing so-
lutions that exploit an exact feedback variable transformation
that facilitates the computational process. The DNN provides
an oracle for landing in face of the flight specifications.
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V. CONCLUSIONS

In this work landing trajectories for a reusable launch
vehicle (RLV) were computed, and then an artificial neural
network was trained to perform the task. Landing is understood
to be the last part of reentry, when the RLV is at a few
kilometers from the ground in an off-set position in relation
to the landing site, traveling with a know descending velocity
and showing a small inclination angle in relation to the
site vertical. The problem is solved for a RLV with lateral
thrusters in addition to the gimbaled thrust engine. Moreover,
the ANN was trained with validated solutions for different
flight conditions and control parameters, the so-called oracle
for landing. Validation and verification is done by Monte-Carlo
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Fig. 8. Monte-Carlo for the Engine Thruster [N].
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Fig. 10. Monte-Carlo for the Lateral Thruster [N].

techniques. Finally two important comments can be done. This
approach shows that the lateral thrusters can be very useful
to control the vehicle up, at least during the last part of the
landing. The creation of an oracle for RLV landing is not
limited to a unique way of finding valid trajectories, any kind
of solution can be included, the training do not depend in how
these trajectories were obtained.
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