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Abstract—Graph Convolutional Networks (GCNs) are pivotal
in extracting latent information from graph data across various
domains, yet their acceleration on mainstream GPUs is chal-
lenged by workload imbalance and memory access irregularity.
To address these challenges, we present Accel-GCN, a GPU
accelerator architecture for GCNs. The design of Accel-GCN
encompasses: (i) a lightweight degree sorting stage to group
nodes with similar degree; (ii) a block-level partition strategy
that dynamically adjusts warp workload sizes, enhancing shared
memory locality and workload balance, and reducing metadata
overhead compared to designs like GNNAdvisor; (iii) a combined
warp strategy that improves memory coalescing and computa-
tional parallelism in the column dimension of dense matrices.

Utilizing these principles, we formulate a kernel for SpMM
in GCNs that employs block-level partitioning and combined
warp strategy. This approach augments performance and multi-
level memory efficiency and optimizes memory bandwidth by ex-
ploiting memory coalescing and alignment. Evaluation of Accel-
GCN across 18 benchmark graphs reveals that it outperforms
cuSPARSE, GNNAdvisor, and graph-BLAST by factors of 1.17×,
1.86×, and 2.94× respectively. The results underscore Accel-
GCN as an effective solution for enhancing GCN computational
efficiency. The implementation can be found on Github*.

Index Terms—Graph Convolution Network, sparse matrix
multiplication (SpMM), parallel computing, GPUs

I. INTRODUCTION

Graph Convolutional Networks (GCNs) [1], [2] are a type
of Graph Neural Networks (GNNs) that has drawn tremendous
attention in the past years due to their unique ability to extract
latent information from graph data [3]. Practical applications
of GCNs include prediction of cascading power-grid failure
[4], traffic forecasting [5], recommendation systems [6], and
drug discovery [7]. The deployment of GCNs in these ap-
plications typically poses strict constraints on latency and
throughput.

When designing GNN accelerators, GPU platforms have
emerged as the mainstream choice. Existing GCN acceleration
designs mainly process a moderately sparse graph feature ma-
trix (X) multiplication with a dense and small weight matrix
(W ), and then multiply the output with the highly sparse
and irregular adjacency matrix (A). They exhibit two main

*https://github.com/xiexi1990/ICCAD-Accel-GNN
†H. Fang is now affiliated with Synopsys, Mountain View, CA.

challenges: workload imbalance and data locality. The power-
law distribution prevalent in the A matrix of a graph often
leads to significant sparsity and irregularity [8], which brings
challenges to workload mapping for existing hardware plat-
forms. Conventional workload partition methods [9] for A ·X
operation may result in workload imbalances across various
warps. Consequently, simple row-wise workload allocation of
A workload could trigger idleness in certain threads, inhibiting
overall performance. Efficient SpMM algorithms for A · X
necessitate the effective management of parallelism across
both the sparse matrix rows or columns and the resulting dense
matrix accumulation to optimally distribute workload, ideally
at the warp level.

Contemporary GPUs display a mutli-level memory hier-
archy [10], and SpMM operations employ memory-efficient
formats like Compressed Sparse Row (CSR) or Compressed
Sparse Column (CSC), resulting in irregular data structures
and non-coalesced memory accesses. State-of-the-art (SOTA)
approaches, including GNNAdvisor [9], Graph-BLAST [11],
and cuSPARSE [12], have sought to optimize SpMM per-
formance. GNNAdvisor’s use of non-zero groups (NG) [9]
enhances workload mapping but can result in warp-level work-
load imbalance and resource underutilization on graphs with
power-law non-zero distribution. Graph-BLAST [11], though
supporting diverse graph operations and improving memory
coalescing, lacks efficiency in SpMM, particularly in dense
matrix column dimension traversal. CuSPARSE [12], a strong
baseline for SpMM kernels, restricts further insight due to
its closed-source nature. Overall, these approaches encounter
performance bottlenecks in addressing workload balance [9],
efficiency in dense dimension traversal [11], and limitations in
extensibility or insight due to closed-source development [12].

In this research, we introduce Accel-GCN, an open-source
GPU kernel design for GCNs that outperforms SOTA methods
and libraries, including GNNAdvisor [9], graph-BLAST [11],
and cuSPARSE [12]. Accel-GCN aims to enhance various
computational aspects such as data locality, multi-level mem-
ory efficiency, workload assignment, and memory access co-
alescing through the integration of degree sorting, block-level
partition, and combined warp techniques. The core contribu-
tions of this work are encapsulated in the design of the CUDA
kernel that leverages the aforementioned techniques and are
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outlined as follows:

• A degree sorting based preprocessing step with O(n)
complexity is proposed. This lightweight step aims to
enhance data locality and facilitate workload mapping by
grouping rows with identical degrees together.

• A block-level partition scheme is developed to dynami-
cally adjust warp workload sizes across different blocks.
Compared to SOTA designs like GNNAdvisor [9] which
use a fixed workload size assignment, the dynamical al-
location creates a more balanced workload among warps.
We further customize a metadata format for block-level
partition, enabling all warps within a block to share a
single metadata for workload mapping. As such, this
strategy enhances workload balance and shared memory
reuse efficiency.

• A combined warp strategy is formulated to maximize
thread-address continuity in the traversal and processing
of dense matrix’s column dimension. This approach fur-
thers the cause of column dimension memory coalescing
and computational parallelism, leading to a more efficient
execution.

We conduct evaluation of Accel-GCN on 18 benchmark
graphs and observe a significant performance boost. The
average improvements are 1.17× over cuSPARSE [12], 1.86×
over GNNAdvisor [9], and 2.94× over graph-BLAST [11].

II. PRELIMINARY AND RELATED WORK

A. Graph Convolution Network

Graph Convolutional Networks (GCNs) [1], comprised of
GCNConv layers, undergo two primary stages: linear transfor-
mation and feature aggregation, as illustrated in Fig. 1. Given a
graph G = (V, E , A), where the adjacency matrix A represents
the existence of edges between nodes, the forward propagation
in the l-th GCNConv layer can be decoupled into: (1) linear
transformation, Y l = X lW l, and (2) feature aggregation,
X l+1 = σ(A′Y l). Here, X l is the feature embedding matrix,
W l denotes the weight matrix, and A′ is the normalized ad-
jacency matrix. The activation function, typically an element-
wise ReLU, calculates the feature embedding matrix output.

GCN variants like GraphSAGE [13] and Graph Isomor-
phism Network (GIN) [14] maintain similar structures but with
distinct aggregation functions, upholding the same forward
propagation model as traditional GCNs. The efficiency of
GCNs is contingent on the feature aggregation stage [8],
[15], chiefly executed as sparse matrix multiplication (SpMM)
between the adjacency list A′ and embeddings Y l. This ultra-
irregular operation is typical in GCNConv layers, and given the
significant role of SPMM in GCN, its acceleration is essential
for boosting GCN performance.

B. SpMM Acceleration

GraphBLAST [11], [16], GE-SpMM [17], and Jiang et
al. [18] present distinct methods for enhancing sparse matrix-
matrix (SpMM) multiplication on GPUs. GraphBLAST adopts
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Fig. 1. Computational workflow of single GCNConv layer.

a block-based SpMM algorithm utilizing instruction-level par-
allelism to minimize latency and combines it with a ”row-
splitting” memory access pattern and ”static scheduling” load
balancing for efficient matrix access and adaptive thread allo-
cation. Conversely, GE-SpMM offers an effective CSR-based
SpMM kernel for generalized integration with Graph Neu-
ral Network (GNN) algorithms, eliminating data conversion
overhead. Jiang et al. introduce a row-reordering technique to
improve SpMM performance across hardware platforms and
investigate its applicability for diverse parameter settings.

GNNAdvisor [9] introduces an adaptive runtime system de-
signed for GNN acceleration on GPUs, incorporating special-
ized memory optimizations, community-aware node renumber-
ing, and warp-aware memory customization. Notably, SpMM
is utilized in Deep Graph Library (DGL) for sum-reduced ag-
gregation. While these methods represent significant advance-
ments, limitations persist in practical applications, primarily
due to right-multiply matrix dimensional constraints [11],
[16]–[18]. Jiang et al.’s row-reordering method is challenging
to implement on-the-fly, and GNNAdvisor relies on shared
memory caching for performance improvements, which does
not entirely benefit from memory alignment and varies with
the right-hand matrix dimensions.

In summary, two primary challenges within the SpMM do-
main require optimization: computational workload unbalance
and memory access irregularity.

III. ACCEL-GCN FRAMEWORK

A. Motivation

1) Workload Allocation Matters: The adjacency matrix of
a graph, often exhibiting a power-law distribution and extreme
sparsity [8], can lead to load imbalance across warps and
blocks with naive workload partitioning [9]. As shown in
the Collab graph degree distribution [19], nodes can have
degrees up to 66 times greater than the average, as presented
in Fig. 2. This discrepancy may cause uneven workload
allocation, resulting in idle threads and worse performance.

Moreover, efficient utilization of GPU resources in SpMM
requires exploiting multiple levels of parallelism, encompass-
ing parallelism across rows or columns of the sparse matrix
and the computation of resulting dense matrix elements. De-
signing an algorithm that effectively manages this parallelism
can be challenging. Therefore, an SpMM algorithm must
distribute the workload judiciously and efficiently, ideally
down to the level of individual warps.
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Fig. 2. A histogram for the row degree distribution of Collab.

2) Memory Access Patterns Matters: Modern GPUs ex-
hibit a three-level memory hierarchy [10]: global DDR mem-
ory, cache (L1 and L2), and shared memory. In SpMM
operations, sparse matrices use efficient representations such
as CSR or CSC, leading to irregular data structures and non-
coalesced memory accesses. These access patterns can result
in increased latency [8], [18], memory bank conflicts, and
reduced memory bandwidth utilization. To optimize SpMM
performance, all levels of the GPU memory hierarchy should
be considered. We summarize two challenges as follows:

a) Shared Memory Mapping Challenge. Efficient use of
shared memory can help minimize global memory access
latency [10]. However, due to the irregular structure of sparse
matrices, effectively using shared memory for SpMM can be
challenging. Loading data into shared memory might involve
complex indexing and synchronization, which can increase
overhead and diminish performance benefits.

b) Cache Locality Challenge. The irregular memory access
patterns in SpMM can lead to inefficient cache utilization [20],
causing cache thrashing and increased memory access latency.
Designing algorithms that maximize cache utilization can be
challenging due to the non-uniform distribution of non-zero
elements in the sparse matrix.

To address these challenges, various optimization techniques
can be applied, including selecting appropriate sparse matrix
formats [18], [21], exploiting multiple levels of parallelism
[16], implementing coalesced memory access patterns [17],
efficiently using shared memory [9], and employing dynamic
load balancing techniques [8]. However, in spite of these
optimizations, SpMM often remains a complex task in terms
of both computational and memory aspects.

B. Accel-GCN Preliminary

Sparse Matrix Representation and Reordering significantly
influence SpMM algorithm performance, with proper tech-
niques enhancing memory access, minimizing complexity, and
optimizing performance. Research has developed reordering
input data and new sparse matrix representations, such as
ELLPACK-R in FastSpMM [21], SELLP in MAGMA [22],
register blocking in OSKI [23], and Compressed Sparse Blocks
(CSB) [24]. These implementations have yielded performance
gains. RS-SpMM [25] introduced a format for better SpMM
data locality, albeit with limitations.

I-GCN [15] evaluated graph reordering techniques including
HATS [26], SlashBurn [27], and Rabbit [28], each with
their own strengths and limitations. HATS [26] enhances
cache hierarchy efficiency, whereas SlashBurn [27] clusters
non-zeros effectively but requires complex, non-parallelizable
logic. Rabbit reordering [28] outperforms other approaches in
terms of data locality, parallelization ease, and performance
but is unsuitable for Accel-GCN due to its processing overhead
compared to GCN inference.

Shared Memory Utilization and Alignment Efficient
alignment and utilization of shared memory are vital for
optimizing GPU performance. Coalesced memory access [29],
[30] enhances this efficiency but aligning access when writing
to global memory can be challenging. Padding the shared
memory array to the nearest multiple of 32 optimizes align-
ment when handling intermediate SpMM results [11], [16],
[17]. Though optimizing global memory alignment is complex,
shared memory offers opportunities for alignment improve-
ment, thus potentially enhancing SpMM performance, given
proper padding and indexing management. Some previous
works, such as GraphBLAST [11], [16], GE-SpMM [17],
Jiang et al. [18], and GNNAdvisor [9], have faced alignment
inefficiencies in corner cases, leading to suboptimal perfor-
mance.

Although optimizing memory access alignment for global
memory is challenging, using shared memory for interme-
diate results offers opportunities for alignment optimization,
potentially improving SpMM performance. However, proper
management of padding and indexing is necessary to ensure
accurate results and avoid memory access conflicts.

Certain prior works, including GraphBLAST [11], [16],
GE-SpMM [17], Jiang et al. [18], GNNAdvisor [9], and
MergePath-SpMM [31], have encountered inefficient align-
ment in corner cases, resulting in suboptimal memory system
performance.

C. Accel-GCN Preprocessing

Our Accel-GCN design incorporates two key preprocessing
steps—degree sorting and block-level partitioning—to enable
efficient parallel processing of sparse matrices.

Degree Sorting. Degree sorting serves as a preliminary step
for block-level partitioning. Sorting sparse matrix degree in
a CSR-formatted sparse matrix requires the following steps:
(1) computing each row’s degree using the row pointer array,
which has a time complexity of O(n) when employing count
sort [32] or radix sort [33], with n indicating the number of
rows; (2) applying a stable sorting algorithm to sort rows
based on the degrees; and (3) updating the row pointer
array to reflect the new row order, with a time complexity
of O(n). The dominant time complexity of this operation
arises from applying the stable sorting algorithm. Nevertheless,
employing count sort, a linear time-complexity algorithm, can
optimize the overall time complexity to O(n). This lower
time complexity enhances efficiency compared to alternative
algorithms and allows on-the-fly execution.
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Fig. 3. Metadata generation process: (a) original graph structure. (b) Metadata
of warp-level partition. (c) Metadata of block-level partition.

Algorithm 1 Get partition patterns
1: deg bound← max block warps×max warp nzs;
2: factors← all factors of max block warps;
3: i← 0; deg ← 1;
4: while deg < deg bound do
5: if factors[i]× warp max nz ≥ deg then
6: assign block rows ← max block warps

factors[i] to current
block-partition pattern;

7: assign warp nzs ← ⌈ deg
factor[i]⌉ to current block-

partition pattern;
8: deg ++;
9: else

10: i ++;
11: end if
12: end while

Block-level Partition. Block-level partition serves as a
highly effective method for optimizing workload distribution
among warps, which is also within a time complexity of O(n).
This approach not only enhances computational resource allo-
cation but also notably reduces the meta-data size necessitated
for the partitioning process.

The block-level partition algorithm consists of two parts.
Algorithm 1 presents the first part, get partition patterns, which
entails determining the maximum number of warps per block
and the maximum number of non-zero elements that each warp
can handle. Their product, referred to as deg bound, signifies
the maximum number of non-zero elements manageable by a
single block.

For rows with a degree (number of non-zero elements)

Algorithm 2 Block-level partitioning
1: for each deg do
2: if deg ≤ deg bound then
3: row remaining ← total number of rows of deg
4: while rows remaining

≥ pattern[deg].block rows do
5: {row, loc, deg, warp nzs|block rows} → current

metadata;
6: rows remaining −= pattern[deg].block rows;
7: end while
8: {row, loc, deg, warp nzs|rows remaining} → cur-

rent metadata;
9: else

10: deg remaining ← deg
11: while deg remaining≥ deg bound do
12: {row, loc, deg, deg bound} → current metadata;
13: deg remaining −= deg bound;
14: end while
15: {row, loc, deg, deg remaining} → current metadata;
16: end if
17: end for

less than or equal to deg bound, each block processes
one or more rows. By enumerating every factor factori
from 1 to max block warps, factori warps process rows
with degrees not exceeding factori ·max warp nzs, while
max block warps

factori
rows are allocated to one block. When a row’s

degree surpasses deg bound, non-zero elements are assigned
across multiple blocks to maximize loading.

The second part is described by Algorithm 2. After travers-
ing through all rows of the graph once, the block-level partition
algorithm generates meta-data for each block, shared by all
warps within the same block. To fully exploit modern GPU
read and write bandwidth, which permits reading and writing
128 bits simultaneously, the meta-data consists of an array
of int4 data structures with a length equal to the number of
blocks. The meta-data encompasses four elements: the block’s
degree, starting row number, starting address, and additional
32 bits of information. When the block’s degree does not
exceed deg bound, the additional information is split into
two 16-bit segments, one for the number of non-zero elements
handled by each warp and the other for the number of rows
handled by the block. If the block’s degree is greater than
deg bound, the additional information stores the number of
non-zero elements assigned to the block. Since the block-
level partitioning algorithm can be completed with a single
pass through the rows of the graph, its time complexity is
also within O(n). Therefore, the combined time complexity of
degree sorting and block-level partitioning is also within O(n).
Moreover, both algorithms are straightforward and suitable for
on-the-fly execution.

Metadata Format for Block-level Partition. Figure 3
illustrates a representative example contrasting the metadata
formats of block-level partition and warp-level partition.

In the warp-level partition depicted in Fig. 3(b), each warp
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Fig. 4. Illustration of hardware mapping strategy: (a) the warp-level workload partitioning with a single warp traversing the column dimension of the dense
matrix. (b) The block-level workload partitioning (right) with the combined warp strategy handling the column dimension of the dense matrix. (c) Preprocessing
steps for block-level partitioning strategy. (d) Workload distribution of warp-level partitioning. (e) Workload distribution of block-level partitioning.

manages at most 2 non-zero elements. For instance, WP-1
oversees all non-zero elements of row0 starting at col0, and its
corresponding metadata is row = 0, col = 0, len = 2. Meta-
data for WP-2, WP-3, and WP-4 are constructed analogously.
The cumulative warp metadata amount to 96 bits, necessitating
32 bits of padding to align with the 128-bit memory bus size.

Fig. 3(c) explicates the block-level partitioning process.
Initially, degree sorting is applied to the graph nodes, resulting
in an ordered sequence of row0, row2, and row1 for row0,
row1, and row2, respectively. Subsequently, block-level parti-
tioning is executed such that each warp manages at most two
non-zero elements and each block encompasses two warps.
Consequently, both row0 and row2 (each with a degree of 2)
encompassing a total of 4 non-zero elements are governed by
BP-1, while row1 falls under the jurisdiction of BP-2.

The metadata for block-level partitioning is encapsulated
within an int4 array. It comprises the degree of the rows
overseen by the block, the position of the first non-zero ele-
ment, the row number of the initial row, and ancillary details,
encompassing the quantity of non-zero elements handled by
each warp and the number of rows managed by the block (each
represented by 16 bits). Therefore, the metadata for BP-1 is
deg = 2, loc = 0, row = 0, info = 2|2, and the metadata for
BP-2 is deg = 4, loc = 4, row = 2, info = 2|1. The metadata
storage of block-level partitioning normalized to warp-level
partitioning is:

SB

SW
≈ 1

Avg. Warps per Block
(1)

Block-level partitioning, in comparison to warp-level par-
titioning, exhibits significant storage efficiency, typically re-
quiring less than 10% of the storage space. For instance, with
a parameter of max block warps set to 12, the block-level
partitioning strategy necessitates a mere 8% of the metadata
storage relative to the warp-level approach.

One salient advantage of this approach is that the workload
allocation for each warp within a block can be directly deduced
from the block-level partition’s metadata. Consider BP-1,
encompassing Warp-1 and Warp-2. Given that the starting

row of BP-1 is 0, the degree (deg) is 2, the number of
accountable rows is 2, and each warp manages 2 non-zero
elements, the responsibility for row0 and row1 is assigned to
Warp-1 and Warp-2, with corresponding column values of 0
and 2, respectively. This logic extends to other warps, such
as Warp-3 and Warp-4 within BP-2, enabling a consistent and
systematic workload allocation.

The efficacy of block-level partitioning is further elucidated
in Fig. 4(e). For all rows with a degree less than or equal
to deg bound, the block-level partitioning patterns ensure a
uniform workload distribution within each block. This stands
in stark contrast to the warp-level partitioning, which exhibits a
differentiated and uneven workload distribution. Consequently,
the block-level partition patterns mitigate the decreased utiliza-
tion of issue slots often associated with higher warp inactivity
rates when handling residual workloads. This efficient align-
ment with the underlying computational architecture enhances
parallelism and, ultimately, execution efficiency.

D. Accel-GCN Mapping

Combined Warp for Block-Warp Mapping. The com-
bined warp approach represents an exceptionally efficient
organizational strategy for addressing dense matrix dimen-
sions. By leveraging memory coalescing and alignment, this
method effectively optimizes memory bandwidth utilization,
contributing to enhanced performance in the context of GPU
acceleration.

SPMM is distinguished from Sparse Matrix-Vector Multi-
plication (SpMV) by its essential aspect of column dimension
traversal of the right matrix. The traversal method for the
right matrix significantly impacts performance, as SpMM is
typically memory-bound.

When the column dimension of the right matrix surpasses
the number of threads within a warp (usually 32), a single
warp cannot accommodate the column dimension workload,
necessitating traversal. Previous works, such as GNNAdvisor
[9], adopt the natural method of introducing an inner loop
for this warp. However, this approach introduces instruction-
level branching and jumps, which, combined with memory



TABLE I
GRAPH DATASETS DETAILS

Graph Name # Nodes # Edges Graph Name # Nodes # Edges Graph Name # Nodes # Edges
am 881,680 5,668,682 amazon0601 403,394 5,478,357 Artist 50,515 1,638,396

Arxiv 169,343 1,166,243 Citation 2,927,963 30,387,995 Collab 235,868 2,358,104
com-amazon 334,863 1,851,744 OVCAR-8H 1,889,542 3,946,402 PRODUCTS 2,449,029 123,718,280

Pubmed 19,717 99,203 PPA 576,289 42,463,862 Reddit 232,965 114,615,891
SW-620H 1,888,584 3,944,206 TWITTER-Partial 580,768 1,435,116 wikikg2 2,500,604 16,109,182

Yelp 716,847 13,954,819 Yeast 1,710,902 3,636,546 youtube 1,138,499 5,980,886
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Fig. 5. Overall kernel performance comparison for cuSPARSE, GNNAdvisor, Graph-BLAST, and Accel-GCN (ours) on each graph. The speedup is normalized
to cuSPARSE.

positions mapped according to non-zero element positions,
may fragment memory coalescing in the column dimension
and lead to reduced efficiency.

To address these issues, we propose a combined warp
execution approach that combines several consecutive warps,
treating them as a single combined warp tasked with handling
the entire column dimension workload. This method results in
continuous memory position access within a combined warp’s
column dimension, improving cache hit rate and memory
coalescing.

The implementation strategy for the combined warp unfolds
as follows: First, compute the column dimension divided by
32 and round up. This produces the number of warps c within
the combined warp, which defines round dim = c× 32. The
kernel computation’s outermost loop includes an additional
loop ranging from 0 to c − 1, incrementing the thread id
by the block dimension with each iteration to produce a
new thread id. The warp id for the combined warp is then
determined by dividing this thread id by round dim, and the
division’s remainder provides the lane id. Threads featuring a
lane id greater than or equal to the right-hand matrix’s column
dimension are truncated, and the combined warp supplants the
single warp for workload execution.

An illustration of the combined warp strategy is provided
in Fig. 4(b), elucidating its contrast to the approach presented
in Fig. 4(a), as adopted in GNNAdvisor [9]. In this example,
a dense matrix with a column dimension of 96 is considered.

The combined warp strategy groups warps w1 to w3 together
to form a combined warp cw1, and likewise, w4 to w6 are
amalgamated to form cw2. These combined warps, cw1 and
cw2, are delegated with the responsibility of handling all
workloads of NZ1 to NZ3 and NZ4 to NZ6, respectively.
Subsequent workloads for other non-zero groups (NZs) are
sequentially assigned to cw1 and cw2.

Contrary to the approach in Fig. 4(a), where a single warp
loops through the column dimension to process the single
workload group, the combined warp strategy endeavors to
access memory addresses in one row using continuous thread
IDs. This method thereby maximizes memory coalescing and
computational parallelism, offering an advantageous approach
for optimizing memory access patterns and improving execu-
tion efficiency.

Summary and Further Enhancement: We present an
optimized computational approach that leverages the GPU’s
memory hierarchy and CUDA’s atomicAdd block feature.
The proposed hierarchical warp computation strategy system-
atically accumulates partial results across three cache levels.

In the first cache level, independent parallel threads manage
non-zero elements along the column dimension. The second
cache level ensures atomicity among all combined warps han-
dling identical row workloads within the same block. Utilizing
CUDA’s atomicAdd block function, atomic operations within
shared memory are enabled.

The third cache level addresses rows with degrees exceeding
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Fig. 6. The average SPMM kernel execution times for Accel-GCN (ours), GNNAdvisor, Graph-BLAST, and cuSPARSE have been tested on each graph,
with the right-hand matrix’s column dimensions ranging from 16 to 128.

the deg bound by concurrently executing partial results in
multiple blocks and atomically accumulating them in global
memory. The combined warp approach aligns shared memory,
with higher kernel performance achieved when the column
dimension is an integer multiple of 32.

Overall, this strategy efficiently utilizes memory hierarchy
and atomic features, demonstrating significant performance
gains and offering a pathway for future enhancements.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Framework

The CUDA source code used in this study is compiled
utilizing NVCC, version 12.0, and the execution is carried
out on an Nvidia GeForce RTX 3090 platform equipped with
Ubuntu 20.04. The experimental design involves the execution
of SPMM with the left-hand sparse matrix from 18 benchmark
graphs, specified in Table I. The tests encompass scenarios
where the column dimensions of the right-hand matrix vary
from 16 to 128.

The performance of our proposed kernel is gauged against
benchmark techniques such as GNNAdvisor [9], Graph-
BLAST [16], and the recent cuSPARSE, version 12.0. The
latency measurements are conducted using the Nsight Com-
pute [34] tool. Note that the comparisons mainly focus on ker-
nel execution time, excluding data transfer and preprocessing
durations. Moreover, the impact on performance introduced

by the adoption of block-level partition and combined warp
strategy is evaluated.

The selection of graphs for this experiment involves popular
benchmark datasets widely used in previous research [9], [13],
[35]–[39]. Table I provides detailed parameters for each graph.
The range of graph sizes in the tests extends from a node
count of 19,717 to 2,927,963, edge numbers ranging from
99,203 to 123,718,280, and densities spanning from 1.1×10−6

to 2.1 × 10−3. This diverse array of sizes and densities
facilitates a comprehensive appraisal of the evaluated kernels’
performance, demonstrating their scalability and proficiency
under various circumstances.

TABLE II
IMPACT OF BLOCK-LEVEL PARTITIONING AND COMBINED WARP

Speed Ratio(%) Block-Level Partition Combined Warp
Column Dimension

Range Avg Max Min Avg Max Min

[16, 32] 105.2 129.2 92.4 133.4 194.5 104.8
(32, 64] 107.2 130.7 94.1 127.8 174.0 87.3
(64, 96] 106.5 127.7 92.4 105.5 126.5 81.3
(96, 128] 106.8 126.0 92.9 122.9 156.0 86.7

B. Performance Evaluation

As illustrated in Fig. 5, our proposed kernel depicts a
comprehensive enhancement in performance compared to cuS-
PARSE in the majority of the cases, and distinctly outperforms
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Fig. 8. Speedup of degree sorting & block-level partition (i). with combined-
warp strategy over (ii). without combined-warp strategy.

the state-of-the-art predecessors, namely GNNAdvisor and
graph-BLAST, in all instances. When considering the aver-
age computational performance of kernels across all column
dimensions (ranging from 16 to 128) on a variety of graphs,
our kernel manifests an average improvement of 1.17× over
cuSPARSE, reaching a maximum increment of 1.45×. It
surpasses a 1.3× improvement in 22% of the cases, under-
performing compared to cuSPARSE in a single instance and
approximately equalling cuSPARSE’s performance in another.
Our kernel significantly supersedes GNNAdvisor and graph-
BLAST across all benchmark graphs, yielding an average
speedup of 1.86× and 2.94×, and a maximum speedup of
3.41× and 5.02×, respectively.

Fig. 6 exhibits the runtime of all kernels on each graph
for every column dimension of the right-hand matrix. Bene-
fitting from memory coalescing and automatic alignment of

intermediate results proffered by the combined warp strategy,
the runtime demonstrates a gradual increase as the column di-
mension escalates, exhibiting minimal effect when the column
dimension deviates from a power of 2.

Ablation Study 1: Block-level Partition vs. Warp-level
Partition. Figure 7 illustrates the comparative speedup ratio
achieved by block-level partition as opposed to warp-level
partition. The block-level partition, leveraging dynamically
varying NZ group sizes according to node degree, manifests
superior shared memory reuse efficiency and enhanced locality
relative to warp-level partition. As substantiated by Table II,
block-level partition has realized an average speedup ranging
from 1.05× to 1.07× across disparate column dimension
intervals, culminating in a peak improvement of 1.31× and a
least effective case of 0.92×. Importantly, the enhancement in
performance facilitated by block-level partitioning is observed
to remain consistent across varying column dimensions.

Ablation Study 2: Combined Warp. Depicted in Fig. 8,
the speedup resulting from block-level partition (i) with and
(ii) without combined warp strategies are given. The imple-
mentation of combined warp strategy leads to performance
improvement specifically within the column dimension in-
tervals [0, 32], [32, 64], and [96, 128], with an average
speed gain recorded between 1.23× and 1.33×. Conversely,
this enhancement is somewhat diminished within the column
dimension range [64, 96], a divergence potentially ascribable
to unaligned cache line size in the prevailing GPU architecture.

In summation, the ablation studies collectively attest to the
vital contributions of both block-level partition and combined
warp strategy in accelerating processing speed for most of the
graphs. The nuanced differences between these strategies high-
light the necessity of targeted optimization based on specific
column dimension intervals and underscore the potential for
further investigation and refinement in future work.

V. CONCLUSION

Existing deep learning acceleration design focus on lever-
aging sparsity in training and inference phase [40]–[66]. Most
of them focuses on FLOPs reduction in algorithm perspective
and lacks system-level solution to provide effective speedup.

In this work, we presents Accel-GCN, a GPU acceler-
ator architecture addressing workload imbalance and mem-
ory access irregularity in GCNs. Incorporating a lightweight,
O(n) preprocessing stage with degree sorting and block-
level partition, it optimizes memory utilization and workload
distribution. The kernel design further leverages a combined
warp strategy for dense column dimension processing, enhanc-
ing performance and memory efficiency. Accel-GCN further
improves memory coalescing and alignment to achieve a better
memory bandwidth utilization. Evaluated on 18 benchmark
graphs, Accel-GCN outperforms cuSPARSE, GNNAdvisor,
and graph-BLAST by 1.17×, 1.86×, and 2.94× respectively,
highlighting its potential in general GCN acceleration appli-
cations.
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