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Abstract—As training artificial intelligence (AI) models is a
lengthy and hence costly process, leakage of such a model’s
internal parameters is highly undesirable. In the case of AI ac-
celerators, side-channel information leakage opens up the threat
scenario of extracting the internal secrets of pre-trained models.
Therefore, sufficiently elaborate methods for design verification
as well as fault and security evaluation at the electronic system
level are in demand.

In this paper, we propose estimating information leakage from
the early design steps of AI accelerators to aid in a more robust
architectural design. We first introduce the threat scenario before
diving into SystemC as a standard method for early design
evaluation and how this can be applied to threat modeling. We
present two successful side-channel attack methods executed via
SystemC-based power modeling: correlation power analysis and
template attack, both leading to total information leakage. The
presented models are verified against an industry-standard netlist-
level power estimation to prove general feasibility and determine
accuracy. Consequently, we explore the impact of additive noise in
our simulation to establish indicators for early threat evaluation.
The presented approach is again validated via a model-vs-netlist
comparison, showing high accuracy of the achieved results. This
work hence is a solid step towards fast attack deployment and,
subsequently, the design of attack-resilient AI accelerators.

Index Terms—Artificial Intelligence, Accelerators, Side-
channel Attacks, SystemC, Power Modeling.

I. INTRODUCTION

The use of Artificial Intelligence (AI) is rapidly growing
across all emerging technologies. One of the most important
aspects is accelerating the AI inference process and building
according hardware accelerators. An accelerator design’s fault-
tolerance mechanisms and other safety features are usually
evaluated in the pre-silicon phase, whereas evaluation of the
accelerator’s physical security is performed in the post-silicon
phase. Side channel attacks, especially power attacks, are
considered a serious security threat leading to a vulnerable
AI hardware component. Recently, studies in the domain of
AI accelerator design show that side-channel leakages of AI
accelerators can be exploited to reveal industrial secrets such
as the AI model architecture and its parameters [1]–[3]. For
instance, power attacks are deployed successfully to reverse
engineer the AI model [1], [4]. Power attacks lead to copying
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the AI model and then distributing it as counterfeit intellectual
property (IP). Therefore, a huge need exists for evaluating
an AI accelerator’s side-channel attack resistance in the early
design steps (EDS) of integrated circuit (IC) design, such as
security evaluation at register-transfer level (RTL), using gate-
level netlists, or even earlier. Evaluation and investigation of
security issues in EDS provide insight into the robustness of
the later fabricated IC. Thus, design decisions made at high
abstraction levels have significant impact on the whole design
process.

Tools and platforms considering security evaluation in EDS
were developed mainly to detect hardware Trojan circuitry
[6] or to check the security rule in ICs [7]. Recent work
confirms the importance of security evaluation in the EDS by
demonstrating static and dynamic information flow analysis
using Virtual Prototypes (VPs) [8], [9]. Simulators targeting
side-channel evaluation have been studied in [10]. However,
the reviewed tools consider only the software implementation
of cryptographic algorithms executed on general purpose hard-
ware (i.e. microcontrollers). The evaluation of side-channel
attacks (SCA) and its impact on ICs are still an open issue
in EDS: To the best of our knowledge, no simulator exists
targeting SCA evaluation of dedicated AI hardware accelera-
tors. The missing SCA evaluation in EDS of IC is required to
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ensure the IC’s dependability, together with existing reliability
and safety tests [11].

Our work demonstrates previously shown power SCA by
utilizing a dedicated power estimation model with the goal
to evaluate the worst-case resilience of an AI accelerator’s
design at electronic system level (ESL). This approach was
positively verified by a comparison of the SystemC model’s
behavior with a technology-synthesized gate-level netlist.

A. Why a SystemC Model?

SystemC is a solid candidate [12] for performing security
evaluation in EDS, as it is one of the industry standards for
hardware/software modelling at high abstraction levels. Partic-
ularly, SystemC is C++-based and was originally conceived
for hardware/software co-design, simulation, and functional
verification [13]. Over time, new design aspects such as fault
evaluation [14] and power modeling [15], [16] were also
addressed using SystemC. The security assessment of IC
design has recently received more attention [7], especially by
SystemC in EDS [12]. With proper power estimation models,
SystemC can be utilized to simulate power attacks against ICs
even at the ESL.

In order to clarify how to deploy SystemC in EDS, Fig. 1
shows the top-down hardware design process of AI accelera-
tors (a modified version of the Double roof model described
in [5], [17]). Starting from ESL, the requirements towards AI
accelerators are specified and synthesized into a system model
(most likely represented by a VP [18]). The requirements for
lower abstraction levels are derived based on this specification
and implementation. At every abstraction level, the specifica-
tion is transformed into an implementation with a synthesis
step. This work presents a SystemC model of an AI accelerator
at ESL.

B. Paper Contribution

In this paper, we show how to evaluate power attacks against
AI accelerators in EDS. For this, we build a SystemC model of
a systolic-array-based AI accelerator hardware at ESL. Using
SystemC, the activation count of components can be annotated
with a power-consumption model to generate power traces
covering the hardware of AI accelerators. We demonstrate a
correlation power analysis (CPA) and template attacks (TA)
based on our SystemC model in ideal conditions and explore
the limits of these attacks in a noisy environment. Finally,
we show the comparison of our model-based traces against
power traces from a state of the art netlist level simulation to
demonstrate the feasibility of the proposed model.

II. RELATED WORK

The target of this work is to evaluate the benefits of using
SystemC models to analyze side-channel information leakage
at ESL in EDS. Therefore, power side-channel attacks against
AI accelerators are briefly discussed in this section, as well as
modeling approaches utilizing SystemC in different areas.

A. Power Attacks vs. AI Hardware Accelerator

Several power attack scenarios against AI hardware accel-
erators have been proposed [4], [19]. Power attacks exploit
power consumption leakage from an accelerator executing a
pre-trained AI model (simply AI model) to reveal its internal
secrets. In particular, an attacker uses an evaluation board
attached to a targeted device [20], i.e., the AI Hardware
accelerator, and captures power consumption traces of some
data input. The attacker applies statistical analysis, e.g., Simple
Power Analysis (SPA), Differential Power Analysis (DPA), or
Correlation Power Analysis (CPA), on the data input and the
power traces to recover the internal secrets of the AI model.
For instance, DPA was deployed to extract the AI’s secret
parameters in [19]. In [4], CPA was applied against the systolic-
array-based hardware accelerator of Deep Neural Networks
(DNNs).

B. Power Consumption Modeling Challenges

The power consumption of any CMOS computing platform
includes two types: static (leakage) power consumption Pstatic

and dynamic (switching) power consumption Pdynamic [21].
The total power for a computing platform can be modeled by:

Ptotal = Pdynamic + Pstatic (1)

Pstatic is the product of leakage current and the supply
voltage [22], and Pdynamic indicates and quantifies transis-
tor switching. Thus, Pdynamic provides a distinctive current
profile. Therefore, power attacks mainly rely on Pdynamic,
which is considered the Achilles heel of any CMOS computing
platforms [23].

SystemC can be utilized for the activation count of hardware
components at different abstraction levels. It plays a crucial
role in simulating power attacks in EDS. Using SystemC to
estimate a computing platform’s power consumption poses
several challenges: SystemC was used in [24] to estimate
the power consumption of different processor configurations
based on pre-computed power values of its components, such
as memories, register files, function units, etc. The proposed
power model exhibited a 15% prediction error. In [15], a black-
box power model was introduced for digital signal processors
(DSPs) in SystemC. The proposed power model does not
require detailed insight into the individual components of
the probed computing platform. The black-box power model
exhibited a prediction error of less than 4%. This prediction
error is caused by the lack of information about power
dissipation Pstatic of the targeted manufacturing technology.
Therefore, the power consumption of a computing platform
is rather difficult to model in SystemC. However, our work
introduces a SystemC model that considers only dynamic
power consumption Pdynamic to enable simulating power
attacks.

C. SystemC for Security Evaluation

Utilizing a SystemC VP to evaluate security-critical systems
on chips has already been demonstrated in [16]. Beyond that,
SystemC was proven successful for power-attack evaluation
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Fig. 2. Block diagram of TPU including the threat model.

of cryptographic applications in [12], such as RSA-based
public-key cryptosystems and elliptic-curve cryptography. This
approach in [12] solely relies on a dedicated dynamic power
consumption model, the so-called input-dependent model. This
model covers the arithmetic operations by assuming that there
is no difference between simulated hardware or C++ operators.
The input-dependent model covers bit-shifts and comparisons
as well, but lacks power modeling of registers, multiplexers,
and other hardware components. In order to extend SystemC
power attacks analysis beyond cryptographic applications, this
paper introduces power estimation models to cover systolic
arrays. By utilizing these power models, CPA and power-
template attacks (TA) against AI accelerators are simulated.

In the following sections, we first build a system model of
a systolic-array-based AI accelerator and extend and modify
power-consumption models proposed in [12], [16] to also
cover additional components present in an AI hardware acceler-
ator. Then, we perform the proposed attacks. Finally, we verify
our power estimation model and the validity of the attacked
performed hereon against a state-of-the-art netlist-level power
estimation tool.

III. AI ACCELERATOR ESL MODEL

To perform a security evaluation in EDS, an ESL model
of an AI accelerator is required. For our approach, we use
SystemC as the modelling language and start with a loosely-
timed SystemC model of a systolic array for simulating the be-
haviour. By annotating this model with input-dependent power
estimation capabilities, all components for SCA simulation can
be provided.

A. Systolic Array for Acceleration

The inference process of AI applications requires frequent
data access. Such data-read operations from memory are very
costly and time-consuming and therefore should be avoided
on edge accelerators in order to minimize power consumption
and maximize performance. This can be addressed by using
so-called systolic array architectures, featuring a number of
benefits [25]. Instead of accessing memory after every arith-
metic operation, the systolic design approach utilizes multiple
processing elements (PEs) to avoid frequent memory access.
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Each PE performs a multiply-accumulate operation (MAC) as
shown in Fig. 2. The partial result of an PE is directly passed
to another PE without memory access. The realization of an
array of PEs in hardware can accelerate matrix multiplication,
which is essential for accelerating the desired AI algorithm.

The matrix multiplication of A = (aij)3×3 and B =
(bij)3×3 results in a matrix C = (cij)3×3. A systolic array
accelerates such a matrix multiplication, where, a resulting
element (c11) is, for instance, calculated sequentially over 3
clock-cycles by performing 3 MACs in 3 different PEs as
follows [4]:

Reg11 = a11 × b11 + 0 (t = 1)
Reg21 = a12 × b21 +Reg11

= a12 × b21 + a11 × b11 (t = 2)
Reg31 = a13 × b31 +Reg21

= a13 × b31 + a12 × b21 + a11 × b11 (t = 3)
(2)

Where Regij is a partial sum register of PEij as shown in
Fig. 2. In our model, the weights and inputs are represented
as 8 bit integers, and the partial-sum results as 18 bit integers.

B. SystemC Model of the Accelerator

For our approach, we focus on a loosely-timed SystemC
model. Here, the behaviour of the AI accelerator is represented
by a SystemC module to perform accelerated calculations and
mimic the timing and power characteristics of a real hardware
accelerator. Fig. 2 shows the architecture of the modelled
system. The SystemC model easily realizes the individual
multiply-accumulate and register operations required during
inference, by using dedicated data types. The matrix multi-
plication is performed over several cycles depending on the
dimension of the matrix by utilizing all PEs in parallel. The
result is therefore available in several parts across multiple
cycles as described in Eq. 2. Furthermore, the proposed
adversary is implemented as another SystemC module which
is able to send input and receive output from the AI accelerator.
Lastly, all activity during inference is tracked by a dedicated
resource handler shown in Fig. 3, which implements a power-
estimation model described in the following section.



IV. DYNAMIC POWER CONSUMPTION MODEL

As the dynamic power consumption (PDynamic) is the
required power consumption during logical transitions [22],
the dynamic power-estimation model of a systolic array can
be built based on the operations performed by every PE. Here,
the SystemC model should implement a dedicated resource
handler to generate power traces while the calculation is
performed [12]. From ESL perspective, every single operation
performed in hardware consumes a certain amount of power
measured by the so-called power expense, which depends on
the hardware architecture, the type of operations, and the
inputs of the operation. In the following, we utilize the input-
dependent power model proposed in [12] and we extend this
model to include hardware components such as registers and
MAC components.

A. Power Model of a Single Processing Element

The extended version of the input-dependent model relies
on the input of the hardware components and its computa-
tional/storage efforts CE. If the inputs of a hardware com-
ponent are zero, we consider its contribution to the dynamic
power consumption as negligible and its computational/storage
effort CE is zero. Otherwise, its contribution is not negligible,
and its computational/storage effort CE relies on the number
of ones in the input. The CE reflects the switching activity of
the component and can be described by utilizing a bit-flipping
power model. Several cases of single-bit flipping have to be
considered, and a power expense for every case is assigned
as follows: The transition 0 → 0 and 1 → 1 require zero
power expense, 0 → 1 requires one power expense, and
1 → 0 requires 0 power expense as flipping one bit from
0 to 1 consumes much more power than from 1 to 0 [12].
The proposed dynamic power consumption model of a single
PE estimates the power expense of the MAC component by
breaking it down into arithmetic operations. Additionally, the
expense of accessing the register is considered.

MAC Component Power Model: The computational ex-
penses of the MAC component can be broken down into the
switching activity of binary arithmetic operations performed
during the calculation, namely multiplication and addition.
Counting the flipping of single bits during the calculation
provides an estimation of the power expense of the performed
MAC operation. Binary arithmetic multiplication can be con-
sidered as a series of adders; therefore, the power model of
the multiplication is based on the power expenses of a binary
adder shown in Table I.

Register Power Model: PMReg denotes the power expenses
of the register access power model, which can be modeled
based on the bit-switching activity inside the register every
time a new value is written. Therefore, the old and new states
of the register (Regold and Regnew) are compared, and the
number of switches is counted by using the Hamming Distance
(HD):

PMReg = HD(Regold ⊕Regnew). (3)

TABLE I
POWER EXPENSES OF BINARY ADDER

Input Bits Output Bits state
CE PMBA(a, b, c) (c, s) expense

(0,0,0) (0,0) 0 0 0
(1,0,0) (0,1) 0 1 1
(0,1,0) (0,1) 0 1 1
(1,1,0) (1,0) 1 2 3
(0,0,1) (0,1) 1 0 1
(1,0,1) (1,0) 0 1 1
(0,1,1) (1,0) 0 1 1
(1,1,1) (1,1) 0 2 2

The power consumption model of one PE: The total power
consumption of a PE (PMPE) is the sum of the PMMAC and
the PMReg , i.e.,

PMPE = PMMAC + PMReg. (4)

B. Resource Handler

In the SystemC implementation, the power estimation is
performed by the resource handler. The proposed resource
handler relies on the total dynamic power consumption of
all PEs, where the PEs consume power depending on the
performed MAC operation and the register write operation.
These operations are modeled separately and combined to
produce a power trace of the whole calculation. We modify
and add our PE power model and utilize the resource handler
proposed in [12] to fit the AI accelerator model. Fig. 3
illustrates how the resource handler generates power traces
of the AI accelerator during inference.

In the following sections, we will show how the power
traces generated by the resource handler can be used by an
adversary to perform power SCA.

V. THREAT MODEL

The proposed threat model is equivalent to a practical one
in which the adversary has physical access to an AI edge
device [4]. Regarding the system model, we assume that the
adversary has the following capabilities during the attack:

• The adversary has knowledge about the targeted platform
or device.

• The adversary has knowledge about the internal structure
of the AI accelerator.

• The adversary cannot directly access to or read the secret
information (weights).

• The adversary can input any data into the AI accelerator.
• The adversary can observe the device’s inference results

and obtain power traces of the performed operations.
This scenario can be classified as a grey-box approach [26],

where the target of the adversary is to reveal the PEs’ parame-
ters. These parameters are highly valuable, since they represent
the weights of a trained NN.

Fig. 2 shows an overview of the threat model. The weight
parameters are pre-loaded to the systolic array for inference.
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The information leak is caused by the power trace of the in-
ference calculations, thus the adversary can attack the weights
via SCA.

VI. SCA SIMULATION USING SYSTEMC

The described model of an AI accelerator extended with
power estimation capabilities enables the modelling of SCA.
Having defined the threat model, we can simulate side-channel
attacks targeting the secret parameters of a trained neural
network at the ESL. In order to simulate realistic scenarios,
the CPA approach is considered as this approach has been
proven successful on real hardware [4]. In addition, we revisit
Template attacks, which are considered the most objective
method to assess the leakage of a device under test [27], [28].

A. Adversary Simulation in SystemC

The power estimation model of every PE is a combination
of the power estimation models of the single operations
performed by the PE. Since static power consumption of the
device is of no interest for the above mentioned SCAs, the
focus lies on dynamic power consumption. The adversary has
access to the modeled power trace and thus can perform the
attacks as if the hardware was real.

B. Correlation Power Analysis

CPA-based attacks have been proven successful against hard-
ware cryptographic functions [29]. Compared to less complex
power analysis attacks, like SPA or DPA, CPA shows a more
robust behavior. To perform a CPA, a leakage model needs
to be defined. The most common approach is to calculate
the correlation coefficient between power trace and Hamming
Distance (HD) or Hamming Weight (HW) estimation of a
certain calculation performed by the observed system.

Every PEij of the systolic performs a multiply-accumulate
operation and stores the result of the operation into a register.
An adversary assumes a correlation between the power traces
and the HD model of PEs registers. To reveal a secret
parameter, the adversary calculates the HD estimation (Ĥn,bk )
for all possible transitions of the Regij register by

Ĥn,bk = HD
(
Regtij , Regt+1

ij

)
. (5)

The correlation coefficient (ρ (bk)) of all estimations and the
recorded power traces is calculated as follows:

ρ (bk) =

∑N−1
n=0

(
Pn − P̄

) (
Ĥn,bk − H̄bk

)
√∑N−1

n=0

(
Pn − P̄

)2√
ΣN−1

n=0

(
Ĥn,bk − H̄n,bk

)2
,

(6)
where Pn and P̄ are the power trace and its average value
and Ĥn,bk and H̄bk are the HD estimation and its average
value. The true value of the parameter produces the highest
correlation; thus the adversary can reveal it by comparing all
of the correlation coefficients as follows:

b̂ = argmax
bk

(|ρ (bk)|) . (7)

Since the HD model is not unique for all possible transitions,
multiple candidates can provide a similar correlation coeffi-
cient (values with bit-shift difference from the true value, e.g.
23, 46, 92, etc.). This causes certain constraints when revealing
the parameters since the attack produces multiple candidates
as shown in Fig. 4. Nevertheless, the attack can reduce the
search space drastically.

C. Template Attack

Template attacks are a very powerful type of side-channel
analysis [30]. As a subset of profiling attacks, template attacks
are composed of two phases: profiling and attack phase. In the
profiling phase, the adversary profiles data-dependent power
consumption and noise behavior of a target device handling
sensitive data. Then, the adversary performs the attack in the
attacking phase to reveal the sensitive data based on the prior
knowledge of the device profile.

In the profiling phase of a template attack, the adversary
has full control over a target device and can, e.g., arbitrarily
set the weights. This scenario can be easily simulated with our
implemented SystemC model.

Having created the templates for individual PEs, the adver-
sary can launch the attack by iterating over individual PEs. In
this attack a small number (10-20) of traces with unknown,
but fixed weights leads to a successful recovery.

As the parameters for building the template differ from PE
to PE, the adversary cannot re-use the same template to reveal
all of the parameters. Nevertheless, the additional effort to
reveal all of the parameters is only linked to building the
template for each of the PEs. The acquired traces can be
re-used, thus the adversary doesn’t require additional power
traces (neither for the profiling, nor for the attack).

VII. ATTACK RESULTS AND IMPACT OF ADDITIVE NOISE

Since the model does not consider any measurement noise,
the attacker is able to reveal all hidden parameters of the
systolic array with the CPA. Fig. 4 shows the simulation results
of the attack against the first parameter. The multiple peaks
observed are caused by bit-shifted true values. Since the HD
of bit-shifted values is the same, these weight candidates cause
very similar correlation levels. The CPA of a real computing
platform is most certainly influenced by measurement noise,
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TABLE II
IMPACT OF ADDITIVE NOISE ON ATTACKS

Revealed Parameters Template Attack Correlation Power Attack

SNR # Attack Traces SNR Correlation Coefficient

9/9 ≥2.0 15 >4.0 0.561 - 0.775
8/9 - - 3.5 - 4.0 0.444 - 0.561
0/9 <2.0 - <3.5 <0.444

therefore, this results should be considered as the best-case
scenario (from the attacker’s perspective).

The template attack successfully recovers all nine weights
from the processing elements with a very low number of
attack traces (less than 15 attack traces). Since we assume an
adversary in a chosen-plaintext scenario, the attacker can freely
decide which inputs are sent to the systolic array. By setting
entire input columns to zero, the impact of most processing
elements which store the pre-loaded weights is eliminated.
This allows the attacker to selectively enable only a small
subset (i.e. single columns) of processing elements. Just like
with the CPA, the bit-shifted values of the correct weight
produce a high score. Therefore, it is possible to have multiple
candidates as a result of the attack in the leftmost column.
After recovering the weights from the leftmost columns, the
attack can build templates including the recovered weights.
This reduces the uncertainty when attacking the middle or
rightmost PEs, thus bit-shifted values of the correct weights
do not produce a false positive.

A. Impact of Additive Noise on CPA

In applied cryptography, analysing the impact of additive
noise on power attacks is essential [31], [32]. The backbone
of such an analysis is Signal-to-noise ratio (SNR) of the
leaked information [20]. Here, additive noise is used. The
measurement noise is modelled by adding random values
Rn with an average R̄ = 0 to the power trace Pn at each
estimation point as Pn +Rn. It can be gradually increased to
have a bigger impact on the power estimation value. Here, we
can set a fixed SNR to produce noisy power traces.

With this model, a threshold evaluation of the CPA’s success
is possible. Multiple experiments with additive noise are
performed to investigate the influence of noise on correlation
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coefficients. A comparison of the correlation with different
amounts of additive noise is shown in Table II and illustrated
in Fig. 5. The results show how an increasing noise level
impacts the correlation coefficient, ultimately making the
correct candidate indistinguishable from other candidates. For
too low SNRs, the CPA cannot successfully reveal the weights
from the AI accelerator. Increasing the number of traces an
attacker acquires, increases the chance of a successful attack.
This can give an indication to how many traces an attacker
would require in a post-silicone attack.

B. Impact of Additive Noise on Template Attacks

Several experiments have been conducted to study the
impact of additive noise on template attacks, where both the
profiling and attack traces are affected. SNR is also used to
describe the magnitude of the noise. The experiments show
that recovering the weights remains as easy as without noise.
By increasing the impact of noise, i.e., decreasing the SNR
to as low as 2.0, the template attacks proves to be successful
with as little as 15 attack traces per targeted parameter.

Consequently, template attacks are applicable with lower
SNR values, i.e., the template attacks are much less affected
by noise if the same noise level is present during the pro-
filing phase, as well as the attack phase. Template attacks
therefore, pose a serious threat to implementations, even in a
noisy environment. By taking advantage of input tuning (as
a chosen plaintext attack), an adversary could theoretically
attack systolic arrays of any size and reveal secret parameters.
Here, a more noisy environment requires the attacker to use a
larger number of traces when building the template.

VIII. MODEL VERIFICATION

It was previously shown [33], that a time-based power
estimation with a gate-level netlist comes quite close to post-
silicon measurements. To achieve industry-grade results, we
also use the Synopsys tool suite for our experiments.

The verification starts with a Verilog implementation of
a single PE, as well as the whole (3 × 3) systolic array,
as shown in 6. The design is synthesized using Synopsys
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Fig. 7. Pearson’s Correlation Coefficient between Trace Sets.

DesignCompiler [34] to generate a gate-level netlist. A pre-
defined test bench is used to stimulate the netlist and gather a
value-change dump (VCD) using Synopsys VCS [35]. Lastly,
Synopsys PrimePower [33] creates a power trace based on
the VCD in a time-based power analysis. These power traces
are considered to be noise-free reference traces of the real
hardware. We use these traces to verify the input-dependent
power model utilized in our SystemC simulation of a systolic
array. Consequently, a statistical comparison between the
reference power traces and the power traces collected at the
SystemC level is performed. The comparison is divided into
four main experiments as follows:

A. First Experiment
For a single PE with the same random inputs, we generate

two sets of power traces (20 000 traces) collected at SystemC
level and gate-level netlist. Then, we use Pearson’s correlation
coefficient (PCC) to interpret if there is a linear correlation
between them. PCC lies between [−1,+1], with PCC = 0
indicating no linear correlation. The results show that there is
a positive correlation between the traces, as seen in Fig. 7a. A
value of PCC up to 0.65 confirms that the proposed SystemC
model is linearly associated with the power consumption
tendency of a real hardware implementation.

B. Second Experiment
For a single PE with two distinct sets of random inputs, we

generate two sets of power traces (20 000 traces) collected
at SystemC level and gate-level netlist. The goal of this
experiment is to exclude a false-positive correlation for a
single PE. Here, we observe a correlation coefficient close to
0, as shown in Fig. 7b. This confirms there is no false positive
correlation between the power traces.

C. Third Experiment
The design of the whole systolic array is more complex.

A test bench with full coverage of all possible input/weight

combinations for all PEs would produce an enormous amount
of traces. Therefore, we fixed the weights in the PEs and stim-
ulated the systolic array by 20 000 random input samples. An
equivalent test bench is implemented in SystemC to produce
comparable traces. As we expected, the two trace sets will
be linearly correlated the most when modeling smaller pieces
of hardware. Naturally, modelling bigger hardware at a high
abstraction level will bring a drop in accuracy, and PCC will
be lower, as shown in the in Fig. 7c. Therefore, Spearman’s
correlation coefficient (SCC) is used in this experiment to
interpret the direction of the association between them. The
sign of the SCC value indicates if the same trends are expected
between the two trace sets. When evaluating SCC between
the two sets, we observe a positive SCC coefficient of +0.27.
This indicates a moderate monotonic (linear or non-linear)
relationship between them. In other words, SCC shows that
power traces collected at SystemC level tend to increase when
reference power traces increase.

D. Fourth Experiment

Similar to the second experiment, we aim to exclude a false-
positive correlation result between the traces of the whole
systolic array. With two distinct sets of random inputs, we
observe both PCC and SCC close to 0, as shown in Fig. 7d.
This indicates there is no false positive in the power traces
collected at SystemC level.

In conclusion, it can be said with high confidence that the
proposed power estimation model follows the same trends as
a state-of-the-art netlist-level power estimation.

IX. CONCLUSION

This paper presents power side-channel attacks against AI
accelerator architectures at the electronic system level. Our
approach features AI accelerator models with a corresponding
dynamic power-consumption model to simulate the behaviour
of systolic-array-based AI accelerators using SystemC. Our
findings show that SystemC-based power attacks are possible
and sufficiently resemble real-world threat scenarios. Our
experiments successfully simulate SystemC-based power side-
channel attacks against AI accelerators leading to full secret
extraction: While correlation power analysis shows certain lim-
itations in noisy conditions, template attacks pose a significant
risk of being able to adapt to noise.

To verify the SystemC-power estimation model, several ex-
periments were performed to compare power traces computed
from synthesized netlists with the proposed model. The results
show that the proposed model follows the same trends as a
gate-level netlist power estimation. Our set goal of earliest-
possible threat analysis and subsequent design suggestions was
thus successfully achieved and demonstrated.

This work hence is one essential – and with regard to
the presented methods and procedures to the best of our
knowledge first – step in design-space exploration for security
from a design/hardware perspective. In a future step and
raising complexity, we would like to extend this approach from
a systolic array to a full system model.
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of Lightweight Block Ciphers: From Theory to Practice,” in Applied
Cryptography and Network Security, M. Manulis, A.-R. Sadeghi, and
S. Schneider, Eds. Cham: Springer International Publishing, 2016, pp.
537–557.

[21] D. Harris and S. Harris, Digital design and computer architecture.
Morgan Kaufmann, 2010.

[22] B. Jacob, S. W. Ng, and D. T. Wang, “Chapter 29 - power and
leakage,” in Memory Systems, B. Jacob, S. W. Ng, and D. T.
Wang, Eds. San Francisco: Morgan Kaufmann, 2008, pp. 847–864.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B978012379751350031X

[23] R. Soares, V. Lima, R. Lellis, P. Finkenauer Jr, and V. Camargo,
“Hardware countermeasures against power analysis attacks: a survey
from past to present,” Journal of Integrated Circuits and Systems, vol. 16,
no. 2, pp. 1–12, 2021.

[24] S. A. A. Shah, J. Wagner, T. Schuster, and M. Berekovic, “A lightweight-
system-level power and area estimation methodology for application spe-
cific instruction set processors,” in 2014 24th International Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS),
2014, pp. 1–5.

[25] Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp. 37–46,
1982.

[26] Y. Xiang, Y. Xu, Y. Li, W. Ma, Q. Xuan, and Y. Liu, “Side-Channel Gray-
Box Attack for DNNs,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 68, no. 1, pp. 501–505, 2021.

[27] F. Durvaux, F. Standaert, and N. Veyrat-Charvillon, “How to certify the
leakage of a chip?” in Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings, ser. Lecture Notes in Computer Science, P. Q. Nguyen
and E. Oswald, Eds., vol. 8441. Springer, 2014, pp. 459–476. [Online].
Available: https://doi.org/10.1007/978-3-642-55220-5 26

[28] O. Bronchain, J. M. Hendrickx, C. Massart, A. Olshevsky, and
F. Standaert, “Leakage certification revisited: Bounding model errors
in side-channel security evaluations,” in Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Boldyreva and D. Micciancio,
Eds., vol. 11692. Springer, 2019, pp. 713–737. [Online]. Available:
https://doi.org/10.1007/978-3-030-26948-7 25

[29] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with
a Leakage Model,” in Cryptographic Hardware and Embedded Systems
- CHES 2004, M. Joye and J.-J. Quisquater, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 16–29.

[30] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K. Koç,
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