
Fast Exact NPN Classification with Influence-aided
Canonical Form

Yonghe Zhang1,∗, Liwei Ni2,4,∗, Jiaxi Zhang3,B, Guojie Luo3, Huawei Li4,5 and Shenggen Zheng2,B,
1Shenzhen University, Shenzhen, China

2Peng Cheng Laboratory, Shenzhen, China
3School of Computer Science, Peking University, Beijing, China

4University of Chinese Academy of Sciences, Beijing, China
5Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Emails: zhangjiaxi@pku.edu.cn, zhengshg@pcl.ac.cn

Abstract—NPN classification has many applications in the
synthesis and verification of digital circuits. The canonical-form-
based method is the most common approach, designing a canon-
ical form as representative for the NPN equivalence class first
and then computing the transformation function according to the
canonical form. Most works use variable symmetries and several
signatures, mainly based on the cofactor, to simplify the canonical
form construction and computation. This paper describes a novel
canonical form and its computation algorithm by introducing
Boolean influence to NPN classification, which is a basic concept
in analysis of Boolean functions. We show that influence is
input-negation-independent, input-permutation-dependent, and
has other structural information than previous signatures for
NPN classification. Therefore, it is a significant ingredient in
speeding up NPN classification. Experimental results prove that
influence plays an important role in reducing the transformation
enumeration in computing the canonical form. Compared with
the state-of-the-art algorithm implemented in ABC, our influence-
aided canonical form for exact NPN classification gains up to 5.5x
speedup.

Index Terms—NPN Classification, Canonical From, Influence

I. INTRODUCTION

Boolean function NPN (Negation-Permutation-Negation)
classification groups functions into NPN equivalent classes.
Each function in the same equivalent class can be obtained
from the other by three transformations: Negating the inputs,
Permuting the inputs, or Negating the output. NPN classi-
fication is one of the critical steps in many applications,
such as logic synthesis [1], [2], technology mapping [3], and
verification [4]. The speed of classification will directly affect
the efficiency of these tools because of the exploding search
space of the Boolean function.

Due to its great importance, NPN classification has been
well studied in the past decades. The canonical-form-based
approach is one of the most commonly used methods for exact
NPN classification. First, it designs a complete and unique
representation for a Boolean function called canonical form.
This canonical form is taken as the representative, and two
functions fall into the same NPN equivalent class when their
canonical forms are the same. Then a computation algorithm
decides the output polarity, the phase assignment, and the input

∗These authors contributed equally to this work; BCorresponding authors.

order of each variable for a function to get the minimum
canonical form.

Truth table is a basic canonical form, and the exhaustive
transformation enumeration is the most primitive computa-
tion method. However, 2n+1n! transformations (2n for input
negation, n! for input permutation, 2 for output negation)
should be enumerated for an n input function, which is
impractical when n is large. Many optimization methods
have been proposed to improve the NPN classification effi-
ciency, including constructing new canonical forms [5]–[8]
and designing better computation methods [9]–[15]. Pruning
transformation enumeration is the key to reducing computation
time in the canonical-form-based approach. Various works
exploited several signatures [5], [9], [14], [15] and variable
symmetry [9]–[15] to prune the enumeration space. Signa-
tures are compact representations that characterize a Boolean
function’s properties. However, these signatures also need to
be computed, introducing additional runtime. A co-design of
canonical form and computation algorithm [15] is required to
achieve better speedup.

In Boolean functions analysis, the concept of influence is
defined to measure the probability that one input variable
affects the value of the function [16], [17]. The value of
influence of a variable xi can be computed easily from
Boolean difference [18]. This concept has been applied to
hardware security [19], [20] since inputs with high influence
are of more interest in critical applications. Existing work
has proved that Boolean influence can be regarded as a type
of signature for Boolean matching [21]. But this work does
not provide an exact matching solution for the functions in
the same NPN classes, posing challenges for its practical
application. This paper explores Boolean influence’s great
potential in canonical-form-based exact NPN classification.

The main contributions are summarized as the following:

• We redefine the concept of Boolean influence and
highlight that computing the redefined influence using
commonly utilized cofactor signatures is straightfor-
ward. Consequently, incorporating influence into canon-
ical form-based method requires only a modest amount
of additional computation.

ar
X

iv
:2

30
8.

12
31

1v
1

 [
cs

.L
G

]
 2

3
A

ug
 2

02
3

• We analyze some properties of influence in NPN classifi-
cation scenarios, including that it is phase-independent
and permutation-dependent. Such properties can help
reduce the enumeration times of permutation in canonical
form computation.

• We devise two influence-aided canonical forms based
on the existing canonical-form-based NPN classification
method. One directly introduces Boolean influence into
the canonical form, while the other replaces some signa-
tures of high computation complexity with influence.

• The experiments demonstrate that both proposed two
influence-aided canonical forms in this paper effectively
reduce the number of final transformation enumerations
and achieve significant speedup compared to the state-of-
the-art method.

II. BACKGROUND

In this section, we first introduce several commonly used
signatures and techniques in NPN classification. Subsequently,
we illustrate a state-of-the-art canonical form-based classifica-
tion method.

A. Frequently Used Signatures

We first list some basic notations before introducing
the definitions of signatures. An n-input and single-output
Boolean function, f(X) : Bn → B, B={0, 1}, where
X=(x1, x2, ..., xn),xi ∈ B,1 ≤ i ≤ n is a binary vector with
size n, representing the input variables. X can be considered as
a binary number (xnxn−1...x1)2, whose value is m, denoted
as X(m). Besides, we denote Xi as negating the i-th variable in
X . The truth table T (f) = (f(X2n−1), ..., f(X(1)), f(X(0)))
is a bit vector with size 2n.

The satisfy count of f is the number of all minterms
for which f evaluates to 1, denoted as |f |, where |f | =∑

X∈Bn f(X). A cofactor of f with respect to a literal
xi(xi) is the function derived by setting xi(xi) to 1 and
denoted by fxi (fxi). The 0th-order cofactor signature is the
satisfy count, and the 1st-order cofactor signature is the satisfy
counts of the cofactors with respect to each variable, denoted
as Scof (f) = {|f |, |fx1

|, ..., |fxn
|}. Moreover, higher-order

cofactor signature is the satisfy counts of the cofactors with
respect to multiple variables [12].

Boolean functions can be represented as the disjunction of
minterms. In this representation, row sums (RS) is a sorted
vector composed of the number of positive variables in each
minterm. A single value can be computed by adding the
square of each value in row sums, called sum of squared
row sums (SSRS). Another efficient value sum of exponential
row sums (SERS) can be obtained from RS [8], [15]. The
SERS of a Boolean function is the 0th-order shifted-cofactor
signature, denoted as S0

scc(f) = ∥f∥; the 1st-order shifted-
cofactor signatures are SERS of the cofactors with respect to
each variable, denoted as S1

scc(f) = {∥fx1∥, ..., ∥fxn∥}.

B. Variable Symmetries

Two variables xi and xj are symmetric in f if the function
value does not change when xi and xj are swapped. A sym-
metric group is composed of symmetric variables. The higher-
order symmetry is defined between two or more symmetry
groups if they can be swapped without changing the function
value. In some cases, one variable in a symmetry group is
not symmetric with each variable in another, but these two
symmetry groups are higher-order symmetric.

Symmetry variables and higher-order symmetry groups can
be permuted and negated like a single variable during the
canonical form computation, thus significantly reducing the
number of transformation enumerations. Exploiting variable
symmetries and higher-order symmetries are adopted in many
NPN classification methods [7], [11]–[15].

C. Canonical-Form-based Method

The key of the canonical-form-based method lies in de-
termining the output polarity, phase assignment, and input
order of a Boolean function to get the canonical form of its
equivalent class. The output polarity is associated with output
negation, while the input phase assignment corresponds to
input negation. Furthermore, the input order corresponds to
the permutation of inputs.

The transformation space is vast (2n+1n!), and signatures
can help effectively prune the space. If a signature fulfills the
following requirements, it can help to determine partially the
three types of transformations. The following three require-
ments can be met: 1)Phase requirement. The signature value
of a single variable is determined solely by its own phase
assignment and remains independent of the phase assignment
of other variables. 2)Permutation requirement. Applying a
permutation to the variables leads to the same permutation of
the signature values for each variable. 3)Polarity requirement.
The signature value of the function is primarily determined
by the polarity of the output and remains independent of the
permutation and phase assignment of input variables.

Cofactor signatures fulfill the three requirements. They
can be used to determine the output polarity and partially
decide the input order and the phase of input variables. This
means that cofactor signatures can reduce part of negation
and permutation enumeration. In addition, the computational
cost of the cofactor signatures is low. Therefore, many works
used cofactor signatures to build their NPN classification
methods [9], [11], [12], [14]. Since the order of the vari-
ables does not affect the number of positive variables in the
minterm, RS and SSRS are permutation-independent, which
means these two values do not fulfill the polarity requirement
and permutation requirement. Therefore, these two signatures
cannot distinguish polarity and permutation. Some works used
these two signatures to determine phase assignments of input
variables [9], [14].

Pruning permutation is more critical because permutation
enumeration space (n!) is more significant than phase as-
signment enumeration (2n) when n is larger than 4. Shifted-
cofactor signatures fulfill the permutation requirement and

permutation

ph
as

e

(a) Original enumeration space.
permutation

ph
as

e

(b) After Variable grouping.

permutation

ph
as

e

(c) After symmetry detection.
permutation

ph
as

e
(d) After cost estimation.

Fig. 1: Schematic of the remaining enumerations at different
pruning stages, grey points are pruned enumerations. (a)
All phase assignments and permutations are candidates to
obtain the canonical form at the beginning. (b) After variable
grouping, candidate enumerations are separated into different
groups. (c) Variable symmetry detection further prunes the
candidate enumerations. (d) After cost estimation, only three
transformations need to be enumerated to finish the final
exhaustive enumeration.

have proved more effective than cofactor in distinguishing the
permutation [8]. Thus, the integration of cofactor and shifted
cofactor in the canonical form [15] outperforms the utiliza-
tion of cofactor alone with SSRS in terms of efficacy [14].
Furthermore, the state-of-the-art work [15] introduces cost
signature Cp to assess the overhead of permutations under
different phase assignments, aiming to select more promising
phase assignments for permutation enumeration and ultimately
achieve better speedup.

Figure 1 shows the schematic of the remaining enumeration
space at different pruning stages of the cost-aware hybrid
signature canonical form proposed in previous work [15]. First,
they decide the output polarity and group variables by cofactor
signatures. Certain enumerations of phase assignments can be
pruned through this step. Subsequently, symmetry detection
within each group will be conducted to eliminate certain phase
assignments and permutations. Next, for the variables that have
yet to determine their phase assignments and permutations, the
cost signature is utilized to identify phase assignments with
lower permutation costs. Then, the shifted-cofactor signature
is employed to further prune permutations. After all pruning
strategies, an exhaustive enumeration of residual transforma-
tions is used to achieve exact NPN classification. However,
the effectiveness of pruning permutations using the shifted-
cofactor signature remains limited. This paper discovers a
more effective signature to prune permutations, Boolean in-
fluence.

III. THE POWER OF INFLUENCE

In this section, we provide an in-depth examination of
Boolean influence in the context of NPN classification, in-
cluding its redefined definition, facile computation, and some

properties. For primitive definitions and proofs of difference
and influence, one may refer to [17], [18].

A. Redefined Influence and Facile Computation

In canonical form-based NPN classification methods, some
signatures can be used to prune the search space of transfor-
mation enumerations. But the computation of these signatures
cannot be too complicated. Otherwise, the additional compu-
tational overhead will diminish the benefit. To better explain
the computation of Boolean influence, we redefine it using
difference [18].

Definition 1. (difference) [18]. Given a Boolean function
f(X), the Boolean difference with respect to a basic variable
xi is defined as follows:

δf

δxi
= f(x1, · · · , xi, · · · , xn)⊕ f(x1, · · · , xi, · · · , xn).

Definition 2. (redefined influence). The influence of the vari-
able xi on f is defined as follows:

infi(f) =
∑

X∈Bn

δf

δxi
(X).

We drop a global coefficient of 1/2n in the above definition
compared to the original definition in [17]. The influence of a
variable xi is the number of functions that flipping the variable
xi flips the value of the function. In some sense, one can see
the influence of a variable is a measure of the importance of
the variable in all input variables. From the above definition,
influence can be computed for each input variable. It has the
potential to be a signature of a Boolean function to distinguish
variables for NPN classification.

The 1st-order cofactor is easy to compute, and many
canonical-form-based methods have adopted it. The character-
istics of cofactor and influence seem to be quite different from
each other. However, they are relevant to each other in some
respect. We will show some detailed relationships between
these concepts as followings. We can get the following Lemma
from previous definitions [18].

Lemma 1. (difference vs. cofactor). Difference can be com-
puted by cofactor as follows:

δf

δxi
(X) = fxi

(X)⊕ fxi(X).

From Definition 2 and Lemma 1, we can easily derive a
facile computation method for the redefined influence.

Lemma 2. (influence computation). The influence can be
obtained from the cofactor signature as follows:

infi(f) =
∑

X∈Bn

δf

δxi
(X) =

∑
X∈Bn

fxi
(X)⊕ fxi

(X).

Lemma 2 demonstrates that the influence can be intuitively
computed using cofactors. This also implies that if we define
a canonical form using influence, the additional computation
overhead is low. The above two lemmas also show that
influence further explores cofactors. It explores the difference

between cofactor signature pairs and has extra structural
information. An n-input Boolean function can be seen as an
n-dimensional hypercube. Cofactor focuses on the statistical
characteristics of a face xi of the hypercube, while influence
cares about the difference between two opposite faces xi and
xi of the hypercube. These two features are complementary
in some sense.

B. Understanding Boolean Influence in NPN Classification

To prune transformation enumerations by incorporating
influence into the canonical form, it is necessary to first
understand the relationship between influence signatures and
transformations. It can be seen from the following theorem
that the influence signature changes only with permutation (P)
transformation, and any input phase assignment and polarity
assignment will not change the influence.

Theorem 1. (phase-independent). Variable negation does not
change Boolean influence.

Proof. Supposing g is derived from f through the phase
assignment of any input i, g(X) = f(Xi). According to
definition 1 and definition 2, we have δf

δxi
(X) = fxi

(X) ⊕
fxi

(X) = gxi
(X) ⊕ gxi

(X) = δg
δxi

(X). Thus, infi(g) =

ΣX∈Bn
δg
δxi

(X) = ΣX∈Bn
δf
δxi

(X) = infi(f).

Theorem 2. (polarity-independent). Output negation does not
change Boolean influence.

Proof. Supposing g is derived from f through the polarity
assignment, g(X)=f(X). According to definition 1 and defi-
nition 2, we have δg

δxi
(X)=gxi

(X)⊕gxi
(X)=fxi

(X)⊕fxi
(X)

= fxi(X)⊕ fxi(X)= δf
δxi

(X). Thus, infi(g) =infi(f).

Theorem 3. (permutation-dependent). The influence of vari-
able changes synchronously with the permutation transforma-
tion.

Proof. Assuming that g(X) = f(π(X)), where π represents
a permutation transformation and k = π(i), we observe the
following: g(X) = f(π(X)) and g(Xk) = f(π(Xk)) =
f(π(X)i).

According to definition 1 and definition 2, we have

infk(g) =
∑

X∈Bn

δg

δxk
(X) =

∑
X∈Bn

g(X)⊕ g(Xk)

=
∑

X∈Bn

f(π(X))⊕ f(π(X)i).

An essential observation is that the set {X|X ∈ Bn} =
{π(X)|X ∈ Bn}, which leads us to:

infk(g) =
∑

X∈Bn

f(π(X))⊕ f(π(X)i)

=
∑

X∈Bn

f(X)⊕ f(Xi) = infi(f).

From the above three theorems, it can be found that influ-
ence signature can determine the permutation, which is very
helpful for pruning permutation enumeration.

C. An Example of Influence

In order to reduce permutations, one common way used
in previous work [14], [15] is to group variables according
to signatures. Variable grouping can separate the permutation
space into isolated ones, and permutations only appear in the
same group. For a 6-bit Boolean function:

f =x3x5x6 + x3x4x6 + x3x5x6 + x3x4x6+

x2x3x4x5 + x1x3x4x5 (1)
=(5DAE51AE5DA251A2)16 (2)

The cofactor signatures, shifted-cofactor signatures, and in-
fluence signatures of each variable are listed in Table I.
And Figure 2 also shows the logic graph of f with the
support set of inputs in And-Inverter Graph format. If the
signatures (combination) of two variables are the same, then
this signature (combination) can not distinguish these two
variables. These two variables belong to the same group using
such signature (combination). Table II shows the variable
grouping results using the different signature combinations.
For this Boolean function, the combination of cofactor and
influence signature splits two more groups than the combina-
tion of cofactor and shifted-cofactor signature. This shows that
the influence signature prunes more permutation enumeration
than the shifted-cofactor signature. This also shows that the
influence signature has great potential for permutation pruning
in the canonical form-based NPN classification method.

𝒳1 𝒳4 𝒳6 𝒳3 𝒳2

AND AND AND AND AND

AND AND

AND AND

AND

𝒳5

{𝒳1,𝒳4} {𝒳1,𝒳4}

{𝒳1,𝒳4}

{𝒳4,𝒳6} {𝒳4,𝒳5} {𝒳2,𝒳3}

{𝒳2,𝒳3,𝒳4,𝒳5}

{𝒳2,𝒳3,𝒳4,𝒳5,𝒳6}{𝒳1,𝒳2,𝒳3 ,𝒳4}

{𝒳1,𝒳2,𝒳3 ,𝒳4,𝒳5,𝒳6}

Fig. 2: AND-Inverter graph for f=(5DAE51AE5DA251A2)16

TABLE I: Signatures results.

Signatures x1 x2 x3 x4 x5 x6

cofactor 16 16 16 16 18 18
shifted-cofactor 81 135 81 135 159 159

influence 24 8 28 4 4 4

TABLE II: Variable grouping results.

Signatures (Combination) Variable Groups
cofactor (x1, x2, x3, x4), (x5, x6)

cofactor+shifted-cofactor (x1, x3), (x2, x4), (x5, x6)
cofactor+influence (x1), (x2), (x3), (x4), (x5, x6)

All three signatures (x1), (x2), (x3), (x4), (x5, x6)

IV. HYBRID INFLUENCE-AIDED CANONICAL FORM

In the previous section, we pointed out that influence
signature is permutation-dependent and fulfills the permutation
requirement, which means influence has excellent potential
for pruning permutation enumerations. In this section, we
introduce the hybrid influence-aided canonical form and its
computation algorithm.

A. Canonical Form Definition

Definition 3. (hybrid influence-aided signature vector). The
hybrid influence-aided signature vector Shi(f) of a Boolean
function f is denoted as a vector composed of cofactor signa-
tures Scof (f), influence signatures Sinf (f), the permutation
cost signature Cp(f), the 0th-order and 1st-order shifted-
cofactor signatures S0

scc(f) and S1
scc(f), followed by the truth

table T (f), that is,

Shi(f) =Scof (f)Sinf (f)Cp(f)S
0
scc(f)S

1
scc(f)T (f)

=
(
|f |, |fx1 |, |fx2 |, ..., |fxn |,

infx1
(f), infx2

(f), ..., infxn
(f),

Cp(f), ∥f∥, ∥fx1
∥, ∥fx2

∥, ..., ∥fxn
∥,

f(X(2n−1)), ..., f(X(1)), f(X(0))
)
,

where the hybrid signatures are concatenated as a larger vector.

Theorem 4. (The uniqueness of Shi(f)). For two Boolean
functions f and g: f ̸= g if and only if Shi(f) ̸= Shi(g).

Proof. (1)Sufficiency: If f ̸= g, then T (f) ̸= T (g). Thus,
Shi(f) ̸= Shi(g).

(2)Necessity: If Shi(f) ̸= Shi(g), then there is at least
one part s ∈ {Scof , Sinf , Cp, Sscc, T} s.t. s(f) ̸= s(g).
If s = Sinf , according to the definition of Sinf , there is
at least one variable xi s.t. infi(f) ̸= infi(g). However,
if f=g, then infxi

(f) = infxi
(g). By contradiction, it is

evident that f ̸= g. If s ̸= Sinf , then s must belongs to
{Scof , Cp, Sscc, T}. According to the existing works [8], [14],
[15], regardless of which part s belongs to, there must be
g ̸= f . Therefore, Theorem 4 holds.

Theorem 4 shows that Shi(f) can uniquely and completely
represent f , and a canonical form can be derived from this
vector.

Definition 4. (hybrid influence-aided canonical form). The
hybrid influence-aided canonical form of a Boolean function
f , denoted by κhi(f), is defined as the function in [f] with
the minimum Shi(f), i.e. κhi(f) = minShi

([f]), where [f]
represents the NPN equivalent class of f .

Theorem 5. (κhi(f) is an NPN canonical form.) κhi(g) =
κhi(f) if and only if g ∈ [f]. That is, f and g belong to the
same NPN equivalent class.

Proof. Let h=κhi(f)=argmin(Shi(k)|k ∈ [f]), and
h=πf→h(f). Then, we have h ∈ [f].

(1)Sufficiency: h ∈ [g] due to h=κhi(g), thus h can be
obtained from g after NPN transformations; h ∈ [f] due

to h=κhi(f), thus f can be obtained from h after NPN
transformations; Thus, f can be obtained from g after NPN
transformations due to the transitivity of NPN equivalence,
that is, g ∈ [f].

(2)Necessity: If g ∈ [f], then [g]=[f]. Thus,
κhi(g)=minShi

([g])=minShi
([f])=κhi(f).

Therefore, Theorem 5 holds.

Since Shi(f) can uniquely and completely represent f , the
equation κhi(f) = minShi

([f]) has a only unique value.
Theorem 5 guarantees that each Boolean function has a unique
hybrid influence-aided canonical form.

B. Canonical Form Computation
The proposed algorithm in Algorithm 1 computes κhi(f)

for a given function f . The basic idea of the algorithm is
to prune the undetermined phase assignment and permutation
transformations based on Shi(f) and then performing exhaus-
tive enumeration to decide the undetermined transformations.
After exhaustive enumeration, we can get κhi(f). Supposing
that the total number of Boolean functions is m and each
function has n bits. The size of truth table for each function
is 2n. The time complexity to compute cofactor is O(mn2n).
According to the computational method that we give in Lemma
1 and 2, the time complexity to compute influence is also
O(mn2n). Therefore, the complexity of Algorithm 1 is the
same of the one in [15].

Algorithm 1 Computing the Hybrid Influence-aided Canonical
Form
Input: Boolean function f with n input variables
Output: Canonical form κhi(f)
1: Initialize G, Uphase and Uperm

2: Decide output polarity by Scof (f) ▷ Pruning by Scof (f)
3: Update G and Uphase by Scof (f)
4: Update Uperm according to G
5: for group in G do
6: Detect symmetry
7: Update Uphase and Uperm

8: end for
9: Update G using Sinf (f) ▷ Pruning by Sinf (f)

10: Update Uperm according to G
11: Generate all phase assignment Aphase based on Uphase

12: for phase in Aphase do ▷ Pruning by Sscc(f)
13: compute Cp according to S0

scc(f) and S1
scc(f)

14: if Cp is minimum then
15: Refresh Cphase

16: end if
17: end for
18: for candidate in Cphase do ▷ Exhaustive enumeration
19: Exhaustive enumeration according to Uperm

20: Record fbest with the minimum truth table T (f)
21: end for
22: return κhi(f)=fbest.

Firstly, we initialize three empty sets to preserve groups (G),
phase-undetermined variables (Uphase), and permutation-
undetermined variables (Uperm). The output polarity can be

determined by |f | (line 2). The Scof (f) can help group
variables and update Uphase (line 3). Then we update Uperm

based on the rule that variables in different groups cannot be
permuted (line 4). Next, symmetry variables are detected in
all groups to reduce variables in Uphase and Uperm (line 5
to line 8). The above steps prune enumerations mainly based
on cofactor signatures and variable symmetries, which have
been extensively studied by previous works [11], [12], [14].
After pruning by Scof (f), we update G and Uperm using
Sinf (f) (line 9 to line 10). For each phase assignment in
all possible phase assignment set Aphase generated based
on Uphase, its permutation cost signature Cp is computed
by the pre-trained weighted function [15] with S0

scc(f) and
S1
scc(f) (line 11 to line 13). If the cost signature is the

lowest of the phase assignments, refresh the candidate phase
assignment set Cphase (line 14 to line 16). The cost-aware
enumeration estimation method using Sscc(f) is proposed
by [15]. For each candidate phase assignment in Cphase,
exhaustively enumerate the undetermined input order to get
permutation transformations (line 17 to line 18). Thus, the
output polarity, phase assignment, and input order of each
variable have already been decided, and we can get the
minimum truth table as the canonical form.

Here we give an example to explain the algorithm. For a
function

f = x1x2 + x1(x5 + x6(x3 + x4)) + x2(x5 + x6(x3 + x4))

= (FFFF3777C8880000)16,

the Scof (f)=(|f |, |fx1
|, ..., |fx6

|)=(32, 16, 16, 16, 16, 27, 21),
and variables are separated into
G={(x1, x2, x3, x4), (x5), (x6)} (line 3). The
Uphase={x1, x2, x3, x4} because |fx1 | to |fx4 | are half
of |f | (line 3). The Uperm={x1, x2, x3, x4} since their
cofactor signatures are the same (line 4). Next, we only
need to detect symmetry in G1={x1, x2, x3, x4}. Because
variables x3 and x4 are symmetric, x4 can be purged
in G1, Uperm and Uphase (line 5 to line 8), that is
G1=Uperm=Uphase={x1, x2, x3}. After these steps, the total
number of residual enumerations is pruned to only 23 × 3!=48.
Next, the Sinf (f)=(6, 10, 2, 2, 10, 22), so G can be further
separated into five groups, {(x1), (x2), (x3), (x5), (x6)} (line
9). The Uperm=∅ because permutation only appears in
the same group (line 10). Since the influence signature
is negation-independent, Uphase does not change. After
the influence-aided permutation pruning, input order is
determined, and the residual enumerations only consist of
phase assignments, the number of which is 23=8. According
to the cost estimation method described in [15], phase
assignment x1x2x3 has the lowest permutation cost among
all 8 phase enumerations (line 12 to line 17). For this
candidate phase assignment, Uperm = ∅; thus, no exhaustive
permutation is required (line 18 to line 19). Then the
algorithm gets the truth table with the determined phase
assignment and input order (line 20).

Figure 3 depicts the pruning results. It is a heat map of
the remaining enumerations. We divide the pruning stages

permutation

ph
as

e

Fig. 3: The heatmap of the remaining enumerations at different
pruning stages. The horizontal axis represents the permutation
enumeration space, encoded according to the lexicographical
order from 1 to n; the vertical axis represents the phase
assignment enumeration space, according to binary encoding.
A point represents an NPN transformation, and all points
constitute the whole NPN transformation space.

into three parts, called pruning by Scof (f) (line 2 to line
8), pruning by Sinf (f) (line 9 to line 10), and pruning by
Sscc(f) (line 12 to line 17). After each pruning stage, we will
increase its activity if an enumeration has not been pruned. The
darkest points in the figure represent the enumerations with the
highest activity, which means that these are irreducible. From
this heat map, we can see more clearly that influence is a vital
ingredient for pruning permutations.

V. OPTIMIZED INFLUENCE-AIDED CANONICAL FORM

A. Runtime Analysis and Trade-off

Cost signature Cp is proposed to estimate permutation cost
and help choose the phase assignment with the lowest permu-
tation cost [15]. The permutation cost is computed according
to S1

scc, which will bring runtime overhead. In Section III-C,
we have shown that influence signature usually gains more
groups for further permutation reduction than shifted-cofactor
signatures. Although using influence signature and cost signa-
ture simultaneously can further prune the permutation space in
some cases, the runtime overhead of computing Cp will reduce
the benefits. In other words, using only influence signature to
prune permutation space may gain shorter runtime.

B. Optimized Influence-aided Canonical Form

Definition 5. (optimized influence-aided signature vector).
The optimized influence-aided signature vector of f , de-
note by Soi(f), is a vector composed of cofactor signatures
Scof (f), influence signatures Sinf (f), the 0th-order shifted-
cofactor signature S0

scc(f), followed by the truth table T (f),
that is,

Shi(f) =Scof (f)Sinf (f)Cp(f)S
0
scc(f)T (f)

=
(
|f |, |fx1 |, |fx2 |, ..., |fxn |,

infx1(f), infx2(f), ..., infxn(f), Cp(f), ∥f∥,

f(X(2n−1)), ..., f(X(1)), f(X(0))
)
,

where the hybrid signatures are concatenated as a larger vector.

Definition 6. (optimized influence-aided canonical form).
Similarly, we can define optimized influence-aided canonical
form κoi(f) as the function in [f] with the minimum Soi(f),
i.e. κoi(f) = minSoi

([f]), where [f] represents the NPN
equivalent class of f .

Similar to Theorem 4 and Theorem 5, we can prove
that the uniqueness of Soi(f), and κoi(f) is an NPN canon-
ical form. The computation of κoi(f) is also similar to the
computation method of κhi(f) shown in algorithm 1, except
that the part of computing S1

scc(f) is correspondingly deleted.
Candidate phase assignments are selected through the single
value S0

scc(f).

VI. EVALUATION

A. Experiment Setup

We implement the new canonical form and computation
method based on Berkeley ABC [22]. The state-of-the-art
NPN classification method [15] is also integrated into ABC
as command testnpn -A 11. The procedure runs on an Intel
Xeon Gold 6252 CPU 24-core computer with 128GB RAM.

We use MCNC [23] and EPFL benchmarks [24] to test the
effectiveness of our algorithm on real synthesis applications.
We enumerate the K-cuts in the circuits of the benchmark
suites to obtain the K-input Boolean functions and extract the
truth tables.

B. Comparison with State-of-the-Art Classification Method

Table III compares the influence-aided canonical form
method (INF/INF+) with the state-of-the-art (SOTA) [15]
method. Among them, INF corresponds to the hybrid
influence-aided canonical form described in Section IV, and
INF+ corresponds to the optimized influence-aided canonical
form described in Section V. All three methods can achieve
exact NPN classification.

Table III shows the number of functions (#Funcs) with
different input bits (n), the number of exact equivalence
classes (#Classes), the overall running time of the three
methods and the speedup ratio between them. Both of our
two influence-aided canonical form methods run faster than
the SOTA for all NPN classification tasks. Among them, the
hybrid influence-aided canonical form method gains up to
4.34x speedup than the SOTA while the optimized influence-
aided canonical form method achieves up to 5.52x speedup.
Notably, our influence-aided canonical form methods achieve
better speedup as input increases. Compared to INF, INF+
achieves better speedup when the input bit is greater than 6.
This further demonstrates that influence has superior pruning
efficacy over shifted-cofactor. Detailed analysis will be con-
ducted in the next subsection.

C. Discussion

This subsection explains why our influence-aided method
can run faster by showing some intermediate results.

Section III-C briefly mentioned that introducing influence
can increase the number of groups, thereby reducing the num-
ber of variables within the same group. From the introduction

of the canonical form method in Section IV, it is evident that
the more variables there are within the same group, the greater
the number of enumerations required subsequently. Table IV
presents the total number of groups and the statistics of differ-
ent variable groupings for both the SOTA and the INF/INF+
methods. The notation var-[x] represents the number of groups
with x variables, expressed as a percentage of the total number
of groups. This table shows that incorporating INF features
for variable grouping increases the number of groups when
the input is larger than five while simultaneously reducing the
number of variables within each group. This also implies that
INF/INF+ will prune more transformations.

0%

20%

40%

60%

80%

100%

5 6 7 8 9 10 11 12 13 14 15 16

R
at

io

Bit Size

perm_inf perm_cp perm_inf_cp

Fig. 4: #Permutation enumerations of different methods.
Benefiting from the permutation-dependent property of in-

fluence, we can use influence with cofactor and cost signature
to further reduce the permutation space. We collected the num-
ber of remaining permutation enumerations separately pruned
by Sinf , Cp, and Sinf+Cp. Fig. 4 shows the results. The y-
axis includes the proportion of #permutation of each among
the three above. The total permutation enumerations can be
reduced significantly when incorporating influence signatures.
Thus, the INF and INF+ can gain speedup compared with the
SOTA.

Table V provides a detailed summary of the EPFL bench-
mark, showcasing the total number of transformations and
the cumulative runtime for the three canonical form methods.
The headings of the columns are as follows: #Perm denotes
the remaining permutation transformations after symmetry
detection; #Phase represents the remaining phase assignment
transformations after symmetry detection; #Enum indicates
the total number of final exhaustive transformations after
all pruning steps, and Timecp denotes the runtime for cost
signature computation. This table shows that both INF and
INF+ can realize less transformation for phase, permutation,
and final exhaustive enumeration compared to SOTA. And it
is also evident that computing Cp needs a long time. Even
though it could further prune the permutation enumeration, the
time overhead for computing Cp outweighs the enumeration
reduction. Thus, INF+ gains a better speedup than INF when
n is larger. Considering the trade-off in selecting pruning sig-
natures is essential when developing a fast NPN classification
method.

VII. CONCLUSION AND FUTURE WORK

This paper describes a novel canonical form and its compu-
tation algorithm with consideration of Boolean influence. We

TABLE III: Comparison of exact NPN classification methods.

n #Funcs #Classes Runtime (s) Speedup
SOTA [15] INF INF+ SOTA/INF SOTA/INF+ INF/INF+

EPFL

5 678376 370 0.142 0.136 0.138 1.04 1.03 0.99
6 1054270 2339 0.579 0.459 0.471 1.26 1.23 0.98
7 730338 8824 1.542 1.037 1.014 1.49 1.52 1.02
8 1028501 27779 5.285 3.248 2.975 1.63 1.78 1.09
9 177974 26731 3.123 2.397 1.952 1.30 1.60 1.23
10 193905 50409 8.782 6.854 5.188 1.28 1.69 1.32
11 207345 80282 24.047 18.816 13.683 1.28 1.76 1.38
12 159741 87272 50.429 37.800 26.631 1.33 1.89 1.42
13 107069 74111 97.417 68.540 47.591 1.42 2.05 1.44
14 117825 85911 293.753 185.671 135.869 1.58 2.16 1.37
15 123699 94106 1142.931 513.366 385.223 2.23 2.97 1.33
16 127102 97283 5979.359 1378.776 1082.368 4.34 5.52 1.27

MCNC

5 1137438 398 0.219 0.211 0.215 1.04 1.02 0.98
6 2461375 2558 0.969 0.820 0.830 1.18 1.17 0.99
7 816538 8884 1.816 1.146 1.138 1.58 1.60 1.01
8 1171120 28031 6.402 3.680 3.394 1.74 1.89 1.08
9 92188 18394 2.769 1.980 1.578 1.40 1.75 1.25
10 113205 32796 9.366 6.870 5.334 1.36 1.76 1.29
11 96452 32153 17.997 13.859 10.299 1.30 1.75 1.35
12 125937 45546 61.001 46.436 34.720 1.31 1.76 1.34
13 137135 58921 230.835 148.387 116.286 1.56 1.99 1.28
14 143417 72602 843.348 479.178 384.648 1.76 2.19 1.25
15 167385 85417 3154.421 1458.433 1258.687 2.16 2.51 1.16
16 124425 47035 5485.760 1731.770 1679.458 3.17 3.27 1.03

TABLE IV: Comparison between the size of variable groups for SODA and INF/INF+ on EPFL benchmark.

n #Total var-[1](%) var-[2](%) var-[3](%) var-[4,5](%) var-[6,7,8](%) var-[≥9](%)
SODA INF SODA INF SODA INF SODA INF SODA INF SODA INF SODA INF

5 2675 2230 54.505 84.619 25.944 13.543 10.953 1.839 8.598 0 0.112 0 0 0
6 21532 17658 56.154 86.023 17.885 11.400 11.453 1.597 14.509 0.980 4.575 0 0 0
8 235466 245195 69.375 89.617 14.313 8.481 5.553 1.518 8.971 0.352 3.770 0.027 0 0

10 334259 359487 85.115 95.474 10.627 4.299 2.040 0.176 1.560 0.038 0.633 0.003 0 0
12 619120 679659 88.739 96.451 8.255 3.369 1.428 0.138 0.843 0.041 0.290 0.003 0.0305 0
13 556337 616669 90.002 96.974 7.238 2.891 1.283 0.121 0.715 0.014 0.298 0.001 0.0521 0
15 810309 904187 90.778 97.171 6.654 2.674 1.226 0.128 0.520 0.023 0.172 0.003 0.2968 0
16 884091 986068 91.165 97.206 6.400 2.625 1.168 0.138 0.497 0.028 0.159 0.006 0.3595 0

TABLE V: Details of #phase, #permutation, final exhaustive enumeration, and runtime of Cp on EPFL benchmark.

n #Phase #Perm #Enum Timecp(sec)
SODA INF INF+ SODA INF INF+ SODA INF INF+ SODA INF INF+

5 1149 555 649 3541 1740 2703 1238 712 712 0.006914 0.002327 0.001208
6 10110 4296 5471 31678 13304 39425 9111 4727 4727 0.039637 0.024064 0.014824
8 66800 44128 73050 354438 162677 2673064 69353 49049 49049 0.409565 0.937477 0.588323

10 27317 24705 41901 291860 167821 345734 63186 57773 57773 1.646048 2.157659 0.811257
12 33884 31871 79205 988519 222595 422534 95719 92352 92352 6.400379 14.529945 5.719692
13 26620 25324 81517 2290221 181371 371319 78696 77051 77051 21.638766 28.091138 12.774357
15 34212 33170 212008 28520852 249233 19550823 98681 97393 97393 230.843127 225.61318 151.732984
16 35280 34417 322081 110090650 263786 37806293 101292 100238 100238 866.437428 615.558448 463.198676

highlight that influence signature is negation independent and
permutation dependent and design two influence-aided canon-
ical form methods for exact NPN classification. Experimental
results prove that influence plays a significant role in reducing
the transformation enumeration in computing the canonical
form, and our influence-aided canonical forms gain up to 5.5x
speedup than the state-of-the-art NPN classification method.
In the future, we will try different combinations of signatures
in the canonical form and attempt to apply similar methods to
other applications like NPNP matching.

ACKNOWLEDGMENTS

This work is partly supported by the Major Key Project
of PCL (No. PCL2023AS2-3), the National Natural Sci-
ence Foundation of China (No. 62090021), the National Key
R&D Program of China (No.2022YFB4500500) and (No.
2022YFB4500403), the Strategic Priority Research Program
of Chinese Academy of Sciences (No. XDA0320300), the
Ministry of Education of China (No. 20YJA880001) and the
Innovation Program for Quantum Science and Technology
(No. 2021ZD0302900).

REFERENCES

[1] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,”
in International Conference on Computer-Aided Design (ICCAD), 2012,
pp. 597–604.

[2] W. Haaswijk, E. Testa, M. Soeken, and G. De Micheli, “Classifying
functions with exact synthesis,” in International Symposium on Multiple-
Valued Logic (ISMVL). IEEE, 2017, pp. 272–277.

[3] J. Cong and Y.-Y. Hwang, “Boolean matching for lut-based logic blocks
with applications to architecture evaluation and technology mapping,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 20, no. 9, pp. 1077–1090, 2001.

[4] J. Mohnke, P. Molitor, and S. Malik, “Application of bdds in boolean
matching techniques for formal logic combinational verification,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 3, pp.
207–216, 2001.

[5] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,” in
Design Automation Conference (DAC), 1998, pp. 206–211.

[6] D. Debnath and T. Sasao, “Efficient computation of canonical form for
Boolean matching in large libraries,” in Asia and South Pacific Design
Automation Conf. (ASP-DAC), 2004, pp. 591–596.

[7] A. Abdollahi and M. Pedram, “A new canonical form for fast boolean
matching in logic synthesis and verification,” in Design Automation
Conference (DAC), 2005, pp. 379–384.

[8] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto, “A transform-parametric
approach to boolean matching,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, no. 6, pp. 805–817,
2009.

[9] D. Chai and A. Kuehlmann, “Building a better boolean matcher and
symmetry detector,” in Design, Automation, and Test in Europe (DATE),
vol. 1. IEEE, 2006, pp. 1–6.

[10] V. N. Kravets and K. A. Sakallah, “Generalized symmetries in boolean
functions,” in International Conference on Computer-Aided Design
(ICCAD). IEEE, 2000, pp. 526–532.

[11] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching for small practical functions,” in International Workshop on
Logic & Synthesis (IWLS), 2013.

[12] A. Abdollahi and M. Pedram, “Symmetry detection and boolean match-
ing utilizing a signature-based canonical form of Boolean functions,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 6, pp. 1128–1137, 2008.

[13] A. Petkovska, M. Soeken, G. De Micheli, P. Ienne, and A. Mishchenko,
“Fast hierarchical npn classification,” in International Conference on
Field-Programmable Logic and Applications (FPL). IEEE, 2016, pp.
1–4.

[14] X. Zhou, L. Wang, and A. Mishchenko, “Fast adjustable npn classi-
fication using generalized symmetries,” ACM Transactions on Recon-
figurable Technology and Systems (TRETS), vol. 12, no. 2, pp. 1–16,
2019.

[15] X. Zhou, L. Wang, and A. Mishchenko, “Fast exact NPN classification
by co-designing canonical form and its computation algorithm,” IEEE
Transactions on Computers, vol. 69, no. 9, pp. 1293–1307, 2020.

[16] J. Kahn, G. Kalai, and N. Linial, “The influence of variables on boolean
functions,” in Symposium on Foundations of Computer Science (FOCS).
IEEE, 1988, pp. 68–80.

[17] R. O’Donnell, Analysis of boolean functions. Cambridge University
Press, 2014.

[18] S. B. Akers, Jr, “On a theory of boolean functions,” Journal of the
Society for Industrial and Applied Mathematics, vol. 7, no. 4, pp. 487–
498, 1959.

[19] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identification
of stealthy malicious logic using boolean functional analysis,” in ACM
SIGSAC Conference on Computer & Communications Security (CCS),
2013, pp. 697–708.

[20] D. Debnath and T. Sasao, “Veritrust: Verification for hardware trust,” in
Design Automation Conference (DAC), 2013, pp. 591–596.

[21] J. Zhang, S. Zheng, L. Ni, H. Li, and G. Luo, “Rethinking npn
classification from face and point characteristics of boolean functions,”
in Design, Automation, and Test in Europe (DATE), 2023, pp. 1–6.

[22] ABC: A system for sequential synthesis and verification. [Online].
Available: https://people.eecs.berkeley.edu/∼alanmi/abc/

[23] S. Yang, “Logic synthesis and optimization benchmarks version 3.0,”
Tech. Report, Microelectronics Centre of North Carolina, 1991.

[24] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in International Workshop on Logic & Synthesis
(IWLS), 2015.

https://people.eecs.berkeley.edu/~alanmi/abc/

	Introduction
	Background
	Frequently Used Signatures
	Variable Symmetries
	Canonical-Form-based Method

	The Power of Influence
	Redefined Influence and Facile Computation
	Understanding Boolean Influence in NPN Classification
	An Example of Influence

	Hybrid Influence-aided Canonical Form
	Canonical Form Definition
	Canonical Form Computation

	Optimized Influence-aided Canonical Form
	Runtime Analysis and Trade-off
	Optimized Influence-aided Canonical Form

	Evaluation
	Experiment Setup
	Comparison with State-of-the-Art Classification Method
	Discussion

	Conclusion and Future Work
	References

