
Exploration and Exploitation of Hidden PMU Events

Yihao Yang1, Pengfei Qiu1, Chunlu Wang2, Yu Jin3,
Dongsheng Wang4, Gang Qu5

1,2,3Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education
4Tsinghua University 5University of Maryland

khaosyg@gmail.com, {qpf,wangcl}@bupt.edu.cn,lambda.jinyu@gmail.com,
wds@tsinghua.edu.cn, gangqu@umd.edu

Abstract

Performance Monitoring Unit (PMU) is a common hardware
module in Intel CPUs. It can be used to record various CPU
behaviors therefore it is often used for performance analy-
sis and optimization. Of the 65536 event spaces, Intel has
officially published only 200 or so.

In this paper, we design a hidden PMU event collection
method. And we found a large number of undocumented
PMU events in CPUs of Skylake, Kabylake, and Alderlake
microarchitectures. We further demonstrate the existence of
these events by using them for transient execution attack
detection and build-side channel attacks. This also implies
that these hidden PMU events have huge exploitation potential
and security threats.

1 Introduction

Hardware Performance Counter (HPC) is a popular hardware
monitoring tool in today’s computer architectures. It has been
widely used for more than a decade, and these counters can
be used to measure events at the CPU level at a granular level,
such as instruction execution, Cache Hit or Miss, branch pre-
diction, etc. HPC is very important for performance analysis,
code debugging, and optimization. Most modern processor
vendors provide HPC support for their processors. In Intel
processors, the functional unit used to support HPC is called
the Performance Monitor Unit(PMU) [10].

The Intel official documented more than 200 PMU Events
[8](which vary slightly on different architectures) for devel-
opers to use. These events are introduced initially for code
debugging and performance improvement. However, because
it can measure various microarchitectural events at a fine-
grained level, it has been widely used in various fields, such
as malware detection and defense[4, 21], microarchitectural
attack detection[12, 13], reverse engineering [16], and so on.
In addition, some evaluation tools have been designed using
PMU for different environment settings, such as PAPI[17],
perf_event[22],and VTune[9]. These tools also greatly fa-

cilitate software developers to analyze the performance of
their code. In addition to being used for positive work, Qiu et
al.[18] found that PMU counters record behaviors of transient
instructions besides those of truly committed instructions.
They exploited this feature to create a PMU side channel
that replicated the Foreshadow attack and compromised the
security of Intel SGX[20].

Intel provides 16 bits for PMU event selection[10], as
shown in Figure 1. The 8 bits Umask and 8 bits Event Select
respectively make up a complete PMU event. This means that
the entire event selection space is 216, but even on Intel’s latest
Alderlake architecture CPUs, only over 200 publicly avail-
able Core PMU events exist[8]. This is a very small subset
of the entire event space, meaning there may be many undoc-
umented PMU events. Zhao et al.[26], in their performance
analysis and reverse engineering of their work, mentioned two
unrecorded PMU events, which they named L1D.READ_REQS
and L1D_BLOCKS.FALSE_DEPS based on their event behavior.
However, they did not go further. Nick Gregory et al.[6] tra-
versed the 216 space and filtered for Spectre-sensitive events,
and they eventually came up with 81 unrecorded PMU events.
But in our work, we traversed the x86 instruction set and
recorded the PMU events they triggered. In the end, tens
of thousands of undocumented PMU events were found on
different microarchitectures, which is far more than 81.

In this paper, we design a hidden PMU event collection
method and we use the hidden PMU events for transient execu-
tion attack detection and construction of side-channel attacks.
First, we traverse the x86 instructions using the uops.info[1]
dataset. At the same time, the monitor program continuously
polls the entire PMU event space to collect all possible PMU
Events. We found about 20,000 undocumented PMU Events
on the i7-6700, and i7-7700 and about 12,000 on the i9-
13900k. Then, we try to perform transient attack detection
with each PMU event, including Meltdown, Spectre, and Zom-
bieload. Finally, we further demonstrate the effectiveness of
these events by constructing side channels for each hidden
PMU event and reproducing the above transient execution
attacks[7, 11, 14, 19].

ar
X

iv
:2

30
4.

12
07

2v
1

 [
cs

.C
R

]
 2

4
A

pr
 2

02
3

Event SelectUnit Mask (Umask)

U

S

R

O

S
E

P

C

E

N

Counter Mask

(Cmask)
····

I

N

V

07815161718192223243163

INV — Invert Counter Mask

EN — Enable Counters

PC — Pin Control

E — Edge Detect

OS — Operating System Mode

USR — User Mode
Reserved

Figure 1: Layout of IA32_PERFEVTSELx MSRs

In general, this paper has the following contributions:

• We have designed a method to collect hidden PMU
events. And we found a lot of hidden PMU events on
Skylake, Kabylake, and Alderlake.

• We performed detection screening for hidden PMU
events. We found 377 hidden PMU events that can
be used for Meltdown-Detection, 6346 for Spectre-
Detection, and 3837 for Zombieload-Detection.

• We use these hidden PMU events to build side channels
for microarchitecture attacks to further demonstrate their
effectiveness. We find 357 hidden PMU events that can
be used to build side channels for Meltdown attacks, and
1094 for Spectre attacks.

These hidden PMU events, similarly, can record some mi-
croarchitectural behavior. They can also be used for malware
detection, reverse engineering, or even for attack scenarios.
Therefore it is important to prove the validity of undocu-
mented PMU events and to assess their hidden security risks.

2 Background

2.1 Performance Monitor Unit

The Performance Monitoring Unit is an important hardware
module on today’s processors. It contains a set of performance
counters that record various hardware performance events that
occur at the CPU level during system runtime. Intel divides
the hardware events supported by its performance counters
into architectural performance events and non-architectural
performance events, which also serve as microarchitectural
events[10]. Architectural performance events refer to events
that have consistent behavior across processor architectures,
such as Instruction retired, Unhalted core cycles, Branch in-
structions, etc. Non-architectural performance events are pro-
cessor microarchitecture specific and have different behav-
ior across different microarchitectures and may vary with
processor enhancements. For non-architectural performance

events, they are further classified as Core Events, and Uncore
Events[10]. Core Events are defined as performance events
that occur inside the CPU, such as Instruction retired, Cache
hit or miss, branch prediction, etc. Uncore Events are events
that occur in components outside the CPU core, such as mem-
ory accesses, I/O operations, and so on. In this article, we will
only discuss Core Events.

Intel provides users with three fixed counters and four pro-
grammable counters[3, 10]. The fixed counters always moni-
tor fixed events such as logical cycles, reference cycles, etc.
The programmable counters are supported by a set of one-to-
one event selection MSRs (IA32_PERFEVTSELx) and perfor-
mance count MSRs (IA32_PMCx). The IA32_PERFEVTSELx
MSRs start at address 186H and occupy a contiguous block of
MSR address space. Each IA32_PERFEVTSELx register start-
ing at this address corresponds to an IA32_PMCx register to
start at 0C1H. Intel provides two ways to get the value of
the performance counter: Polling or Processor Event-Based
Sampling (PEBS)[3, 10].

Polling: The user selects the specified event by changing the
value of IA32_PERFEVTSELx and then reads from IA32_PMCx
the number of times the event occurred. For this purpose, Intel
provides specific instructions (RDMSR, WRMSR) to do reads and
writes to the MSR.

PEBS: This is a sampling method based on the
Performance Monitoring Interrupt(PMI) interrupt.
IA32_PEBS_ENABLE provides 4 bits of data indicating
which IA32_PMCx overflow condition to enable will trigger
the PMI, resulting in the capture of the PEBS record.

2.2 Side Channel Attacks

Side Channel Attacks: There are many shared resources
in the microarchitecture, such as Cache, TLB, execution ports,
etc. The attacker accesses the victim’s information by mon-
itoring the state changes of such shared resources. By Side
Channel, the attacker does not directly attack the target data
but infer the secret information such as the victim encryption
key by analyzing the side information (e.g., voltage frequency
change, cache timing, etc.) that the microarchitecture inadver-
tently leaks.

In microarchitecture, the most common ones are Cache side
channel attacks, such as Flush+Reload[24], Prime+Probe[15],
CacheBleed[25], etc. There are also side-channel attacks
based on other shared resources, such as TLBLeed[5], PortS-
mash[2], Binoculars[26] etc. The basic principle of these
attacks mostly relies on cache time differences. Qiu et al.[18]
established a PMU-based side channel. the PMU captures and
records various microarchitectural states, so the victim infor-
mation can be inferred by analyzing the PMU event counts.

2

2.3 Transietn Execution Attacks

Transient execution attacks are caused by various aggres-
sive optimization strategies introduced by modern processors
to improve performance, such as Out-of-Order Execution,
Branch Prediction, etc. These strategies may lead to the exe-
cution of instructions that should not be executed, which is
called transient execution. Although transient instructions are
not explicitly committed, they may have some impact on the
microarchitecture state. The attacker captures such microar-
chitecture state changes by establishing side channels and thus
inferring the victim’s private data. Typical transient execution
attacks are Meltdown[14], Spectre[7, 11], Zombieload[19],
etc.

3 Hidden PMU Collector

3.1 Motivation

As we described in Section 1, PMUs can capture specified
types of CPU hardware events to enable developers to opti-
mize their code by understanding the system’s runtime char-
acteristics and performance bottlenecks. Today PMUs are
widely used in various work scenarios. However, these events
represent only a small fraction of the overall event space, and
it is worth investigating whether most of the undocumented
PMU events can also be used in these scenarios. In addition,
PMU is also useful for all kinds of reverse engineering, and it
is worthwhile to pay attention to whether Intel’s undisclosed
PMU implies the existence of some unrevealed CPU hardware
components.

In addition, there are also some security risks because of
the granularity of PMUs. An attacker could detect processor
data and instruction flows through the PMU, or create side
channels to leak information. Therefore, for a large number
of unknown PMUs, their security risks may be even more
threatening. Therefore, it is necessary to dig and analyze the
hidden PMU events both in terms of positive and negative
work.

3.2 Challenges

x86 Instructions Traversal: In order to collect hidden
PMU events, we tried to execute all x86 instructions to trigger
as many PMU events as possible. However, the complexity of
the x86 instructions posed a significant challenge to us. We
have compiled 5492 instructions based on the uops.info[1]
dataset, which have different behaviors depending on the pro-
cessor mode and privilege level. In addition, various jump
instructions may cause the program to dead-end or terminate
requiring special handling as well. It is worth noting that
x86 has evolved with many instruction set extensions requir-
ing specific floating-point units and registers, which different
CPUs may support differently.

Secondly, the Intel assembly syntax is different from the
GCC inline assembly syntax (AT&T), so we also need to pre-
process these instructions. As well, there are multiple types
of operands for the same instruction, which in turn increases
the complexity of the entire instruction set. Overall, the com-
plexity and diversity of the x86 instruction set have caused a
great many problems for us.

Non-deterministic: As we explained in Section 2, the
PMU can monitor various CPU-level events at a fine-grained
level. Weaver et al.[23] show that PMU counting is inherently
non-deterministic and over-counting, due to its architectural
design. Such uncertainty makes it difficult to determine the
validity of hidden PMU events with counts close to zero when
collecting PMU events.

For such non-deterministic, Das et al.[3] point out that not
all PMU-based work is affected. Among them, malware de-
fense and detection works are more likely to be affected. This
is because they rely on the small impact of the attack model
on the hardware to determine whether it is being attacked. So,
we filter this uncertainty by constructing microarchitectural
attack detection models and side channel models with these
hidden PMU Events.

3.3 Hidden PMU Collect
First, we process the uops.info data set. Because the Intel x86
assembly syntax differs from the GCC inline assembly syn-
tax (AT&T) in some ways, such as the location of operands,
and the register representation. At the same time, we try to
keep the registers used by these instructions in a limited range
as much as possible, which is convenient for us to fill the
operands. It is notable that for some specific extensions, spe-
cific registers may need to be used. For this reason, we need to
adapt them according to the instruction extensions supported
by the CPU. Furthermore, for various jump instructions, we
must put the jump target position after the jump instruction,
otherwise, it may cause the program to enter a dead loop.
Finally, we compiled a list of 5488 instructions.

Since we don’t know the details of the instruction exe-
cution, we need to handle all the exceptions that may arise
during the instruction execution. The best way to achieve
this is to use Intel Transactional Synchronization Extensions
(TSX) to suppress exceptions, which is fast and efficient. Un-
fortunately, because the success rate of transient execution
attacks can be greatly improved with TSXs, many new Intel
CPUs do not support this extension. Therefore, we bind all
exception signals to custom exception handlers to prevent
program crashes. We then fill a limited number of registers
with the appropriate values or addresses to adapt the operand
types of the instructions.

Finally, we monitor the count changes in the 65536 event
space before and after each instruction execution and record
the readable events and the instructions that triggered them.

3

Table 1: Hidden PMU Collector Result
Micro-Architecture CPU Total Instructions Execution Success Hidden PMU Events

Skylake i7-6700 5492 3412 20599
Kabylake i7-7700 5492 3574 20230
Alderlake i9-13900k 5492 3628 12503

0x
02

0x
14

0x
24

0x
2E

0x
3C

0x
6C

0x
79

0x
80

0x
8B

0x
9C

0x
BA

0x
D4

0x
E2

0x0
0x10
0x20
0x30
0x40
0x50
0x60
0x70
0x80
0x90
0xa0
0xb0
0xc0
0xd0
0xe0
0xf0

Um
as

k

i7-6700 Hidden PMUs(Skylake)

0x
02

0x
24

0x
2E

0x
3C

0x
6C

0x
79

0x
80

0x
8B

0x
9C

0x
BA

0x
D4

0x
E2

EventCode

0x0
0x10
0x20
0x30
0x40
0x50
0x60
0x70
0x80
0x90
0xa0
0xb0
0xc0
0xd0
0xe0
0xf0

i7-7700 Hidden PMUs(Kabylake)

0x
03

0x
09

0x
11

0x
1C

0x
30

0x
3C

0x
50

0x
60

0x
75

0x
7F

0x
8B

0x
9C

0x
A2

0x
C0

0x
D3

0x
E0

0x
ED

0x0
0x10
0x20
0x30
0x40
0x50
0x60
0x70
0x80
0x90
0xa0
0xb0
0xc0
0xd0
0xe0
0xf0

i9-13900k Hidden PMUs(Alderlake)

Figure 2: Distribution of Umaks and EventCode for Hidden PMU Events on different Microarchitectures

3.4 Result Analysis

We separately performed collection experiments on three ma-
chines, as shown in Table 1. Finally, we successfully executed
3412 instructions on the i7-6700 (Skylake) and collected
20599 hidden PMU events. On the i7-7700 (Kabylake), we
successfully executed 3574 instructions and collected 20230
hidden PMU events. On the i9-13900k (Alderlake), 3628 in-
structions were successfully executed and 12503 hidden PMU
events were collected.

However, we do not think that each of these PMU events
corresponds to a microarchitectural behavior. For the Event-
Code, we found that it is not continuous, this may mean that
these events actually exist. In the case of Umask, its distri-
bution makes us wonder if the bit at the specified location
determines the event selection condition. As we can see in
Figure 2, the distribution of Umask has a segmented regularity
in either microarchitecture. Moreover, some Umask values
appear to be invalid under the three microarchitectures men-
tioned above. As an example, the hidden PMU event with
EventCode is 0x6C in the i7-6700 shows a certain regular
increase in the graph. On further analysis, we find that its
Umask values appear to grow as 0x*1, 0x*3, 0x*5, 0x*7,
0x*9, 0x*B, 0x*D, 0x*F. In binary perspective, the lowest bit
of their Umask is 1. So we suspect that the value of Umask
may be determined by a specific bit.

4 Application 1:Detecting the Transient Exe-
cution Attacks

To further demonstrate the effectiveness of hidden events,
we try to use these hidden events to detect existing transient
execution attacks, such as Meltdown[14], Spectre[7, 11], Zom-
bieload[19], etc.

4.1 Detection Method Design

In our detection approach, since we do not know the microar-
chitectural behavior corresponding to each hidden event, we
cannot select some specific events for multidimensional de-
tection as in past transient execution detection approaches[12,
13]. Instead, we must iterate through each hidden PMU event
and monitor their association with these transient execution
attacks. To do so, for each attack, we need to collect the count
changes for each PMU event in the Clean, No-Attack, and
Attack states. The classifier is then trained offline by a ma-
chine learning (ML) algorithm and then analyzes the model
training results. In this way, we can determine whether that
PMU event can be used for that transient execution attack
detection.

4.2 Detection Experiment Setup

Data Collection: Because most of the transient execution
attacks have been fixed on the i9-13900k. So for each hid-
den event, we collect the count of Clean, No-Attack, and
Attack on the i7-6700. The Clean refers to a clean environ-

4

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

Accuracy

Precision

Recall

F1

AUC

Ev
al

ua
tio

n

Analysis of Meltdown Detection

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu

e

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

Accuracy

Precision

Recall

F1

AUC

Ev
al

ua
tio

n

Analysis of Spectre_v1 Detection

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu

e

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

Accuracy

Precision

Recall

F1

AUC

Ev
al

ua
tio

n

Analysis of Spectre_v2 Detection

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu

e

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

Accuracy

Precision

Recall

F1

AUC

Ev
al

ua
tio

n

Analysis of Spectre_v4 Detection

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu

e

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

Accuracy

Precision

Recall

F1

AUC

Ev
al

ua
tio

n

Analysis of Zombieload_v1 Detection

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu

e

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

Accuracy

Precision

Recall

F1

AUC

Ev
al

ua
tio

n

Analysis of Zombieload_v2 Detection

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu

e

Figure 3: Transient Execution Attack Detection Model Evaluation

ment where only the victim process is running, to simulate
an environment where no malicious attacks exist. In addition,
we include text reading and writing to simulate the impact
of other third-party processes on PMU counts. For data col-
lection in the Attack environment, we separately have vari-
ous transient execution attacks running on different logical
cores of the same physical core as the victim process, and the
monitoring program running on the same logical core as the
attacker process, for better data collection. The data collec-
tion for each transient execution attack is independent. Here
we mainly collect 7 transient execution attacks, namely spec-
tre_v1[11], spectre_v2[11], meltdown(spectre_v3)[14], spec-
tre_v4[7], zombieload_v1[19], and zombieload_v2[19]. Fi-
nally, to better distinguish the false positives (FP), we need to
collect data in the No-Attack environment. In the No-Attack
environment, we comment out the Attack Primitive of the at-
tacker process, leaving the rest of the code untouched, and
collect the data according to the settings in the Attack envi-
ronment. It adds false positive(FP) noise to our model so that
we can better distinguish it.

Data Processing & Model Training: There are many ma-
chine learning models used for classification, such as logistic
regression (LR), support vector machine (SVM), etc. Since we
need to detect transient execution attacks with 20,000 hidden
PMU events respectively, we choose the logistic regression
algorithm with less training time. LR is a simple linear clas-
sification algorithm that estimates the probability of a given
input based on a Sigmoid function. LR algorithm has fewer
parameters and less training time compared to other classifi-
cation algorithms. Moreover, other complex algorithms are
theoretically possible if the simple LR algorithm can detect

attacks.
Then, we label the data. PMU count changes collected in

the Attack environment are labeled as 1, and the data in other
environments are labeled as 0. This means that 1 indicates
that an attack occurred and 0 indicates that no attack. For each
type of attack, we collect data in each independent run and
use the same number (2000) of samples from both categories
to avoid bias. Then, we split the collected dataset into training
data (70%) and test data (30%). Finally, we train the model
with the training data and analyze it with the test data.

4.3 Experiment Analysis
In order to evaluate the model better, in addition to the most
commonly used Accuracy metric, we also calculated other
metrics of the detection model, including Precision, Recall,
F1-Score, and AUC (Area Under Curve). Precision represents
the proportion of true positive (TP) predicted to be positive,
i.e. TP / (TP + FP), which is indicative of false positives
(FP). Recall represents the proportion of positive samples
predicted to be positive, i.e. TP / (TP + FN). F1-Score is
the average of the two, which takes into consideration both
Precision and Recall. The AUC represents the area under the
ROC (Receiver Operating Characteristic) curve. The ROC
curve shows the relationship between Recall and FP Rate, and
the AUC is used to measure how well the detection model is
able to distinguish between malicious and normal executions.
In general, the closer the AUC is to 1, the more effective the
model is.

We screened the detection models with Accuracy >
0.8,F1 > 0.8,AUC > 0.7 and their PMU events Number, and
then randomly sampled 400 points to draw a scatter plot as

5

Figure 3. To prevent model overfitting, we removed the points
with index values equal to 1. We also filter out the points
with F1 ∈ (0.9,1) to consider Precision and Recall. Finally,
we got 377 hidden PMU events available for meltdown de-
tection, 530 for spectre_v1 detection, 4230 for spectre_v2,
1586 for spectre_v4, 1823 for zombieload_v1, and 2014 for
zombieload_v2.

1 zero_pmu();
2 if(xbegin()==(~0u)){
3 asm volatile(
4 "cmp (%0), %1"
5 "jz equal"
6 "nop"
7 "jmp end"
8 "equal:"
9 " ins1 (eg. movq (%%rax),%%rax)"

10 "end:"
11 " ins2 "
12 :
13 :"r"(The address of Secret),
14 "r"(Controllable Variable)
15 :
16);
17 xend();
18 }
19 read_pmu();

Figure 4: Encoding Secret into PMU Side-Channel.

5 Application 2:Implementing the Side Chan-
nel Attacks

In this section, to demonstrate the potential security threat of
hidden PMU events, we attempt to recover private data leaked
by transient execution attacks using the hidden PMU event
construction side channel.

5.1 Encoding The Secret Data into PMU

Qiu et al.[18] found that some instructions executed in tran-
sient windows also affect the PMU count. Based on this prin-
ciple they designed an instruction gadget that encodes secret
data into the PMU side channel, as in List1. First, the side
channel state is cleared, as in the first line of Fig.4.3. Then, in
the fourth line, we compare the secret data with a controllable
variable V, which triggers a transient execution. If the secret
data is equal to V, the path of command execution changes,
i.e. ins1 is executed. And ins1 is bound to the PMU event
we set, which allows us to infer whether ins1 is executed or
not from the change in the PMU count, and thus secret data
from the controllable variable V.

5.2 The Experiment Setup

The victim device we chose is also an Intel i7-6700 (Skylake)
processor with 32 KiB, 8-way L1 data Cache, on Ubuntu
16.04 with kernel version 4.15.0. We successfully reproduced
two transient execution attacks, Meltdown and Spectre_v2,
using the above instruction gadget. We also tried the same for
Spectre_v1, but it did not work. A brief analysis of the reason
for this may be the existence of branching instructions in our
gadget, which we suspect may affect branch mistraining.

Theoretically, the best way is to perform a combined traver-
sal of instruction and PMU Events. However, even if we set
ins2 to nop, this would require 5492 ∗ 20599 ≈ 1.13 ∗ 108

iterations with an average time of 0.4s per iteration, which
would take about a year, and this is not acceptable. In addition,
we try to record the corresponding instructions that trigger a
PMU in the Collector. Then we only traverse the combination
of these, which can reduce the iteration space to about 11
million iterations, but this also takes more than 30 days.

So, we set ins1 to be a single access instruction, because
according to the results in Collector, the access instruction
can trigger the most PMUs. Then only 20,599 PMU Events
are traversed, which eventually reduces the traversal time to
about one hour. Although this loses some precision, it also
demonstrates the potential security threat of these hidden
PMU events.

5.3 Experiment Analysis

Throughput rate and error rate are two important measures to
evaluate side-channel attacks. The throughput rate is mainly
determined by the instruction gadget execution time, the num-
ber of iterations, the exception handling time, or the branch
training time. On our experimental device (i7-6700), the in-
struction gadget was iterated 10 times to recover the secret
data. For the meltdown attack, the average throughput rate
can reach 789.86 Bps if Intel TSX exception suppression is
used. if the exception signal processing function is used, the
throughput rate drops to 497.49 Bps. while for spectre_v2,
the average throughput rate is around 148.68 Bps because the
branch training takes longer than the exception processing.

Another important metric is the error rate (or accuracy).
Unlike the throughput rate, the accuracy of an attack is de-
termined by the individual PMU events. Different PMU
events have different Accuracy, so we iterate through 20,000
hidden PMU events and filter out the event numbers with
Accuracy≥ 80, and then calculate their average accuracy. For
demonstration purposes, we randomly sampled 100 samples
and show them in Fig. 5. It can be seen that for the meltdown
attack, the average error rate(1−Accuracy) is 0.9% for 10
iterations and 9.08% for spectre_v2. Finally, we obtain 357
hidden PMU events that can be used to construct a side chan-
nel to recover the secret data leaked for the meltdown attack
with Accuracy≥ 80, and 1094 for spectre_v2.

6

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

80

85

90

95

100

Ac
cu

ra
cy

 (
%

)

99.10

PMU Side-Channel For meltdown (Accuracy >= 80)

Average Accuracy

0x
0

0x
10

00

0x
20

00

0x
30

00

0x
40

00

0x
50

00

0x
60

00

0x
70

00

0x
80

00

0x
90

00

0x
a0

00

0x
b0

00

0x
c00

0

0x
d0

00

0x
e0

00
0x

f00
0

PMU Events

80

85

90

95

100

Ac
cu

ra
cy

 (
%

)

90.92

PMU Side-Channel For spectre_v2 (Accuracy >= 80)

Average Accuracy

Figure 5: Accuracy of Hidden PMU Side-Channel Attack

6 Discussion & Future Work

6.1 Limitations

The first is that this paper only tries to explore hidden PMU
events in three microarchitectures of Intel CPUs, so whether
there are also hidden events in other microarchitectures or
there are also undocumented PMU events in other processor
vendors’ CPUs. Second, this paper does not work reverse for
all the hidden events, i.e., find their respective corresponding
microarchitectural behaviors. Then, only two transient exe-
cution attacks are successfully reproduced using the hidden
PMU side channels, and whether other transient execution
attacks can also recover private data using hidden PMUs as
side channels. Or are there any other security threats for these
hidden PMUs other than as side channels? Also, whether
these hidden PMU events correspond to some unknown hard-
ware components in the microarchitecture. We leave these
questions to be explored in the future.

6.2 Future Extensions

Reverse-Engineering: We have found a large number of
hidden PMU events and associated these events with various
microarchitecture attacks. Although we collected the events
by associating the hidden events with the instructions that
triggered them, we did not do further analysis of the specific
behavior of the instructions. However, because of the enor-
mous number of events, we were unable to match the event
codes to the microarchitecture behaviors as Intel officially dis-
closed events. As we introduced before, a PMU event consists
of 16 bits. For the high 8 bits (Umask) most of the possible
values appear in our collection of events, while for the low 8
bits (Event Select) it is limited to a fixed range, which also
determines the general class of events. Therefore, we believe
that it is feasible and necessary to reverse the hidden Event
Select Code in future work.

Specific bit decision Umask: As we mentioned above,
Umask appears in most of the possible values of the events
we collected. However, we do not believe that each Umask
represents an event condition, so we suspect that the CPU
only focuses on the specified bit of Umask when checking the
event number. In this paper, although the pattern of Umask
distribution was initially analyzed in Section 3.4, it was not
further explored. Therefore, it is necessary to explore the
principle of Umask selection in future work.

7 Conclusion

PMU were originally designed for software performance opti-
mization, but because of their granularity of monitoring, they
have been widely used in various scenarios. In this paper, we
found a large number of undocumented PMU events in mi-
croarchitecture CPUs such as Skylake, Alderlake, etc. Based
on this discovery, we use these hidden PMU events to accom-
plish the detection of various transient execution attacks, as
well as the leakage by encoding private data into PMU events
during transient execution to build side channels.

Our experiments show that these hidden PMU events do
exist and can be used for positive or negative work. Also at
the end of the paper, we analyze the limitations and possible
extensions of this study. Future work on hidden PMU events
is worth exploring.

References

[1] Andreas Abel and Jan Reineke. “uops. info: Charac-
terizing latency, throughput, and port usage of instruc-
tions on intel microarchitectures”. In: Proceedings of
the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems. 2019, pp. 673–686.

7

[2] Alejandro Cabrera Aldaya et al. “Port contention for
fun and profit”. In: 2019 IEEE Symposium on Security
and Privacy (SP). IEEE. 2019, pp. 870–887.

[3] Sanjeev Das et al. “SoK: The challenges, pitfalls, and
perils of using hardware performance counters for se-
curity”. In: 2019 IEEE Symposium on Security and
Privacy (SP). IEEE. 2019, pp. 20–38.

[4] John Demme et al. “On the feasibility of online mal-
ware detection with performance counters”. In: ACM
SIGARCH computer architecture news 41.3 (2013),
pp. 559–570.

[5] Ben Gras et al. “Translation Leak-aside Buffer: Defeat-
ing Cache Side-channel Protections with TLB Attacks.”
In: USENIX Security Symposium. Vol. 216. 2018.

[6] Nick Gregory et al. “Using Undocumented Hardware
Performance Counters to Detect Spectre-Style At-
tacks”. In: (2021).

[7] Jann Horn. “Speculative execution, vari-
ant 4: Speculative store bypass, 2018”. In:
URl: https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528 (2018).

[8] Intel. Intel Perfmon. https://github.com/intel/
perfmon. Oct 2022.

[9] Intel. Intel VTune Profiler. https://www.intel.
com / content / www / us / en / developer / tools /
oneapi/vtune-profiler.html. 2023.

[10] Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual: Volume 3. https : / / www . intel .
com / content / www / us / en / architecture -
and - technology / 64 - ia - 32 - architectures -
software - developer - system - programming -
manual-325384.html.

[11] Paul Kocher et al. “Spectre attacks: Exploiting specula-
tive execution”. In: Communications of the ACM 63.7
(2020), pp. 93–101.

[12] Congmiao Li and Jean-Luc Gaudiot. “Detecting ma-
licious attacks exploiting hardware vulnerabilities us-
ing performance counters”. In: 2019 IEEE 43rd An-
nual Computer Software and Applications Conference
(COMPSAC). Vol. 1. IEEE. 2019, pp. 588–597.

[13] Congmiao Li and Jean-Luc Gaudiot. “Detecting spec-
tre attacks using hardware performance counters”.
In: IEEE Transactions on Computers 71.6 (2021),
pp. 1320–1331.

[14] Moritz Lipp et al. “Meltdown: Reading Kernel Mem-
ory from User Space”. In: 27th USENIX Security Sym-
posium (USENIX Security 18). 2018.

[15] Fangfei Liu et al. “Last-level cache side-channel at-
tacks are practical”. In: 2015 IEEE symposium on se-
curity and privacy. IEEE. 2015, pp. 605–622.

[16] Clémentine Maurice et al. “Reverse engineering In-
tel last-level cache complex addressing using perfor-
mance counters”. In: Research in Attacks, Intrusions,
and Defenses: 18th International Symposium, RAID
2015, Kyoto, Japan, November 2-4, 2015. Proceedings
18. Springer. 2015, pp. 48–65.

[17] Philip J Mucci et al. “PAPI: A portable interface to
hardware performance counters”. In: Proceedings of
the department of defense HPCMP users group confer-
ence. Vol. 710. 1999.

[18] Pengfei Qiu et al. “PMUSpill: The Counters in Perfor-
mance Monitor Unit that Leak SGX-Protected Secrets”.
In: arXiv preprint arXiv:2207.11689 (2022).

[19] Michael Schwarz et al. “ZombieLoad: Cross-privilege-
boundary data sampling”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Commu-
nications Security. 2019, pp. 753–768.

[20] Srinivas Devadas Victor Costan. Intel SGX Explained.
https://eprint.iacr.org/2016/086.pdf. 2016.

[21] Xueyang Wang and Ramesh Karri. “Numchecker: De-
tecting kernel control-flow modifying rootkits by using
hardware performance counters”. In: Proceedings of
the 50th Annual Design Automation Conference. 2013,
pp. 1–7.

[22] Vincent M Weaver. “Linux perf_event features and
overhead”. In: The 2nd international workshop on per-
formance analysis of workload optimized systems, Fast-
Path. Vol. 13. 2013, p. 5.

[23] Vincent M Weaver, Dan Terpstra, and Shirley Moore.
“Non-determinism and overcount on modern hardware
performance counter implementations”. In: 2013 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE. 2013, pp. 215–
224.

[24] Yuval Yarom and Katrina Falkner.
“FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack”. In: 23rd
USENIX Security Symposium. 2014. ISBN: 978-1-
931971-15-7. URL: https: //www .usenix.org /
conference / usenixsecurity14 / technical -
sessions/presentation/yarom.

[25] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
“CacheBleed: a timing attack on OpenSSL constant-
time RSA”. In: Journal of Cryptographic Engineering
7 (2017), pp. 99–112.

[26] Zirui Neil Zhao et al. “Binoculars:{Contention-
Based}{Side-Channel} Attacks Exploiting the Page
Walker”. In: 31st USENIX Security Symposium
(USENIX Security 22). 2022, pp. 699–716.

8

https://github.com/intel/perfmon
https://github.com/intel/perfmon
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://eprint.iacr.org/2016/086.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	1 Introduction
	2 Background
	2.1 Performance Monitor Unit
	2.2 Side Channel Attacks
	2.3 Transietn Execution Attacks

	3 Hidden PMU Collector
	3.1 Motivation
	3.2 Challenges
	3.3 Hidden PMU Collect
	3.4 Result Analysis

	4 Application 1:Detecting the Transient Execution Attacks
	4.1 Detection Method Design
	4.2 Detection Experiment Setup
	4.3 Experiment Analysis

	5 Application 2:Implementing the Side Channel Attacks
	5.1 Encoding The Secret Data into PMU
	5.2 The Experiment Setup
	5.3 Experiment Analysis

	6 Discussion & Future Work
	6.1 Limitations
	6.2 Future Extensions

	7 Conclusion

