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Abstract—Lattice-based cryptographic algorithms built on ring
learning with error theory are gaining importance due to
their potential for providing post-quantum security. However,
these algorithms involve complex polynomial operations, such as
polynomial modular multiplication (PMM), which is the most
time-consuming part of these algorithms. Accelerating PMM is
crucial to make lattice-based cryptographic algorithms widely
adopted by more applications. This work introduces a novel high-
throughput and compact PMM accelerator, X-Poly, based on the
crossbar (XB)-type compute-in-memory (CIM). We identify the
most appropriate PMM algorithm for XB-CIM. We then propose
a novel bit-mapping technique to reduce the area and energy
of the XB-CIM fabric, and conduct processing engine (PE)-level
optimization to increase memory utilization and support different
problem sizes with a fixed number of XB arrays. X-Poly design
achieves 3.1×106 PMM operations/s throughput and offers 200×
latency improvement compared to the CPU-based implementa-
tion. It also achieves 3.9× throughput per area improvement
compared with the state-of-the-art CIM accelerators.

I. INTRODUCTION

Post-quantum cryptography (PQC) represents a critical area
of research in the field of cryptography, driven by the
impending threat posed by quantum computing to current
cryptographic systems [1]. Many of these cryptosystems are
currently being considered potential PQC candidates to ad-
dress the challenges posed by quantum computing. Among
these cryptosystems, lattice-based cryptography has attracted
significant interest from the research community owing to its
robust security guarantees and relatively low computational
complexity [2], [3]. Lattice-based cryptographic algorithms
rely on the mathematical concept of a lattice, which is an
intricate structure formed by repeating patterns of points in a
multi-dimensional space.

One of the fundamental building blocks of lattice-based
cryptographic algorithms is polynomial operations, specifi-
cally, polynomial modular multiplication (PMM). PMM is a
critical operation in ring learning with error (RLWE) theory, a
key concept in lattice-based cryptographic algorithms. More-
over, PMM is the most time-consuming part of these algo-
rithms. For example, recent studies show that PMM represents
more than half of the computational workload for lattice-
based homomorphic encryption (HE) on the cloud side [4],
and more than 90% on the edge side [5]. Though algorithmic
optimizations like Number-Theoretic Transform (NTT) [6]
can decrease computation complexity, PMM latency is still

high [4], [5], [7]. As such, accelerating PMM is essential
to improve the efficiency and practicality of lattice-based
cryptographic algorithms.

Currently, there have been significant efforts to accelerate
PMM, particularly through the use of NTT. NTT-based so-
lutions, including those implemented on application-specific
integrated circuits (ASICs) [8]–[10], field-programmable gate
arrays (FPGAs) [11], and compute-in-memory (CIM) archi-
tectures [12]–[15], have demonstrated promising results in
accelerating PMM. CIM-based PMM accelerators have gained
attention for their effectiveness in reducing data transfer
overheads by moving computation inside the memory [5],
[14]. Work in [14] builds a Resistive RAM (ReRAM) based
NTT accelerator that supports bit-wise computation inside the
memory. Alternatively, [15] presents an in-SRAM NTT ac-
celerator with bit-serial arithmetic operations. Crossbar arrays
(XBAs) [16] is another popular CIM fabric that can support
highly efficient vector-matrix multiplication (VMM) and is
also actively being exploited for supporting high-throughput
NTT-based PMM implementations [12], [17].

Existing research efforts to accelerate PMM using XBAs
have primarily focused on using NTT-based approaches [12],
[17]. Such solutions claim to achieve improvements of over
50× compared to other CIM NTT accelerators. However,
supporting PMM on XBAs comes with its own set of unique
challenges. These challenges differ notably from those associ-
ated with the application of XBAs for the well-studied case of
convolutional neural networks (CNNs). On the one hand, the
high bitwidth and the large polynomial degree required for
cryptographic applications result in a huge number of shift-
add operations, which incur high area and energy overhead.
On the other hand, it remains an open question whether NTT-
based solutions are the most suitable for XBA-based CIM
architectures. Existing NTT-based PMM implementations on
XBAs suffer from high area costs and limited scalability.
These challenges restrict existing XBA-based solutions from
achieving high performance for lattice-based cryptographic
algorithms. Therefore, exploring alternative approaches to
accelerate PMM to overcome these limitations is crucial.

This paper proposes a novel XBA-based PMM accelerator,
X-Poly. Our solution distinguishes itself from existing XBA-
based CIM methods by focusing on the non-NTT-based PMM.
Our specific contributions are as follows:
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• We present observations revealing that NTT-based PMM
may not be the most suitable choice for XBA-CIM.
Our extensive studies show that the convolution 1D
(Conv1D) solution holds potential advantages regarding
area, latency, and noise over NTT when implementing
PMM on XBAs.

• We propose a new XBA bit mapping technique for high-
bitwidth, large polynomial degree data. The technique
significantly reduces the overhead by removing most fine-
grained shift-add operations.

• We optimize data mapping at the processing engine (PE)
level to support different problem scales with a fixed
number of XBAs while maximizing throughput.

Our proposed X-Poly offers significant improvements in
throughput and area consumption, making it a competitive
solution for accelerating PMM in lattice-based cryptographic
algorithms. Specifically, X-Poly achieves 200× latency im-
provement compared with a CPU implementation. It also leads
to 3.9× throughput per area improvements compared with the
state-of-the-art (SOTA) CIM accelerators for PMM.

II. BACKGROUND

In this section, we discuss the role of PMM in cryptography,
describe various PMM methods, review existing strategies for
accelerating PMM, and review the concept of XBA.

A. PMM in Cryptography

The RLWE problem [18], foundational to lattice-based cryp-
tography [19], and specifically to HE schemes [20], leverages
polynomials over a specific ring for its operations. HE, which
enables arbitrary computations on encrypted data without prior
decryption, ensures secure computation in untrusted environ-
ments while preserving data privacy. The primary computa-
tional bottleneck in HE arises from the need to perform poly-
nomial arithmetic, particularly PMM [21]–[23]. Consequently,
enhancing PMM’s performance with respect to latency and
energy consumption becomes critical in cryptography.

B. PMM

Polynomial modular multiplication (PMM) is a fundamental
operation in various applications, including cryptography, error
correction codes, and polynomial arithmetic. It involves multi-
plying two polynomials and reducing the result modulo a given
polynomial, resulting in a polynomial of a lower degree. By
performing PMM, it becomes possible to efficiently compute
large polynomial expressions while maintaining the desired
modulus properties.

PMM can be accomplished using various methods, in-
cluding the Conv1D approach and more optimized solutions
like NTT as shown in Fig. 1(a). The Conv1D approach for
PMM follows a straightforward procedure (Fig. 1(a)(1)). Two
polynomials A(x) and B(x), with polynomial degree n and
modulo q, are multiplied by summing the corresponding terms,
akin to Conv1D computation with time complexity of O(n2).
Then, the product undergoes modular reduction by dividing

Fig. 1. (a) PMM computation flow using two implementations: (1) Conv1D
(2) NTT. (b) PMM operation mappings on XBA: Conv1D mapping; (c) NTT
mapping.

it with a modulus polynomial. The remainder is extracted
polynomial long division to get the final result P (x).

NTT, alternatively, is proposed to reduce the computational
complexity of PMM, particularly when the modulus polyno-
mial satisfies specific properties, such as being irreducible
and having a specific degree [6]. As depicted in Fig. 1(a)(2),
the NTT approach involves transforming the polynomials into
a different domain through NTT. During the NTT transfor-
mation, butterfly computations are performed by combining
pairs of coefficients and multiplying them with twiddle fac-
tors, which are complex values associated with the modulus
polynomial, resulting in the frequency-domain representation
of the polynomial [6]. The process has a time complexity of
O(n log n). Then in this transformed domain, element-wise
multiplication is performed, followed by the inverse NTT
(INTT) to convert the result back to the original domain to
obtain the final polynomial P (x). Modular reduction is applied
after each domain transformation.

The computational complexity of PMM in hardware is
primarily influenced by two key factors: the polynomial degree
n, which represents the number of coefficients in a polynomial,
and the bitwidth k of modulo q, which signifies the size of
these coefficients. In real-world applications, such as HE in
privacy-preserving machine learning inference, these param-
eters can be quite substantial. For instance, the polynomial
degree n in these applications can range from 256 to 8192,
while the bitwidth k can vary from 16 bits to 64 bits [4], [24].
The magnitude of these degrees and bitwidths significantly
intensifies the computational complexity of a single PMM,
presenting a considerable challenge in the field.
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C. Related Work

In this section, we briefly review existing efforts to accel-
erate PMM. As existing work primarily employs NTT-based
solutions, we focus our review accordingly, discussing both
traditional ASIC and FPGA solutions, as well as CIM-based
accelerators.

1) ASIC and FPGA solutions: Nejatollahi, H., et al. [11]
proposed an innovative FPGA solution by designing two high-
throughput systolic array polynomial multipliers, one based
on NTT and the other on convolution. Their sequential NTT-
based multiplier yielded a 3× speedup over the SOTA FPGA
implementation of the polynomial multiplier in the NewHope-
Simple key exchange mechanism on an Artix7 FPGA [25].

ASIC implementations of lattice-based cryptographic pro-
tocols have also been actively studied. LEIA [9], a high-
performance lattice encryption instruction accelerator, and
Sapphire [10], a configurable processor for low-power em-
bedded devices, both demonstrate substantial performance
improvements and energy efficiency compared to prior ASIC
designs.

There are also a number of works that directly accelerate
HE, inherently accelerating PMM [4], [5], [7], [26], [27].
These works, which also typically use NTT, aim to create
large-scale accelerators for privacy-preserving computations.
Since this paper focuses on PMM, we will not compare
it to these works. It suffices to say that an efficient PMM
accelerator will directly help HE implementations.

2) Compute-in-Memory solutions: Previous research has
introduced a variety of CIM kernels, including crossbars and
general-purpose CIM. Ranjan et al. [28] have demonstrated
that XBAs excel at performing VMM. Reis et al. [29] have
discussed the general-purpose CIM enabling Boolean logic
and arithmetic operations to be executed directly within the
memory. Additionally, ongoing researches focus on explor-
ing different underlying technologies for implementing these
CIM kernels, including CMOS, ReRAM, and Ferroelectric
FET (FeFET) [30]. These technologies are actively stud-
ied due to their potential to provide higher density and
lower latency/energy overhead in CIM architecture. Several
research efforts have explored the use of CIM architectures
for the acceleration of the NTT, including CryptoPIM [14],
MENTT [15], RMNTT [12] and BPNTT [13]. We compare
X-Poly against these established researches, so we concisely
introduce these approaches in the following discussion.

CryptoPIM, MENTT, and BPNTT proposed efficient NTT
accelerators based on general-purpose CIM kernels. Cryp-
toPIM [14] and MENTT [15], built on ReRAM and SRAM
respectively, both introduced unique mapping strategies to
streamline the data flow between NTT stages, leading to
significant reductions in latency, energy, and area overheads.
BPNTT presented an in-SRAM architecture using bit-parallel
modular multiplication, significantly improving throughput-
per-watt.

RMNTT [12] proposed an NTT accelerator using ReRAM-
based XBAs. RMNTT stores the modified twiddle factor

Fig. 2. (a) XBA structure: a C columns x R rows array and the corresponding
WL/BL driver. A p-bit ADC is used for converting analog signals to digital
signals. (b) Illustration of the current summing scheme in XBA computation.

matrix in the XBAs and employs a modified Montgomery re-
duction algorithm to perform modular reduction on the VMM
results. The evaluation results in [12] show that RMNTT
outperforms other NTT accelerators in terms of throughput
but incurs a large area overhead.

D. Crossbars

Given the competitiveness of XBA-based NTT accelerators,
we consider leveraging XBAs to accelerate PMM. We briefly
review the XBA basics below.

XBA [31] is one representative CIM kernel in which every
input signal is connected to every output signal through their
cross-points consisting of memory elements and selectors.
XBAs can efficiently implement VMM and have been widely
studied for CNNs. In particular, XBA implemented with
nonvolatile memory (NVM) devices such as ReRAM [32]
have gained popularity due to their high storage density,
nonvolatility, and low energy consumption. However, XBAs
face challenges stemming from the underlying memory de-
vices and circuits. In-situ memory device nonidealities, e.g.,
non-linearity, thermal noise, and variations, impact computed
accuracy.

Fig. 2(a) illustrates a general XBA structure. For each
column, we adopt the current summing model as shown in
Fig. 2(b). In this work, both input voltage (Vj) and memory
cell states (Gi,j) assume binary values, i.e., Ii =

∑R−1
0 GijVj ,

where Vj and Gij are either 0 or 1. Binary XBAs exhibit
greater robustness to device and circuit nonidealities, and offer
improved scalability.

III. NTT VS. CONV1D

The choice of PMM algorithm is critical to achieving high
performance in terms of speed, noise, and area in the context of
the CIM computing paradigm as discussed in Sec. II-B. Two
commonly used methods for performing PMM are Conv1D
and NTT. Recent efforts utilizing XBAs for PMM have pri-
marily focused on accelerating NTT-based methods [12] [17].
However, there is no systematic comparative study of which
method, Conv1D or NTT, is a better fit for leveraging XBAs to
accelerate PMM. We fill this gap with an in-depth investigation
below. Our study reveals three key insights which favor the
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Conv1D over the NTT-based approach. First, data mapping
complexity is higher when using NTT. Second, the Conv1D
method potentially offers a better performance trade-off in
terms of area and throughput, providing more opportunities for
design scalability. Third, the noise growth is generally higher
in the NTT approach than Conv1D, which can negatively
impact the performance and accuracy of the system. Below,
we elaborate on these insights.

A. The Impact of Data Mapping to XBAs

To use XBAs for PMM, both NTT-based and Conv1D-
based PMM approaches require converting their respective
operands into matrices and performing VMM on XBAs [12].
In the NTT-based approach, the twiddle factor of NTT must
be converted into a matrix. In the Conv1D approach, one
of the polynomials is transformed into a matrix, while the
other remains a vector, facilitating the execution of VMM.
Data mapping to XBAs in NTT and Conv1D can be better
visualized in Fig.1(b) and (c). The figures show that the
same number of memory cells are needed for both methods;
thus, NTT does not provide benefits over Conv1D in terms
of the XBA area. Also, due to the butterfly computation
involved in NTT, converting the twiddle factors into a matrix
is significantly more complex than converting a polynomial
into a matrix for Conv1D [12].

The end-to-end computational complexity of NTT-based
PMM on XBAs is actively higher than directly map-
ping Conv1D into XBAs. As depicted in Fig. 1(a), NTT-
based PMM involves three main steps: NTT computation
(O(n log n) complexity), element-wise multiplication (O(n)
complexity), and INTT computation (O(n log n) complexity).
In contrast, Conv1D-based PMM has a complexity of O(n2).
However, when utilizing XBA acceleration, the complexity of
Conv1D-based PMM can be reduced from O(n2) to O(1). By
employing similar data mappings, NTT and Conv1D exhibit
the same time complexity on XBA. Therefore, Conv1D-based
PMM on XBA demonstrates a lower end-to-end complexity
compared to NTT-based PMM, as it requires fewer opera-
tions—Conv1D only necessitates O(1) operations, while NTT
involves O(1) + O(n) + O(1) operations.

B. Performance Analysis

NTT-based PMM requires that the twiddle factors be stored
for NTT and INTT in the XBAs (See Fig 1(c)). The stored
twiddle factors approach necessitates either frequent updates to
the twiddle factors stored in the XBAs or the use of additional
XBAs to store all twiddle factors needed for NTT. As a result,
this leads to either higher latency and energy consumption
or increased area. Alternatively, Conv1D-based PMM has
numerous identical values that, when stored in XBAs, can
be reused repeatedly. This provides the opportunity to devise
intelligent data reuse schemes (see Sec. IV-C), ultimately
leading to more efficient and optimized solutions in terms of
area and energy consumption. Therefore, Conv1D-based PMM
can be a more promising method for accelerating PMM with
XBAs.

Fig. 3. Hierarchical structure of the proposed X-Poly design: (1) Tile level
design and data mapping, (2) PE level design and data mapping, and (3) XBA
structure.

C. Noise

As discussed in Sec II-D, XBAs are susceptible to accuracy
degradation stemming from the intrinsic nonidealities of the
memory cells, and the limitation of ADC precision. As a result,
using XBAs inevitably introduces a certain amount of noise
(i.e., error) in VMM results. When implemented on XBAs,
Conv1D-based PMM incurs less noise than NTT-based PMM.
The primary reason is that in Conv1D-based PMM, the entire
computation can be completed in one step in XBAs, which
helps control the magnitude of the noise. However, in NTT-
based PMM, the NTT, element-wise multiplication, and INTT
must be performed, which increases the noise introduced by
XBAs multiplicatively (See Fig 1(a)). In applications such as
HE, higher noise levels are not tolerable, making NTT-based
XBA PMM unsuitable for such applications.

Based on the observations in this section, we believe that
Conv1D-based PMM is a better approach for accelerating
PMM with XBAs. We thus focus on the design and optimiza-
tion of the XBA fabric to accelerate Conv1D-based PMM.

IV. X-POLY

Design and optimization of Conv1D-based PMM on XBAs
for long polynomials must solve several key problems. These
include mapping data to XBAs to efficiently use the resources,
enhancing memory utilization at the Processing Element (PE)
level, and effectively implementing modular reduction strate-
gies. We present X-Poly for accelerating the Conv1D-based
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PMM and provide tailored solutions to address the aforemen-
tioned challenges.

A. Overview

The high-bitwidth long polynomials employed in crypto-
graphic algorithms like HE propose challenges for the design
of XBA-based architecture. One specific issue relates to the
limited size of the XBA. For instance, an array with 128 rows
and 128 columns falls short in accommodating high-bitwidth
polynomials with a degree exceeding 256.

To address the challenge, X-Poly utilizes a hierarchical ap-
proach to address computational complexity. Fig. 3 illustrates
the overall structure and data mapping of X-Poly, consisting of
the tile, PEs, and XBAs. The tile (Fig. 3(1)) contains multiple
PEs, an accumulator, and a specifically designed reduction unit
for modular reduction. Each PE holds one-bit weights and
shares the same input. Thus, k PEs can store k-bit polynomials
from the most significant bit (MSB) to the least significant bit
(LSB), working in parallel.

The PE (Fig. 3(2)) is composed of multiple XBAs working
on different parts of the polynomials simultaneously, as well
as an adder tree and a shifter. The XBAs (Fig. 3(3)) are used
for coefficient multiplication, while the adder tree and shifter
within each PE accumulate partial results from each XBA and
perform shift-add operations.

B. Bit Mapping

The high bitwidth and large polynomial degree required
for cryptographic applications need a large number of shift-
add operations, which may not be efficiently supported in a
CIM architecture. Due to the limited precision of a memory
cell in an XBA, we need to map the bits of weight into
multiple memory cells. Fig. 4(a) illustrates the conventional
approach for mapping the high bitwidth weight to multiple
XBAs. All bits of weight are stored in multiple columns of
the XBA. When input arrives at the XBA, each column con-
ducts a multiplication operation. Immediately following this,
shift-adders carry out the shift-add operations after the XBA
computation. This XBA-level shift-add operation requires lots
of shift-adders and is expensive in terms of both time and
energy.

As such, in this work, we propose a new bit mapping (BM)
technique that groups the same bit of all weights together,
as shown in Fig. 4(b). For example, in the case of 4x4 2-
bit weights distributed among 2 PEs (4 XBAs per PE), each
PE process one bit of each weight. After all PEs process
one input bit, the shift operation is performed at the PE
level, thereby avoiding a costly array-level shift-add operation.
Comparing the conventional mapping (Fig. 4(a)) and the bit
mapping (Fig. 4(b)) in the example, the number of shift-adders
is reduced from 8 to 2.

As will be seen, this bit mapping strategy can significantly
improve both the area and speed for processing high-bitwidth
polynomial-based workloads in XBAs. In addition to its ben-
efits for shift operations, the BM technique also simplifies
the design of the PE. Since each PE handles a bit of each

Fig. 4. Example of the proposed bit mapping technique: mapping 2bit 4x4
weights to 2x2 XBA with binary cells: (a) Conventional mapping. (b) Bit
mapping.

polynomial, the data patterns are captured at the polynomial
coefficient level. We can simultaneously perform mapping
optimization for all PEs. Thus, this technique can be easily
extended to accommodate polynomials with different degrees
or bitwidths, making it a flexible solution for performing
polynomial operations in XBAs.

C. Polynomial Mapping

In our PMM approach (utilizing VMM in XBAs), we first
map polynomials into matrices to facilitate computation. Each
polynomial is converted into a matrix by horizontally shifting
the coefficients of the polynomial across each row, with any
remaining gaps filled with zeros. This procedure results in a
matrix structure that supports the critical shift-add operations
intrinsic to PMM.

Mapping the matrices into XBAs in our PMM approach
using VMM is straightforward. However, in an effort to further
optimize this mapping scheme, we noted that for any given
polynomial degree n and XBA row length x, there is a
consistent pattern of repeated XBAs. Specifically, in every
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instance, we require n/x identical XBAs to represent the
polynomial matrix.

This aspect of our design stands in contrast with NTT-
based XBA designs [12], which often find themselves confined
to specific polynomial parameter settings. As such, X-Poly
offers a significant increase in flexibility. For example, con-
sider two application scenarios for privacy-preserving machine
learning (PPML) inference as shown in [24]. On server-side
inference, where performance is prioritized, and energy or
area constraints are less critical, X-Poly can leverage a larger
count of XBAs for high-throughput PMM in HE of PPML.
For edge-device inference, where area and energy efficiency
are paramount, X-Poly can efficiently handle a variety of
large polynomial degrees and bitwidths with a smaller number
of XBAs. A detailed study of the scalability of our design,
referred to as X-Poly, is provided in Sec. V-E.

D. Modular Reduction

Modular reduction is a crucial step in PMM, which ensures
that the resulting polynomial remains within a specified degree
and coefficient bounds. The essential steps in the reduction
process include selecting an appropriate modulus for the ring
and performing the modulo operation on the degree and
coefficients of the resulting polynomial.

In X-Poly, we utilize a variant of the Barrett reduction [33]
technique for efficient modular reduction. This method is
known for its effectiveness in cryptographic applications and
modular arithmetic, as it can compute the remainder of a
division operation without performing the division itself. No-
tably, to minimize computation overhead in reduction, we
strategically pre-compute specific parameters. This strategy
transforms the complex, time-consuming multiplication and
division operations into shift operations, effectively reducing
computation time and optimizing the overall reduction process.

E. Computation Flow

Assuming polynomial A is mapped onto XBAs in X-Poly,
PMM can be accomplished as follows. (1) Input processing:
We begin by bit-slicing each element in the new polynomial
B, separating it into its individual bits. (2) PE computation:
Within each PE, different arrays handle distinct sections of the
polynomial and perform multiplications with corresponding
sections of the input. The results are then summed and shifted
at the PE level. This bit-by-bit input process continues until
all input bits have been addressed. (3) Tile accumulation:
Afterward, the results from all PEs are accumulated at the
tile level, and the partial results obtained from each PE are
combined. (4) Tile reduction: Finally, a tile-level reduction
operation is applied for efficient modular reduction.

We also prioritize maximizing throughput in our design by
incorporating a three-stage pipeline into the X-Poly workflow
to enhance the PMM process. This pipeline, which encom-
passes the PE computation, tile accumulation, and tile reduc-
tion stages, enables efficient synchronization and overlapping
operations.

V. EVALUATION

In this section, we present the evaluation of X-Poly. We
begin by discussing our implementation setup and evaluation
tools and follow with a comparison with both the CPU-based
solutions as well as other hardware accelerators. We will
quantitatively assess the performance benefits from X-Poly.
We then evaluate our bit mapping technique, with a focus
on energy and area savings. Then we study the throughput
per area performance of X-Poly, demonstrating its superior
performance over other SOTA CIM accelerators. Finally, we
assess the scalability of X-Poly and highlight its versatility in
handling diverse polynomial degrees and bitwidths.

A. Implementation Setup

To verify the functionality of X-Poly and evaluate perfor-
mance characteristics such as latency, energy, and area, we
have assembled a comprehensive evaluation framework.

This framework considers the simulation of hardware com-
ponents, including the modular reduction unit, shift-adders,
accumulators and XBA arrays. We implemented the reduction
unit, shift-adder, and accumulator using RTL, coded in Verilog
and evaluated the energy consumption and area of these
components using the RTL synthesis tool Cadence Encounter,
paired with the 45nm CMOS predictive technology model
(PTM) [34]. We used Neurosim [35] to estimate the latency,
energy, and area of the ReRAM-based XBAs, as well as
successive-approximation-register (SAR) ADCs assuming the
same 45nm technology node. The size of each XBA is 128
rows × 128 columns and one ADC is shared by 8 columns.

We then incorporated the aftermentioned simulation-based
results into our Python-based cycle-accurate simulator. This
simulator tracks the pipeline stages for a given PMM operation
and computes the cycle count and total energy consumption
by emulating the operations of each hardware component on
a cycle-by-cycle basis. This evaluation framework allows us
to generate a holistic and precise assessment of the overall
performance of a PMM in X-Poly.

B. Comparison with SOTA Solutions

1) Comparison with CPU: We first compared our X-Poly
implementation with a CPU implementation that performs
PMM with a SOTA C++ library (Number Theory Library
version 11.5.1 [36]). An Intel(R) Xeon(R) CPU E5-2680 v3
operating at 2.50GHz was used for the CPU implementation.
The results are shown in Table I (col 3). The latency of the
X-Poly design is 200× better than the CPU implementation.
Performance enhancement is primarily due to the parallel
compute capability and fast multiplication inherent in the
XBAs in our CIM-based architecture, allowing for a much
more efficient PMM execution.

2) Comparison with other accelerators: Next, we com-
pared X-Poly with other SOTA accelerators. As current ac-
celerators for PMM only use NTT, we compare our approach
to SOTA accelerators that support NTT given a polynomial
degree of 256. That said, NTT solutions require additional
multiplications and the INTT to obtain final PMM results.
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Compared to X-Poly, this may increase overall latency and
energy consumption by 2×. Moreover, with X-Poly, we can
generate PMM results in a single step without the need for
additional multiplication or INTT.

XBA solutions: We first compared our implementation with
other CIM solutions, specifically with ReRAM implementa-
tions. We scaled the latency and energy of [12] to 45nm
for a fair comparison to X-Poly, following the methodology
outlined in [13]. Given that the study in [12] did not provide
area results, we carried out an estimation using the mapping
methodology introduced in their publication. We assume the
same area for XBAs and peripheral components as X-Poly.
Although our design exhibited similar latency to RMNTT, our
improved mapping technique results in a significantly reduced
area. That is mainly because we reduce the footprint of shift-
adders to just 20% of the original area by using the proposed
BM technique, thereby leading to a 3.9× improvement in the
throughput-per-area ratio.

Compute in SRAM solutions: We also compared our im-
plementation with in-SRAM solutions. The X-Poly approach
also improves throughput and throughput-per-area. Again, this
can be attributed to both the parallel computing capability
and the fast multiplication feature of our XBA-type mapping
technique, which enables us to perform multiple computations
simultaneously. More specifically, throughput is improved by
11×, and throughput-per-area is improved by up to 3×.

Non-CIM solutions: Finally, we compared X-Poly with
non-CIM solutions. The X-Poly design is advantageous as
it can store entire polynomial coefficients inside the XBAs.
This feature eliminated the need for frequent access to on-chip
memory for coefficients in long polynomials, which reduces
data movement between the computing unit and the on-chip
memory. This results in a reduction in both latency and energy
consumption. Overall, X-Poly outperformed ASIC and FPGA
solutions in terms of throughput and energy efficiency. Com-
pared to SOTA FPGA implementations, X-Poly can achieve
a remarkable 75× throughput improvement. When compared
against SOTA ASIC implementations, X-Poly can achieve a
2× throughput improvement.

Fig. 5. Comparison of area and energy breakdown for ADCs and shift-adders
in X-Poly and RMNTT [12].

C. Bit Mapping Study

We now evaluate the energy and area benefits of the pro-
posed BM technique, discussed in Sec.IV. To evaluate perfor-
mance, we consider two scenarios: (1) conventional mapping
as the implementation of RMNTT, the SOTA XBA-based
NTT accelerator, and (2) our proposed BM technique. Fig.5
illustrates the shift-adder area/energy and ADC area/energy
given various polynomial degrees for each mapping. Results
suggest that due to the large polynomial degrees and high
bitwidths associated with the PMM, the peripherals (such as
the shift-adders) in the design with conventional mapping
consume a significant proportion of the energy and area.
Moreover, this escalates with polynomial degrees. However,
our proposed BM technique decreases the area for shift-add
operations by 80%, leading to an additional 3× reduction in
overall area. Moreover, compared to conventional mapping,
our design has lower latency and energy consumption.

Fig. 6 illustrates the area and energy breakdown of our pro-
posed design. This analysis further reveals that the majority of
the energy consumption and area is spent on ADC operations,
with the proposed mapping technique reducing the energy and
area consumption for other peripherals significantly.

TABLE I
COMPARISON BETWEEN X-POLY AND OTHER SOTA SOLUTIONS ON A 256-POINT POLYNOMIAL. TECHNOLOGY SIZE: 45NM

PMM Solutions NTT Solutions (CIM) NTT Solutions (Non-CIM)
Design X-Poly CPU RMNTT BPNTT MENTT CryptoPIM FPGA LEIA Sapphire
Device ReRAM CMOS ReRAM SRAM SRAM ReRAM CMOS CMOS CMOS

Frequency (MHz) 400 2.5k 400 3.8K 218 909 164 267 64
Bit width 16 16 14 16 14 16 16 14 14

Area (mm2) 0.27 - 0.76∗ 0.063 0.173 0.152 - 1.77 0.354
Latency (us) 0.32 56 0.44 61.9 15.9 68.7 24.3 0.6 20.1
Energy (nJ) 308.07 - 429.91 69.4 47.8 2.6k 3.1k 44.1 236.3

Throughput$ (KOP/s) 3.1k - 2.2k 258.6 62.8 553.3 41.2 1.7k 49.7
Throughput/Area$ (KOP/s/mm2) 11.4k - 2.9k 4.1k 364 3.6k - 940.6 140.1

* We estimate the area for RMNTT based on the information reported in the paper. We utilize the same XBA area and peripheral components
as X-Poly for the sake of comparison.
$ We evaluate the throughput based on the type of operations performed in the corresponding accelerators. We report the throughput of
PMM for both X-Poly and CPU as well as the throughput of NTT for other accelerators as reported in the literature.
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Fig. 6. Area and energy breakdown for components of X-Poly with polyno-
mial degree 256 and bitwidth 16.

Fig. 7. Throughput per Area (KOP/s/mm2) comparison with the SOTA
CIM solutions (RMNTT and BPNTT) under different polynomial degrees
and bitwidths. Y-axis is using log-scale for better illustration.

D. Throughput per Area Study

Table I shows that the XBA-based solutions (X-Poly and
[12]) achieve higher throughput but require a larger area than
the in-SRAM solution [13]. This is due to the inherent design
of XBA-based solutions: they require a more expansive area
to accommodate an increase in both polynomial degree and
bitwidth [12]. In-SRAM solutions can support larger parameter
sizes within a similar area. However, this is accompanied by a
substantial reduction in throughput. However, X-Poly reduces
XBA area while maintaining its high throughput.

To further understand the trade-off between throughput and
area, we conducted an analysis of the throughput per area
performance and compare the results with other SOTA CIM
solutions. We consider a range of polynomial degrees and
bitwidths, to generate a comprehensive perspective regarding
the strengths of our design.

Fig. 7 illustrates the throughput per area performance of
our design, as well as the SOTA XBA design in [12] and the
in-SRAM design in [13]. Our results show that X-Poly can
achieve significantly better throughput-per-area performance
than both of these solutions, even as the parameter size
increases. This highlights how X-Poly can lead to decreased
area consumption of the XBA-based solution without compro-
mising the throughput.

E. Scalibility of X-Poly

Modern applications like HE in privacy-preserving machine
learning often choose polynomials with a large degree and
bitwidth [7], [24]. Storing these entirely within XBAs demands

Fig. 8. Scalibility study shows the throughput of X-Poly under different
polynomial degrees and bitwidths given a fixed total XBA number.

a high number of arrays, leading to significant area usage and
energy consumption.

Our polynomial mapping scheme (Sec IV-C) allows us to
reuse arrays. This enables us to employ a smaller number of
XBAs to accommodate larger polynomials. However, reusing
XBAs could potentially affect our design’s latency. To address
this, we conducted an experiment where given a fixed number
of XBA arrays, we assessed the capability of X-Poly to adapt
to various polynomial degrees and bitwidths. The objective
here was to determine how we could optimize X-Poly to max-
imize design throughput under different polynomial degrees
and bitwidths constraints.

The left graph in Fig. 8 depicts the maximum throughput
of X-Poly using different numbers of XBAs. We considered
polynomial degrees ranging from 256 to 2048, with a fixed
bitwidth of 16. The right graph demonstrates the maximum
throughput for different bitwidths ranging from 8 to 64, while
maintaining a constant polynomial degree of 512. Our experi-
ments highlight that our design is capable of managing a wide
array of polynomial degrees and bitwidths while maintaining
a fixed number of XBAs. As anticipated, higher degrees
and bitwidths require longer computation times due to the
necessity for reuse of the same arrays within the pipeline. By
modifying the number of XBAs, we can manage the balance
between area and throughput. Overall, our design showcases
robust scalability, effectively adapting to a broad spectrum of
polynomial degrees and bitwidths.

VI. CONCLUSION

In summary, this paper proposes a novel PMM accelerator
based on XBA-type CIM for accelerating the most time-
consuming part of lattice-based cryptography algorithms. The
proposed X-Poly design achieves 3.1 MOP/s throughput and
offers 200× latency improvement compared to CPU-based
implementations. It also achieves 3.9× throughput per area
improvements compared with the SOTA CIM accelerators.
The suitability of NTT-based solutions for CIM-based PMM
acceleration is evaluated, and a novel bit mapping technique
is proposed to reduce area and energy overhead. PE-level
optimization is conducted to increase memory utilization and
support different scales of problems with a fixed number of
XBAs.
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