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Abstract—In this work, we introduce GraPhSyM, a Graph
Attention Network (GATv2) model for fast and accurate estima-
tion of post-physical synthesis circuit delay and area metrics from
pre-physical synthesis circuit netlists. Once trained, GraPhSyM
provides accurate visibility of final design metrics to early
EDA stages, such as logic synthesis, without running the slow
physical synthesis flow, enabling global co-optimization across
stages. Additionally, the swift and precise feedback provided
by GraPhSyM is instrumental for machine-learning-based EDA
optimization frameworks. Given a gate-level netlist of a circuit
represented as a graph, GraPhSyM utilizes graph structure, con-
nectivity, and electrical property features to predict the impact
of physical synthesis transformations such as buffer insertion
and gate sizing. When trained on a dataset of 6000 prefix adder
designs synthesized at an aggressive delay target, GraPhSyM
can accurately predict the post-synthesis delay (98.3%) and area
(96.1%) metrics of unseen adders with a fast 0.22s inference time.
Furthermore, we illustrate the compositionality of GraPhSyM by
employing the model trained on a fixed delay target to accurately
anticipate post-synthesis metrics at a variety of unseen delay
targets. Lastly, we report promising generalization capabilities of
the GraPhSyM model when it is evaluated on circuits different
from the adders it was exclusively trained on. The results show
the potential for GraPhSyM to serve as a powerful tool for
advanced optimization techniques and as an oracle for EDA
machine learning frameworks.

Index Terms—machine learning, physical synthesis prediction,
graph attention networks, datapath optimization, EDA

I. INTRODUCTION

In modern Electronic Design Automation (EDA) flow, a
digital design undergoes a series of transformative stages, in-
cluding logic synthesis, technology mapping, physical design,
and synthesis. These transformations aim to optimize the qual-
ity of results (QoR) metrics that are central to digital design,
such as circuit delay, area, and power [1]. Given the potential
for substantial QoR metric alterations at each stage, early-
stage optimizations based solely on immediate metrics can be
suboptimal, as these metrics may not accurately represent the
state of the design after subsequent stages. However, since
these stages are typically time and computationally-intensive,
it is typically infeasible for earlier stages to optimize a design
while running later stages in-the-loop for accurate feedback
on QoR metrics. Thus, fast and accurate estimation of QoR
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for predicting design metrics. (d) Optimization/training using
GraPhSyM in the loop.

metrics for later EDA stages, such as physical design and
synthesis, is critical for improved optimization of a design in
earlier stages, such as logic synthesis and technology mapping.

Several studies, such as DRiLLS [2] and PrefixRL [3],
have demonstrated that logic synthesis optimizations with final
QoR metrics feedback can yield significantly better optimiza-
tion than heuristic algorithms with proxy metrics feedback.
DRiLLS trains reinforcement learning (RL) agents to apply
logic synthesis steps in ABC [4] in order to minimize the
circuit delay and area of general logic. On the other hand,
PrefixRL trains reinforcement learning (RL) agents to generate
(parallel)-prefix circuits that have Pareto-optimal delay and
area. Both methodologies emphasize the importance of direct
QoR metric feedback, as opposed to proxy metrics such as
And-Inverter Graph (AIG) [5] or prefix node depth and count,
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in driving their effectiveness. PrefixRL specifically demon-
strates that feedback of QoR metrics after physical synthesis
optimizations with OpenPhySyn [6] in-the-loop is essential
since at aggressive delay targets, a circuit that has better QoR
pre-synthesis may have worse QoR post-synthesis. However,
this approach comes with a significant computational cost. For
instance, physical synthesis for circuits like 32b prefix adders
demands an average of 17 seconds, underscoring the need for
more efficient ways to incorporate post-synthesis feedback into
early-stage optimizations.

Hence, we propose GraPhSyM, a supervised learning ap-
proach where a Graph Attention Network (GATv2) [7], [8]
model quickly and accurately estimates post-synthesis circuit
delay and area from the pre-synthesis circuit netlist (Figure
1). Our focus centers on prefix adder circuits due to their
significant role in high-performance computing and machine
learning [9]–[12]. Furthermore, a vast amount of prefix adders
with a variety of logic levels and fanouts can be generated for
training and evaluation. We train GraPhSyM to model the ef-
fects of OpenPhySyn’s physical synthesis optimizations, such
as timing-driven buffer insertion and gate sizing. However,
with additional training data, GraPhSyM is designed to be
extended to any circuit or synthesis tool. The key contributions
of this work are:

• GraPhSyM: a supervised learning approach that trains
a Graph Attention Network (GATv2) model [7], [8] to
quickly and accurately estimate post-physical-synthesis
delay and area metrics of a circuit from its pre-synthesis
gate-level netlist.

• A novel label annotation and prediction approach that
associates the effect of physical synthesis transformations
(area and delay change) to graph nodes (pre-synthesis
netlist cell pins). This approach enables a large number of
training labels (per pin) instead of just an overall area and
delay labels per netlist. Furthermore, the delay change
labels allow for local predictions, whereas delay labels
would require the network to make predictions from the
global topological structure of the netlist only, which is
a more complicated task to learn.

• An algorithm for constructing the overall area and delay
metrics from the node-level predictions and a sweep
algorithm for constructing overall area and delay metrics
for delay targets more relaxed than the model training
delay target.

• Demonstrating the effectiveness of the GraPhSyM with
a dataset of prefix adder circuits synthesized at a fixed
aggressive delay target. The model inference takes 0.22s,
compared to 17s for running physical synthesis, and
produces accurate predictions on unseen adders (delay
(98.2%), area (97.8%)) and on unseen delay targets
that were not trained for (delay (98.3%), area (96.1%)).
Without any additional training, the model shows promis-
ing generalization when evaluated on other circuits and
produces more accurate predictions than pre-synthesis
metrics.

The rest of the paper is organized as follows: Section II
discusses existing related work. Section III explains the pre-
liminary background and outlines our motivation. Section IV
explains our architecture and methodology. Section V show-
cases the experimental evaluation of the flow, and we conclude
in Section VI.

A. Problem Formulation

Formally, our problem can be framed as follows: given a
design’s gate-level netlist DAG and early-stage EDA metrics,
the objective is to train a graph neural network capable of
accurately estimating the anticipated metrics for each node at
later stages of the EDA flow.

II. RELATED WORK

There have been several endeavors to integrate machine-
learning approaches to assist in EDA metric calculation. For
instance, Dai et al. propose a machine-learning framework
for estimating an array of quality of results (QoR) metrics in
high-level synthesis (HLS) flow for field-programmable gate
array (FPGA) [13]. In a similar vein, Makrani et al. presents
another supervised learning model to estimate the timing and
resource usage for HLS [14]. However, both approaches focus
on HLS flow (which is different from the traditional EDA
flow) and only apply to FPGAs. In addition, they rely on
minimal features from synthesis reports that might not capture
essential features of the design’s structure. In a different
direction, the work by Kahng et al. suggests a predictive
model to reduce the divergence between two timing analysis
techniques: graph-based analysis (GBA), which is a faster, less
accurate analysis, and path-based analysis (PBA), which is
4x slower but provides a more accurate estimate [15]. Other
research directions investigate using neural network models to
provide more accurate models for cell characterization instead
of look-up tables [16] [17], which shows the potential for
neural networks to learn about cell characterization and timing
analysis. Additionally, the work by Kahng et al. shows a
learning-based approach to correlate wire slew and delay from
the early analysis to the results from the sign-off STA tool
[18]. A similar methodology is presented by Cheng et al. to
use machine learning models for wire timing estimation [19].
Finally, Neto et al. introduce an innovative approach modeling
the logic paths as sentences, with the gates being a bag of
words in an attempt to use ML to bridge the gap between the
logic synthesis tool and the physical design [20].

III. MOTIVATION & BACKGROUND

A. EDA Metrics Variance

The Electronic Design Automation (EDA) flow represents
the comprehensive process of designing, simulating, and ver-
ifying electronic systems according to the foundry’s design
rules [21]. This flow is divided into several design stages,
each with distinct quality metric requirements. Two principal
metrics are delay, which characterizes the clock frequency at
which the design can function, and cell area, which denotes
the total cell area and significantly influences performance and



power. An underestimation of delay can lead to timing issues,
where the design may not function as intended. It could lead to
scenarios where the signal does not reach the intended parts of
the circuit in time, causing incorrect computations or system
instability. Overestimating the delay, however, might result
in overly conservative designs, thereby not fully utilizing the
design’s potential performance. Similarly, inaccuracies in area
estimation can have implications on the cost and feasibility
of the design. Underestimation could lead to insufficient
allocation of resources during the design phase, causing man-
ufacturing issues, while overestimation could unnecessarily
increase production costs and result in the wastage of valuable
chip real estate. These design metrics are compiled across
various stages of the flow and play a crucial role in assessing
the design’s quality and directing the different optimization
phases. As such, they are vital evaluation criteria for any
EDA framework. Consequently, numerous machine-learning
frameworks for EDA optimization depend on these metrics to
guide or assess the optimization, a process repeated throughout
the training phase. However, there exists a marked variance
between the more accurate metrics (evaluated at later stages,
such as physical synthesis) and the early metrics (evaluated
at early stages, like logic synthesis). As a result, dependence
on early metrics can lead the optimization towards suboptimal
solutions since the evaluation post-physical synthesis generates
different results. Thus, early metrics prove insufficient in
steering optimization frameworks toward optimal results based
on EDA metrics.

B. Physical Synthesis Optimizations

Physical synthesis involves a set of intricate transformations
to ensure that a digital design adheres to the specified design
goals. These objectives include but are not limited to timing,
power, and area. Physical synthesis is critical because it
translates the logical representation of the circuit into a physi-
cal layout that can be fabricated on a semiconductor wafer.
Physical synthesis algorithms leverage various optimization
techniques to minimize power consumption, reduce the cir-
cuit’s area, and meet timing constraints. However, these goals
often contradict one another, necessitating trade-off decisions
during the synthesis process. Considering the complexity of
physical synthesis, it is evident that efficient and accurate
prediction models can greatly aid in the early design stages.
Such models could provide designers with an early insight
into the post-synthesis performance of the design, helping
them to make informed decisions and adjustments in the
preliminary stages. This is where machine learning methods,
such as the one introduced in this paper, come into play.
By accurately predicting post-synthesis metrics based on pre-
synthesis netlists, these models can significantly streamline
the EDA design process and contribute to improved design
outcomes.

C. Graph Attention Networks

Machine learning offers rich opportunities to enhance and
assist EDA tools and algorithms [22]. Simultaneously, the

standard method for modeling EDA design is using Directed
Acyclic Graphs (DAG) to represent the design’s structure.
Thus, machine learning frameworks that work on graphs [23]
are advantageous for EDA flows since they learn the complex
relations among the design’s graph structure. GAT [7] is
one of the most popular types of Graph Neural Networks
(GNNs). They operate on graph-structured data utilizing atten-
tion modules to overcome shortcomings of prior graph neural
networks such as Graph Convolutions Networks (GCNs) [24].
GATv2 [8] provides further improvements over GAT by fixing
limitations of static attention of standard GAT layers. We build
our model upon GATv2 to capture the design features and
graph structure for predicting design metrics. We also explain
our techniques to enhance the graph’s feature modeling and
facilitate the model’s convergence.

IV. GRAPHSYM ARCHITECTURE

A. Input Graph & Feature Engineering

Our graph-based supervised learning model, GraPhSyM,
offers an approach for predicting design metrics from the
design features themselves. Unlike many existing methodolo-
gies that draw predictions from vectorized design features
[13]–[15] [18], GraPhSyM places a strong emphasis on not
only understanding individual design components but also
on comprehending the interconnectivity of the entire design
structure. In order to capture these complex relations among
various nodes and their connections, we employ graph net-
works. The first step in our process is to convert the design
into a Directed Acyclic Graph (DAG) representation. Each pin
of the design is represented as an individual node in the graph.
Connections between the pins and the internal cell connec-
tions are represented as edges, building a comprehensive and
interconnected graph of the design. Next, we perform a fast
static timing analysis on the early-stage design to estimate the
metrics before the physical synthesis process takes place. This
step provides us with a basic understanding of the design’s
performance potential, allowing for more accurate predictions
later in the process. Subsequently, we annotate each node
with features extracted from the timing analysis tool and the
standard cell library. The features were carefully chosen for
their substantial influence on guiding the physical synthesis
process. In essence, the chosen features highlight those aspects
of the design that most directly affect the final output metrics.
The full set of features used in our model can be found in
Table I. To ensure the smooth convergence of the model, we
normalize all features using z-score normalization [25]. This
process brings the values of each feature into a common range,
thereby reducing the chance of disproportionate influence of
certain features on the model and facilitating its learning
process.

B. Label Graphs

GraPhSyM aims to accurately predict two primary Elec-
tronic Design Automation (EDA) metrics: area and delay.
Central to achieving this aim is the effective generation of
label graphs, which serve as the training ground for our



Feature Description & Reasoning
Direction The direction of the pin (input or output) which

directs the synthesis optimization algorithm.
Delay The delay contribution of the associated pin

along the worst delay path. We chose cell delay
and not path-based features such as arrival time
to localize the features to the node, making it
easier for the model to learn.

Slew The input transition time, which is a critical
feature since the cell delay is usually calculated
as a function of input transition time and driven
capacitance.

Input Capacitance The capacitance of input pins, which provides
information about the driven capacitance that
contributes to the cell delay model.

Area The area of the associated cell, an important
feature to be able to estimate the change in
the design area.

Driven Capactiance The capacitance driven by an output pin; while
this feature can be calculated from the input
capacitance, we decided to add it directly to the
graph since it is an essential factor for delay
calculation and optimization algorithms.

Fan-out The number of output connections, similar to
the driven capacitance, while the fan-out can
be estimated from the output edges in the
graph, we also chose to provide it directly
instead of letting the model learn it.

Cell Type One-hot encoding of the cell type, used to
provide the model with information about the
different cell types.

TABLE I: GraPhSyM node features. The first column shows
the node feature; the second column describes the feature and
its importance for the model.

model. A label graph is essentially a representation of design
labels that correspond to the area and delay metrics post-
synthesis. To create such a graph for a given design, we start by
running the design through an EDA flow, where it undergoes
various transformations and optimizations needed for physical
realization. Following the physical synthesis, the design is
subjected to a static timing analysis. This analysis evaluates
the design post-synthesis to determine the path delays and
calculate the total area. It is a crucial step as it provides the
final metrics that will serve as our labels for the graph nodes.
While it might seem straightforward to label the nodes of the
graph with area and delay, the challenge lies in how to best
represent these metrics so that they can be effectively used
during the training phase.

1) Delay Labeling: There are two challenges when anno-
tating the node delays. The first challenge pertains to the new

nodes that the label graph might contain. For instance, the
optimization process during physical synthesis could introduce
new elements like inserted buffer trees that were absent in
the original input graph. This poses a problem because if the
model were to predict the new delay solely for each node
present in the input graph, it would inadvertently omit the
delay arising from the newly added nodes in the optimized de-
sign. Consequently, the model’s ability to estimate the design’s
delay post-synthesis would be compromised. To counter this
limitation, we deviate from the conventional method of directly
using the delay feature from the analysis tool for labeling.
Instead, we define the label of a node as the difference between
the arrival time at the current node and the arrival time at the
driving node from the original input graph. In doing so, any
additional delay from new nodes added between the current
node and its driver from the original graph is incorporated
into the node’s label. This approach ensures that the effects
of any newly inserted nodes are adequately represented in the
delay predictions. The second challenge involves the change
in the delay for a single node before and after optimization.
Oftentimes, the magnitude of this change is relatively small
when compared to the delay itself. If the model attempts to
predict the new delay, it is prone to essentially predict the
original delay before synthesis as the new delay after synthesis,
with the addition of a random delta. To illustrate, if a node
has a delay of 1.2ns before synthesis and 1ns after synthesis,
the model is likely to predict the delay as 1.2ns ± a small
∆, given that the label is in close proximity to the feature. To
address this issue, we employ a different strategy where we
use the change in delay as our label instead of the delay itself.
As such, in the aforementioned example, the label would be
0.2ns instead of 1ns. This enables the model to learn to predict
the actual change in delay rather than falling into the trap of a
one-to-one mapping of the input delay to the predicted delay.

2) Area Labeling: The area has a similar challenge, where
the node area change is insufficient since new nodes are added.
And similarly, the model needs to learn deltas to avoid the
one-to-one mapping problem. Hence, for labeling the areas
for each output pin in the label graph, we first add the area
of all new nodes driven by the given pin. Next, we annotate
the output pin with the change in the area between the pin in
the input graph and its counterpart in the label graph. Figure
2 shows an example of annotating a node with delay and area
labels (before being converted into deltas).

a
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b

area: 3


c

area: 1


Pre-Synthesis Graph Post-Synthesis Graph Label Graph
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Fig. 2: Example of node labeling.
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C. GraPhSyM Design & Training

The design of GraPhSyM, as demonstrated in Figure 3, is
based upon the architecture of GATv2 [8]. At the outset, the
input design is transformed into a DAG structure. Each graph
node embodies a pin, while the edges signify the connections
between the pins as well as the internal cell connections. We
then annotate each node in the graph with a set of features
derived from the timing analysis tool and the standard cell
library. The next stage involves the extraction and encoding of
node features. The annotated graph is fed into a node encoder
layer. The role of this layer is to distill the essential attributes
of each node by examining its features. This is followed by
a Rectified Linear Unit (ReLU) layer, which introduces non-
linearity and a dropout layer that aids in preventing overfitting.
Having undergone the initial processing, the node features then
traverse through six GATv2 layers. Each of these layers is
equipped with eight heads and 64 hidden features. The aim
of these layers is to capture and analyze the relationships
between different nodes based on their connectivity, thereby
leveraging the inherent graph structure of the input design.
Post each GATv2 layer; the node features undergo batch
normalization to standardize the features and improve model
performance, ReLU activation, and another dropout layer for
additional regulation. Finally, the output from the GATv2
layers is processed by a linear layer. The role of this layer is to
generate two labels for each node, each indicating the changes

in the node’s delay and area, respectively. To obtain the final
metrics, we perform an addition operation between these node
labels and their corresponding features in the input graph.
The delay and area across the entire design are subsequently
computed by reconstructing the arrival times in the generated
graph and summing the area features. At each iteration of
the training process, the model tried to infer the labels for
the optimized design graph. This prediction is followed by a
weight update carried out by the ADAM optimizer [26]. The
optimizer employs an initial learning rate of 0.01. The process
is illustrated in Figure 4.

D. Compositional Graph Sweeping

The training of GraPhSyM primarily uses label graphs that
have been generated through physical synthesis optimization.
This training process is geared towards meeting aggressive
delay targets, placing a considerable emphasis on the mini-
mization of the design delay. If the optimization demands, this
can be pursued even at the expense of a higher area cost. As
a result of this strategic emphasis on high delay optimization
flow during the training, the metrics inferred by GraPhSyM
mirror the outcomes of an aggressive delay target.

However, this scenario does not uniformly apply to all pos-
sible applications of GraPhSyM. Specifically, when it comes
to design space exploration, the requirements shift, and the
framework enveloping GraPhSyM has to adjust its approach.



In this scenario, the goal is to navigate the nuanced trade-
off between delay and area across different delay targets. It
becomes necessary to have a methodology that can accurately
estimate the trade-off curve for different delay targets.

Given this, we devised an approach that makes optimal use
of our feature-level predictions to estimate this trade-off. The
first step involves running the design through GraPhSyM to
obtain the metrics at an aggressive delay target.

These components are then fed into our sweeping algorithm
described in Algorithm 1. The algorithm is designed to use
GraPhSyM predictions to emulate the physical synthesis loop,
with a clear aim to estimate the delay versus area trade-off.
This is achieved without the need to run the computationally-
expensive physical synthesis tool, offering an efficient and
effective alternative.

The algorithm commences by extracting and sorting the
different delay paths present in the input graphs. We then sys-
tematically review these paths, moving from the most critical
to the least critical. During this process, we swap the nodes
from the input graph one by one with the corresponding nodes
from the inferred graph. This swapping process continues until
the path successfully meets the delay target.

This step is then repeated multiple times until all the paths
have been covered or the delay targets have been met. The final
output of the sweeping algorithm is a set of generated graphs.
Each of these graphs represents the delay-area trade-offs for
the given input graph at different delay targets. In essence,
this approach allows for a comprehensive representation of the
delay-area trade-offs across diverse delay targets, which can
be instrumental in applications like design space exploration.

V. RESULTS AND DISCUSSION

A. Dataset Preparation

Our model is trained on a dataset comprising 10,000 in-
stances of 32-bit prefix adders. Each adder sample is gen-
erated as follows. Initially, a prefix tree is generated with
a randomized structure and a varying number of nodes.
Following this step, the generated prefix tree is translated
into a standard netlist and subjected to synthesis using the
NanGate45 library [27]. This synthesis process generates input
graphs, each annotated with specific features as described in
previous sections. The next stage in the dataset preparation
process involves the generation of the label graph. To this
end, we employ Dreamplace [28] to place the generated
designs. Subsequent to the placement, the designs undergo
physical synthesis optimization using OpenPhySyn [6]. This
optimization step serves as the precursor to the final stage,
where we extract the label graphs from the optimized designs.
In terms of distribution, the dataset is divided into training,
validation, and testing subsets. The majority of the dataset,
comprising 6,000 adders, is utilized for training the model,
while 2,000 adders each are reserved for validation and testing
purposes. As the prime metric for assessing the performance

Algorithm 1: Compositional graph sweeping algo-
rithm for predicting delay-area trade-offs at different
delay targets
Input: Input Graph G1, Inferred Graph G2, Target

Delay t
Result: Optimized Graph G1 for the Target Delay t
Initialize Paths to contain the sorted delay paths in
G1;

foreach path P in Paths do
Set Diff = delay of P − t;
if Diff ≤ 0 then

Break; ▷ Target already met
end
foreach output node outG1 in P do

Set outG2 as the equivalent node of outG1 in
G2;

Set inpG1 = the input nodes to outG1;
Set inpG2 = the input nodes to outG2;
In G1, replace outG1 with outG2;
In G1, replace inpG1 with inpG2;
Set Diff =
Diff − (delay of outG1 − delay of outG2)−
(delay of inpG1 − delay of inpG2);

if Diff ≤ 0 then
Break;

end
end

end
return G1

of our model, we use the mean absolute error (MAE), defined
as:

MAE = mean(
|predicted− ground truth|

ground truth
)

B. Evaluation of Delay & Area Prediction

After training the model, we ran GraPhSyM on the evalua-
tion dataset. GraPhSyM is significantly more accurate (Table
II) in predicting the post-synthesis area and delay metrics
as compared to using pre-synthesis metrics. GraPhSyM pre-
dictions have an MAE of 1.69% (delay) and 3.86% (area).
The GraPhSyM model inference takes 0.22s, compared to 17s
for running physical synthesis. Using GraPhSyM can provide
almost instantaneous feedback about the post-synthesis design

Delay MAE Area MAE
Pre-synthesis 12.33% 34.68%
GraPhSyM 1.69% 3.86%

TABLE II: Evaluation results of GraPhSyM on unseen adders.
The top row shows the delay and area errors when using the
pre-synthesis metrics to estimate the final QoR. The bottom
row shows the error when using GraPhSyM to predict the final
metrics post-synthesis.
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metrics during design space exploration instead of running
a heavy and slow physical synthesis flow for each iteration.
Figure 5 shows an error distribution histogram of GraPhSyM
delay predictions (top) compared to using the pre-synthesis
metrics (bottom). Similarly, Figure 6 shows the error distribu-
tion histograms for area predictions.

Target Delay MAE Area MAE
T0 1.69% 3.86%
T1 2.32% 2.14%
T2 2.97% 2.41%
T3 0.28% 0.28%
Average 1.81% 2.17%

TABLE III: Evaluation of the sweeping algorithms at four
delay targets for each design. T0 is the minimum delay target,
while T3 is minimum area target.

C. Evaluation of Compositional Graph Sweeping

Next, we assess the compositional graph sweeping algo-
rithm using the evaluation dataset. In this phase, each design
in the evaluation set was subjected to physical synthesis at
four distinct delay targets. These targets spanned between
the maximum and minimum delay attributable to the specific
design. Correspondingly, the GraPhSyM sweeping algorithm
was also deployed at the same delay targets. Table III captures
the outcomes of the sweeping algorithm in terms of delay and
area error at each of the four delay targets. The results show the
delay and area error of GraPhSyM sweeping algorithm with an
average Mean Absolute Error (MAE) of 1.81% and 2.17% for
the delay and area predictions, respectively. Figure 7 provides
a more visual assessment of the algorithm’s performance. It
presents a comparative analysis of the delay-area trade-off
curves for a selection of prefix adders in the dataset alongside
the performance of the GraPhSyM sweeping algorithm. These
graphical representations highlight the algorithm’s ability to



Design Description Pre-Synthesis GraPhSyM
Delay MAE Area MAE Delay MAE Area MAE

mult16 Combinational 16-bit fixed-point multiplier. 16.99% 24.92% 13.95% 7.38%
mult32 Combinational 32-bit fixed-point multiplier. 32.17% 31.01% 10.48% 17.77%
aes sbox Main module in AES [29] encryption circuit. 52.30% 33.97% 5.53% 10.04%
md5 core Main core of MD5 [30] hashing circuit. 29.84% 41.22% 3.74% 24.09%
lzd Leading zero detector circuit. 40.76% 20.82% 18.42% 13.28%
axmul16 16-bit approximate multiplier [31]. 19.54% 21.84% 8.65% 13.06%
csela32 32-bit carry select adder. 27.78% 37.55% 10.14% 15.37%
priority enc Priority encoder binary compression circuit. 58.92% 30.42% 6.99% 23.95%

TABLE IV: Evaluation of GraPhSyM on eight unseen designs from different categories. The first two columns describe the
design circuit. The next two columns show the error when using the pre-synthesis for metrics estimation, compared to the
error when using GraPhSyM in the last two columns.

closely follow the actual trade-off trends and deliver precise
predictions for post-synthesis design metrics.

D. Generalization to Unseen Design Spaces

In order to explore GraPhSyM’s versatility and adaptability
across diverse design spaces, we evaluated the same model
on unseen design spaces. The evaluation process involved an
array of eight distinct design types that were unexplored by the
model. A significant point of note is that no fine-tuning was
employed during this phase, allowing us to assess the inherent
capabilities of the model in new design spaces. The results,
summarized in Table IV, show the prediction accuracy for
delay and area in the new designs. The average MAE stands
at 9.74% for delay and 15.61% for area predictions. In compar-
ison, the use of pre-synthesis metrics resulted in significantly
higher errors, with MAEs of 34.79% and 30.22% for delay
and area, respectively. These findings accentuate GraPhSyM’s
generalizability. Despite being trained exclusively on prefix
adder circuits, the model displayed the ability to infer on
general circuits with varying characteristics and structures and
that it has the potential to operate effectively across general
circuits with a potential for higher accuracy when trained on
a diverse set of circuit designs. In future work, we plan to
refine our model through fine-tuning across a broader range of
design spaces to further enhance the generalization capabilities
for unseen design spaces.

VI. CONCLUSION

In this paper, we have presented GraPhSyM, a graph-based,
supervised learning approach designed for estimating digital
circuit delay and area metrics post-physical synthesis phase.
GraPhSyM’s GATv2 neural network architecture enables it
to efficiently model and quantify the impacts of various
optimizations that are typically applied during the process of
physical synthesis. The performance of GraPhSyM has been
validated on a dataset comprising prefix adder circuits, with
each circuit optimized under a fixed delay target. GraPhSyM
proved adept at predicting the metrics of unseen adder circuits
with significant accuracy. These predictions are fundamentally
facilitated by the compositional nature of our model, which
affords it the ability to make predictions at the granular level

of individual nodes. This feature-level prediction capability
has been pivotal in the development of an algorithm that
can leverage GraPhSyM’s predictions to anticipate metrics
across a wider range of relaxed delay targets. An additional
highlight of GraPhSyM’s performance is its demonstrated
potential for generalization across a broad spectrum of circuits
from unseen design spaces. The results we have presented
demonstrate the potential of graph neural networks in learning
the optimization patterns of physical synthesis and providing
visibility of late-stage design metrics to the early stages of
EDA, such as logic synthesis. GraPhSyM provides significant
strides in improving the overall efficiency and effectiveness of
the design process. Moving forward, our goal is to augment the
capabilities of GraPhSyM further, enhancing its accuracy on
general circuits. We plan to accomplish this by diversifying our
training datasets, integrating GraPhSyM with logic optimiza-
tion algorithms, and broadening its scope to encompass other
crucial metrics, such as power. We are also keen to extend
its application to other synthesis tools, thereby expanding its
range of impact and utility.
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