
VECOM: Variation-Resilient Encoding and Offset
Compensation Schemes for Reliable ReRAM-Based DNN

Accelerator
Je-Woo Jang∗, Thai-Hoang Nguyen† and Joon-Sung Yang∗‡

∗School of Electrical and Electronic Engineering and
‡Dept. of Semiconductor Systems Engineering, Yonsei University, Seoul, South Korea

†Dept. of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
jeus63@yonsei.ac.kr, th.nguyen@g.skku.edu, js.yang@yonsei.ac.kr

Abstract—Resistive Random-Access Memory (ReRAM)-based
Processing In-Memory (PIM) Accelerator has emerged as a
promising computing architecture for memory-intensive applica-
tions, such as Deep Neural Networks (DNNs). However, due to its
immaturity, ReRAM devices often suffer from various reliability
issues, which hinder the practicality of the PIM architecture
and lead to a severe degradation in DNN accuracy. Among
various reliability issues, device variation and offset current from
High Resistance State (HRS) cell have been considered as major
problems in a ReRAM-based PIM architecture. Due to these
problems, the throughput of the ReRAM-based PIM is reduced
as fewer wordlines are activated. In this paper, we propose
VECOM, a novel approach that includes a variation-resilient
encoding technique and an offset compensation scheme for a
robust ReRAM-based PIM architecture. The first technique (i.e.,
VECOM encoding) is built based on the analysis of the weight
pattern distribution of DNN models, along with the insight into
the ReRAM’s variation property. The second technique, VECOM
offset compensation, tolerates offset current in PIM by mapping
the conductance of each Multi-level Cell (MLC) level added with
a specific offset conductance. Experimental results in various
DNN models and datasets show that the proposed techniques
can increase the throughput of the PIM architecture by up to
9.1 times while saving 50% of energy consumption without any
software overhead. Additionally, VECOM is also found to endure
low R-ratio ReRAM cell (up to 7) with a negligible accuracy drop.

Index Terms—Deep learning hardware, Processing-In Memory,
ReRAM, Variation-Tolerance, Neural Networks

I. INTRODUCTION

Processing-In Memory (PIM) architecture, utilizing Resis-
tive Random Access Memory (ReRAM), offers a promising
solution to address the limitations of conventional von Neu-
mann architecture [1]–[3]. The core idea of a ReRAM-based
PIM architecture is to realize ReRAM devices as both storage
devices and matrix-multiply-accumulate operation (i.e., MAC)
elements. By aligning the cells in a crossbar-like structure,
the MAC operations can be computed in situ with O(1) time
complexity, making such architecture highly efficient for Deep
Neural Network’s (DNN) computations. Despite being a po-
tential candidate, ReRAM-based PIM architecture is hampered
by various reliability issues due to its immature manufacturing
process, such as the issue of conductance variation [4] and
non-ideal current [5]. Such issues can impede the performance
of the ReRAM-based PIM, undermine the DNN accuracy
and pose numerous challenges for the deployment of high
reliability-constrained DNN applications.

One of the primary concerns in ReRAM-based systems is
conductance variation, where the actual analog conductance
value written to a ReRAM cell deviates from the desired
data. This issue is particularly notable in the PIM architecture
where errors can be accumulated along the bitlines of the
crossbar array, leading to incorrect output current. To diminish
the effect of accumulated variation errors, existing ReRAM-
based PIM architectures often limit the maximum number of
activated wordlines (MAW) [5]. However, reducing the MAW
also curtails the potential for parallelism in a PIM architecture,
consequently limiting throughput. In an attempt to address
ReRAM’s variation, several works have proposed solutions for
ReRAM-based PIM accelerators [4]–[8]. Notably, software-
based techniques [4], [6], [7] have aimed to lessen the impact
of ReRAM’s variation by retraining or fine-tuning the DNNs
to adapt to the non-ideal distribution of ReRAM resistance.
However, these methods can be cost-prohibitive due to the
required re-training processes, which is problematic when the
DNN is further scaled or when DNN is already deployed
to edge devices. Alternatively, other approaches introduce
redundant hardware to compensate for variation [5], [9], but
these techniques often result in significant hardware overhead,
making them unsuitable for resource-constrained devices.

In addition to the variation, the offset current generated
when an input voltage is applied to High Resistance State
(HRS) cells can pose a significant challenge in parallelizing
MAC operations of ReRAM-based accelerators. In an ideal
scenario, the output current of HRS cells should be zero during
MAC operations. However, non-ideal ReRAM devices exhibit
offset current leakage from HRS cells when an input voltage is
applied. This issue becomes more pronounced when utilizing
low R-ratio ReRAM cells, which have a low ratio of resistance
values between the on and off states. Several works have
been proposed to ensure reliable operations with a low R-
ratio ReRAM device [5], [9]–[12]. Among them, [9] proposes
a distance-racing readout scheme to mitigate the adverse effect
from the offset current by measuring the distance of accumu-
lated current on a bitline from two reference sensing currents.
However, the number of reference currents is proportional to
the number of activated wordlines. Hence, the MAC operation
in a typical crossbar size of 128x128 [1] is not feasible due
to the high area and power overhead of the peripheral circuit.
The work in [5] subtracts the offset current by adding an extra
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column of HRS cells. While proven effective, such a method
is limited to Single Level Cells (SLC) ReRAM and difficult
to apply to higher ReRAM cell-precision such as Multi-level
Cell (MLC).

In this paper, we introduce VECOM, which includes a
variation-resilient encoding technique and an offset current
compensation scheme for a robust ReRAM-based DNN ac-
celerator. The contributions of this paper can be summarized
as follows:

• We analyze the characteristics of weight patterns in
various DNN models and their impact on the performance
of PIM-based DNN systems.

• We propose VECOM encoding, a two-step encoding
technique, to enhance the robustness of DNNs against
ReRAM variations. The proposed encoding scheme is
found to be effective, lightweight, and significantly im-
proves the throughput of the PIM architecture.

• We introduce a programming scheme of VECOM which
can be utilized for low R-Ratio and various cell-precision
(number of bit-per cell) of ReRAM device. This approach
effectively mitigates offset current from the HRS cells
without adding the burden of latency and power to the
conventional programming techniques.

• VECOM is evaluated using various DNN models and
datasets. The results demonstrate that VECOM outper-
forms the baseline PIM design and other existing tech-
niques in terms of enhancing DNN robustness and in-
creasing wordline-parallelism of non-ideal ReRAM-based
PIMs.

The rest of the paper is organized as follows. The back-
grounds and related works for PIM accelerator using MLC
ReRAM, as well as the problem of variation and offset current
in the ReRAM-based PIM are presented in Sec. II. Sec. III
presents the analysis of pattern distribution in DNNs and its
impact on DNN accuracy. The proposed VECOM encoding
technique and conductance offset mapping programming are
also introduced in this section. Evaluations of the proposed
method and a detailed discussion of the results are given in
Sec. IV. Sec. V concludes the paper.

II. BACKGROUNDS AND RELATED WORKS

A. ReRAM-based DNN Accelerator

Deep Neural Networks (DNNs) have demonstrated excep-
tional performance and efficiency across numerous machine
learning applications. As DNNs continue to evolve, there is
an escalating demand for more robust and scalable hard-
ware architectures. To meet this need, ReRAM-based PIM,
a high-throughput, energy-efficient hardware accelerator for
DNNs, has emerged as a viable solution for future DNN
computations [1], [13]. Fig. 1 depicts a typical array-level
configuration of a ReRAM-based DNN accelerator. This PIM
architecture includes multiple ReRAM cells organized in a
crossbar configuration, along with peripheral circuits such
as digital-to-analog converters (DACs), analog-to-digital con-
verters (ADCs), and shift-and-add (S&A) components. Each
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Fig. 1: An example of a typical ReRAM-based crossbar array.
All signed 8-bit weights are represented using the unsigned
format with the additional bias.

ReRAM cell is connected to a wordline (WL) on one side and
a bitline (BL) on the other. When an input voltage is applied
to each wordline, the accumulated current at the bitline’s end
varies depending on the conductance value of each ReRAM
cell. In this discussion, it’s assumed that a single ReRAM cell
can store 2-bit data (MLC), a configuration prevalent in most
ReRAM-based designs [1], [13], [14].

In a ReRAM-based PIM architecture, an 8-bit quantized
weight of the DNN model can be represented by 4 MLC
ReRAM cells. Since PIM architecture cannot represent the
sign of the DNN’s weights, existing PIM architecture, e.g.,
ISAAC [1], uses biased representation for weights and adds
an extra unit column to count the number of biases in input
and then subtract them from the output digital value to
compute signed arithmetic operation. For example, consider
the case of a weight located in the first row of the crossbar
array illustrated in Fig. 1. The biased weight W, located
inside the blue bounding box, is expressed with 100011102
in binary which is 14210 = 12810 + 1410 in decimal. Since
the 8-bit fixed-point quantized weight is in the range of -128
to +127, when a bias value of +128 is added, all weights
mapped into the crossbar array have values ranging from 0
to +255, which can be represented by a positive ReRAM
conductance value. Since biases are added to the weights,
the results of MAC operation from the crossbar array are
also added with the bias values. These bias values must be
subtracted in order to obtain the signed arithmetic values.
The input vector (x0–127) applied to the crossbar array is also
applied to the extra column in Fig. 1. All cells in the extra
column are mapped to 01, and the accumulated current at
the end of the extra column is converted to a digital value
by an ADC to count the number of 1s in the input. After
multiplying the number of 1s by the bias and subtracting it
from the MAC operation result, the identical MAC operation
result using the weight without bias can be obtained.
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Fig. 2: Non-ideal properties of ReRAM cell limiting parallel
activation of wordlines compared to the ideal case. (a) High
R-ratio with low variation. (b) With large variation. (c) With
a low R-ratio. (d) MAC current distribution.

B. Non-Ideal Properties in ReRAM-based PIM Architecture

Although being effective in processing the MAC operations,
ReRAM-based PIM architecture suffers from various relia-
bility issues caused by the immaturity of the manufacturing
process and its analog characteristics. Fig. 2 depicts the non-
ideal properties that occurred in the operations of ReRAM.
Fig. 2 (a) shows the conductance distribution using the ideal
ReRAM which has a large R-ratio and a low cell variation.
Fig. 2 (b) and (c) respectively show the ReRAM cell with
large variation and low R-ratio. As shown in the figures, cell
variation and low R-ratio cause an overlap of the conductance
distributions between neighboring levels. This can lead to the
overlap in the MAC result current distributions, as illustrated
in Fig. 2 (d). As a result, the overlapped region causes the
ADC’s logic to be ambiguous when distinguishing between
discrete digital values, which is detrimental to the system.

Previous works [5], [9] often limit the maximum number
of activated wordlines (MAW) during the operation of PIM,
since turning on a large number of wordlines can cause
wrong outcomes at the end of each column. Such an approach
reduces the PIM’s throughput in each cycle and thus degrades
the performance of the system. Therefore, it is necessary to
develop an encoding technique to improve the throughput of a
ReRAM-based PIM architecture while still keeping the impact
of ReRAM variation minimal.

C. Related Works

Various techniques have been proposed to resolve the
problem of variation in ReRAM-based PIM architecture [4]–
[8]. Specifically, the works in [4], [6], [7] utilize the self-
healing capability of DNN to compensates the variation caused
by ReRAM cells. In other words, re-training the network
with the consideration of ReRAM variation is required for
such techniques. Although being effective, these approaches
are not feasible when the DNN has already been deployed
and the training data is not available. Other hardware-based

approaches have tried to reduce the impact of variation by
using redundant hardware designs [5], [9]. [5] proposes a
method that counts the number of activated wordlines in
the digital domain and then compensate the corresponding
variation using ADCs. In this manner, [9] requires a separate
ReRAM array with the same size as the original array, to store
the ADC reference current information. This imposes a con-
siderable overhead which would not be suitable in resource-
constrained environments. There are also studies that use Error
Correcting Code (ECC) to increase the variation-tolerability
of the ReRAM-based PIM accelerators. [15]–[17] have used
ECC such as AN code, Low Density Parity Check (LDPC) or
successive error correction to lessen variation in the ReRAM-
based PIM. Although proven effective, such techniques require
a large power and latency overhead to encode and decode data,
as well as to correct MAC operation values. Another work
[18] has utilized unary encoding to reduce the overhead of
retraining. [18] proposes priority unary mapping based on the
fact that the conductance value G of a ReRAM cell under
variation is often modeled by the following:

G = G0 · eθ θ ∼ N(0, σ2) (1)

Where G0 is a conductance value of the ReRAM cell
without any variation and the conductance value G follows the
log-normal distribution with zero mean and σ variation. Even
though this method can mitigate the influence of variation on
DNN accuracy, it nonetheless results in a 250% area overhead
compared to standard mapping. This makes it impractical for
use with resource-limited edge devices.

Apart from the variation issue, numerous studies have
suggested solutions for the offset current problem through
the use of devices with low R-ratios [5], [10], [11]. Input-
Aware Current Compensation (IAC) technique in [5] adds one
column of HRS cells to the crossbar array to compensate for
the offset current of the existing ReRAM cells. However, in
this manner, the result of PIM could be inaccurate if R-ratio is
not sufficiently larger than guaranteeing the negligible loss by
the compensation. Moreover, it is only applicable to Single-
Level Cell (SLC) configurations. Consequently, it becomes
essential to design methods capable of reliably conducting
MAC operations in conditions of significant variation and low
R-ratios, without necessitating expensive re-training processes
or inducing substantial hardware overhead.

III. PROPOSED METHOD

A. Proposed Variation-Resilient Encoding Technique

To enhance the robustness of DNNs under the impact of cell
variation, we first analyze the pattern distribution of DNN’s
parameters when using MLC ReRAM cells. Fig. 3 depicts the
MLC level distributions of 8-bit fixed-point quantized weights
in ResNet18, VGG16, and InceptionV3. As mentioned in Sec.
II, a DNN weight can be represented using four MLC ReRAM
cells from the MSB of [7:6] to the LSB of [1:0].

As shown in Fig. 3, while various MLC level distribution
patterns are found from [5:0] bit positions, there are mostly



[7:6]
MSB

[5:4] [3:2] [1:0]
LSB

(a)

0.00

0.25

0.50

0.75

1.00

[7:6]
MSB

[5:4] [3:2] [1:0]
LSB

(b)

0.00

0.25

0.50

0.75

1.00

00 01 10 11

[7:6]
MSB

[5:4] [3:2] [1:0]
LSB

(c)

0.00

0.25

0.50

0.75

1.00

Fig. 3: MLC level distribution in various DNN models on CIFAR-10. (a) ResNet-18. (b) VGG-16, (c) Inception-V3.
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Fig. 4: Overview of the proposed variation-resilient encoding
technique

TABLE I: Ratio of clipped weights when utilizing VECOM
across different DNN models.

Model ResNet-18 VGG-16 Inception-V3

Clipped Weight Ratio (%) 0.00059 0.00018 0.002

10 and 01 patterns existing in the [7:6] MSB position. With
the 8-bit fixed point quantization, weights possessing MSB of
either 01 or 10 fall within the range of -64 to +64. This interval
accommodates the majority of weights within the quantization
range. On the other hand, the pattern 00 and 11 belong to
outlier values [19], which explains why these patterns only
take up a small amount in the MSB position. According to
Eq. 1, the conductance value representing 10 is significantly
large, potentially leading to a substantial overlap region in the
MAC results distribution [18]. This could subsequently induce
inaccurate values in the ADC output for the MSB column,
severely impairing DNN accuracy. The error in the MSB po-
sition is often found to be more significant to DNN’s accuracy
compared to other bit positions in the DNN’s parameter [20],
[21]. Therefore, by minimizing the overlapped region of output
current distribution, caused by the conductance variation of
the MSB, we can enhance the model’s robustness against
variation.

As mentioned in Sec II, a bias value of 128 is added to
the DNN’s weights to represent 8-bit signed values. However,
based on the observation in Fig. 3, most patterns in the

MSB position are either 01 or 10, which makes almost all
of the mapped weights fall into the ±64 range. Therefore,
in this case, it is not essential to add 128 as bias. Drawing
from this insight, we propose a method to convert pattern
01 and 10 to pattern 00 and 01 by adjusting the bias value
during the weight mapping process. The VECOM encoding
scheme, depicted in Fig. 4, involves two main processes: bias
control and redundant mapping. To transform the MSBs into
a pattern of 00 and 01, the bias is adjusted downwards to
64, a process referred to as bias control within the proposed
VECOM encoding. This modification remains weight values
below 0 which cannot be mapped to the crossbar array.
Therefore, these weights are clipped to zero and mapped to
the PIM architecture. This approach is akin to conventional
weight clipping [22], but with a bias of 64, only negative
values are clipped. Our proposed method mitigates the typical
accuracy loss associated with conventional weight clipping.
This becomes evident when examining the portions of weights
that are clipped by the proposed method. As demonstrated
in Table I, only an insignificant 0.002% of the total weight
portion is affected by our method, thus it does not induce any
notable degradation in the DNN accuracy.

Following bias control, a redundant mapping process is
performed to improve the robustness of the [5:4] position. In
a similar fashion to the previous step, to map higher level
cells to lower level cells, we map a minor portion of the
01 and 10 patterns to a redundant array and fill this with
00, as illustrated in Fig. 4. Subsequently, we substitute the
mapped 00 and 11 patterns with 00 and 01 patterns. Through
this process, the patterns in the [5:4] position are distributed
into two arrays. The original [5:4] array, labeled ’Origin’ in
the figure, consists of 00 and 01, whereas the redundant [5:4]
array (labeled ’Redun’) contains patterns of 00, 01, and 10.
When applying the proposed method, the MAC results of the
original [5:4] array, which are passed through the ADC in
the S&A stage, are multiplied by 3 to obtain the identical
result as the existing mapping. Therefore, the proposed method
enables reliable operation by converting the [7:4] MSB, which
heavily influences the accuracy, into patterns exhibiting less
overlap in the MAC result current distribution. This leads
to improved variation tolerance and enables a high level of
wordline parallelism. Since the proposed method operates
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at the encoding stage without necessitating additional DNN
model retraining, there is no time and energy consumption
caused by the retraining process.

B. Proposed Offset Compensation Scheme

IAC [5] addresses the issue of offset current in ReRAM-
based PIM architecture by adding an extra HRS column.
Assume the number of activated wordlines in the crossbar
array is N , with N1 being the number of activated LRS
cells among N cells, and N0 cells are in HRS. Under these
conditions, the current IBL that accumulates in each bitline
can be calculated as follows:

IBL = N1 · I1 +N0 · I0
= N1 · (I1 − I0) +N · I0

∴ IBL −N · I0 ≈ N1 · I1
(2)

Here, the bitline current value of the extra column for IAC
matches N · I0. Hence, the MAC value in each column can
be approximated by subtracting the output current of the extra
HRS column. According to Eq. 2, in the case of SLC, the
current of the LRS cell is larger than the current of the HRS
cell, thus IAC can function stably at a relatively low R-ratio.
However, this is not the case when applying to MLC ReRAM
cell. When employing MLC, if the numbers of activated cells
correspond to each level from N11 to N00, the current flowing
on the bitline IBL is calculated as follows:

IBL = N11 · I11 +N10 · I10 +N01 · I01 +N00 · I00

=

11∑
i=01

Ni · (Ii − I00) +N · I00

̸≈
11∑

i=01

Ni · Ii +N · I00

(3)

In this case, accurately approximating the currents of the
two intermediate states poses a challenge. As the currents
from intermediate state cells of 01 and 10 diminish due to
offset subtraction, the unexpected reduction in the MAC results
undermines the DNN accuracy. To address this, we propose
a conductance offset mapping of VECOM which ensures
effective current compensation in MLC ReRAM devices. The
proposed method adjusts the target conductance during the
programming process by adding the conductance value of
the lowest MLC level to the other three levels as an offset
conductance, i.e., G′ = G + G00, as shown in Fig. 5.
The output current after integrating this offset conductance,
IBL,COM , can be calculated as follows:

MLC level

Split weight 

with MLCs

Map conductance

with variation
+

Variation

Crossbar 

array MAC

Input read 

voltage vector

Weight Mapping Activation

Fig. 6: Simulation flow for MLC ReRAM crossbar array
computation.

IBL,COM =

11∑
i=01

Ni · (Ii + I00) +N00 · I00

=

11∑
i=01

Ni · Ii +N · I00

∴ IBL,COM −N · I00 =

11∑
i=01

Ni · Ii

(4)

By adjusting the target conductance, we can accurately
calculate the offset-compensated bitline current without any
approximation. The target conductance value can be easily
adjusted during the programming process using the conven-
tional write-and-verify programming scheme [23]. Notably, the
proposed offset compensation scheme operates independently
of the cell precision, which means it can be applied to MLC
or even higher cell-precision options such as Triple-Level Cell
(TLC), Quad-Level Cell (QLC), and so forth. Furthermore,
since it uses the current subtraction used in IAC, the proposed
method does not introduce any performance degradation at
runtime.

IV. EVALUATION

A. Experimental Setups

To examine the performance and robustness of the proposed
VECOM technique, we conduct simulations based on the Py-
Torch framework. The simulations focus on a ReRAM-based
DNN accelerator with a hardware configuration based on
ISAAC architecture [1]. In order to assess variation resilience,
we quantize the activations with 8 bits and the weights with
4 bits. We also use 8-bit weight quantization to determine the
maximum number of activated wordlines at a specific variation
value.

During the simulations, each bit of the input activation is
sequentially fed into the computation unit through a 1-bit
DAC. Each computation unit consists of a 128x128 crossbar
array of ReRAM cells, with each cell having a precision of
2 bits per cell. The accumulated analog current along the
bitline was then converted into a digital value through an
ADC. These evaluations aim to assess the performance and
robustness of VECOM across a variety of models, including
VGG-16, ResNet-18, and Inception-V3, on various datasets
such as CIFAR-10, CIFAR-100, and ImageNet.

We carry out a Monte-Carlo based simulation as shown
in Fig. 6. The first step involves decomposing the quantized
weights into multiple MLCs, based on the position of each



Fig. 7: Area Overhead Comparison of VECOM with baseline,
IAC and Go Unary.

2-bit value. To incorporate variation, a log-normal distribution
is utilized (as shown in Eq. 1), where the variation parameter
is consistent across all levels of conductance. This distribution
is then sampled to generate variations in the conductance
levels. The quantized activation vector is sequentially fed into
the crossbar weight array, facilitating analog matrix-vector
multiplication.

It is worth noting that in the VECOM structure, the MLCs
comprising a single weight are not mapped to the same array;
instead, bits with the same significance are mapped to their
corresponding arrays. For example, the MSBs are mapped to
one array, while the LSBs are mapped to another array. This
approach does not impact the results or performance of the
PIM architecture. Additionally, an extra column is added per
array to perform current subtraction via conductance offset
mapping. This method only requires one additional column
per array, resulting in minor hardware overhead for offset
compensation.

B. Results and Discussion

1) Hardware Overhead:
Fig.7 shows a comparison of the crossbar area overhead

introduced by VECOM, the baseline method, and other ap-
proaches [5], [18]. Specifically, we compare the area overhead
resulting from the additional column in the IAC technique [5]
and the unary encoding used in Go Unary [18], considering
both 4-bit and 8-bit weight quantization. The baseline refers
to the crossbar area of the conventional mapping scheme, em-
ploying an 8-bit weight quantization using MLC. As depicted
in the figure, the area overhead of VECOM is approximately
25% higher than the baseline when using 8-bit quantization,
mainly due to the redundant mapping of VECOM.

For the IAC technique, the area overhead is around 1%
because it requires the addition of one column per array.
On the other hand, when using Unary encoding with 4-
bit quantization, the area overhead is approximately 25%
compared to the baseline. Moreover, with 8-bit quantization,
the number of MLCs needed to cover a wider range of weight
values increases exponentially, resulting in a nearly 20-fold
increase in the area overhead compared to the baseline. While
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tional mapping and Go Unary

VECOM results in a higher area overhead compared to the
baseline, it offers benefits such as increased robustness and
enhanced wordline parallelism, contributing to better overall
performance and DNN accuracy.

2) Effectiveness on Tolerating Variation and Paralleling
Multiplication:

In this section, we conduct a comparison between Unary
encoding and the conventional mapping with VECOM to
evaluate their tolerance to variation when all 128 wordlines
in a crossbar array are activated. To ensure a fair comparison
with Go Unary, we apply 4-bit quantization to LeNet trained
on the MNIST dataset and VGG-16 trained on the CIFAR-10
dataset.

The results, depicted in Fig. 8, reveal that VECOM ex-
hibits a smaller accuracy degradation compared to both the
conventional mapping and the priority mapping proposed
by Go Unary under the same degree of variation. VECOM
promotes more reliable MAC operations while incurring less
area overhead than unary encoding. Notably, in the case of
VGG-16, significant accuracy degradation occurs starting from
a variation of 0.08. To further analyze the impact of the
number of activated wordlines (NAW) at variation = 0.08,
experiments are run. Fig. 9 presents the model accuracy
with varying NAW for ResNet-18, VGG-16, and Inception-
V3 on CIFAR-10, CIFAR-100, and ImageNet datasets. To
achieve higher accuracy, we utilize 8-bit weight quantization
instead of 4-bit quantization. The results show that VECOM
consistently outperforms the conventional mapping in terms
of accuracy for all datasets and DNN models. For example,
on the CIFAR-10 dataset, the accuracy difference reaches up
to 58.4% for NAW = 8 and 64.9% for NAW = 128. On the
CIFAR-100 dataset, the accuracy difference is up to 77.6%
for NAW = 8 and 31.2% for NAW = 128. Lastly, on the
ImageNet dataset, we observe an accuracy improvement of
62% for NAW = 8. Overall, VECOM allows for a significantly
higher number of NAWs while maintaining the same accuracy,
thereby improving the parallelism of the multiplication of
ReRAM-based DNN accelerators.

3) Scalability on R-Ratio and Bit-per-Cell:
To examine the stability of VECOM at low R-Ratios with
offset current compensation, we compare it with conventional
MAC operations and IAC. The R-ratio spans from an ideal
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Fig. 9: Model accuracy based on the NAW of conventional mapping and VECOM in various datasets. (a) - (c) on CIFAR-10.
(d) - (f) on CIFAR-100 and (g) on ImageNet.

value of 1000 [24] to a low value of 7. For the comparison,
we evaluate the accuracy of the ResNet-18 model using Single-
Level Cell (SLC), where IAC can take advantage of its current
compensation. We also evaluate the accuracy of the VGG-
16 model when using MLC. In these evaluations, we set
the variation to 0.04, as used in IAC [5], and activate 128
wordlines for each MAC operation.

The results, as shown in Fig. 10, demonstrate that IAC
exhibits a relatively less accuracy degradation at lower R-ratios
compared to conventional MAC operations using SLC. On
the other hand, VECOM shows almost no degradation even
when the R-ratio drops to 7. This verifies the robustness of
VECOM in reliably carrying out the MAC operations, even
at low R-ratios. Additionally, for VGG-16 with MLC, IAC
exhibits more severe accuracy deterioration than the accuracy
of the conventional operation. This highlights the effectiveness
of the offset current compensation by accommodating a simple
conductance offset mapping of VECOM.

Furthermore, to assess the scalability of VECOM in terms
of bit-per-cell, we compare the accuracy of VECOM with
the IAC technique in terms of bit-per-cell precision. In this
experiment, the NAW is set to 128, the variation is set to
0.04, and the Bit-per-Cell is scaled from 1 to 6. The R-Ratio
is set to 300, which represents a typical ReRAM cell value
[24]. The accuracy degradation is measured and compared,
as shown in Fig. 11. The experimental results reveal that the
performance of IAC is only valid for SLC and the accuracy
starts to decline when using 2 bits-per cell. However, VECOM
shows less than 1% difference from the baseline accuracy,
even when extended to QLC with up to 4 Bit-per-Cell. This
indicates that the current compensation can be successfully
incorporated, even if future ReRAM processes employ cells
with levels above MLC.

4) Performance Improvement:
We evaluate the performance speedup of VECOM by com-
paring the number of cycles required to complete the crossbar
array MAC operation with the maximum number of activated
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Fig. 10: R-Ratio endurance comparison with IAC. (a) ResNet-
18 with SLC (b) VGG-16 with MLC on CIFAR-10.
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Fig. 11: Scalability of VECOM on cell precision compared
with IAC.

wordlines obtained in Sec. IV-B2. Since the conventional
mapping results of Sec. IV-B2 show a considerable accu-
racy degradation even with only 8 activated wordlines, we
extrapolate them to ascertain the NAW at 1% accuracy drop.
For a fair comparison, we assume the use of a Successive
Approximation Register (SAR) ADC and set the resolution of
the ADC to log2(NAW ) + 2 bits. It is worth noting that the
performance of the ADC’s bit resolution is considered as the
bottleneck in improving the performance of ReRAM-based
DNN accelerators [2] hence the overall cycle time for the
computation is dictated by the resolution of ADC [14]. Given
these assumptions, we calculate the performance speedup of
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Fig. 12: Performance speedup of VECOM on CIFAR-10 and
CIFAR-100 datasets compared to the baseline.

VECOM, as depicted in Fig. 12. The estimations demonstrate
that VECOM can achieve a speedup of up to 9.1 times (with
an average of 7.2 times) on the CIFAR-10 dataset and up to 5.3
times (with an average of 3.9 times) on the CIFAR-100 dataset,
compared to the baseline. VECOM amplifies the utilization of
concurrent MAC results that the ADC can process by enabling
more NAWs, which contributes to performance improvement.

5) Energy Efficiency:
VECOM’s variation-resilient encoding strategy effectively
maps conductance levels with significant variations to lower
levels that exhibit less variation. This approach cuts down on
the dynamic power consumption, proportional to the conduc-
tance value of the ReRAM cell, during MAC operations on the
ReRAM crossbar array. Moreover, it enhances wordline-level
parallelism, leading to improved performance and allowing
the use of higher-resolution ADCs. To evaluate the energy
consumption changes, we follow the power scaling equation
described in [25] based on the resolution of the SAR ADC and
estimate dynamic energy consumption in the crossbar array.
Fig. 13 shows the results of comparing energy consumption us-
ing conventional mapping across various models and datasets.
In these comparisons, we consider the energy expended when a
single MAC operation in one array is completed as the baseline
point.

Our empirical studies demonstrate that VECOM achieves
an average reduction in operational energy consumption of
over 50% compared to the baseline. This reduction is achieved
despite the increase in ADC power due to a higher ADC
resolution. By exploiting a larger amount of accumulated
current at once, the energy necessary to complete the opera-
tion decreases. Therefore, VECOM offers a clear advantage
by lessening energy consumption while facilitating parallel
operation.

The substantial energy savings achieved by VECOM fur-
ther emphasize its potential for energy-efficient computing in
ReRAM-based DNN accelerators. By mitigating the impact
of variations and maximizing the utilization of accumulated
current, VECOM introduces an efficient encoding scheme
that contributes to the overall energy reduction, making it
a promising technique for low-power and energy-constrained
applications.
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Fig. 13: Energy consumption of VECOM on CIFAR-10 and
CIFAR-100 datasets compared to the baseline.

V. CONCLUSION

This paper proposes VECOM, a variation-resilient encoding
and offset compensation scheme for ReRAM-based DNN ac-
celerators. Two techniques in VECOM are designed to address
the reliability issues that often plague ReRAM devices in
memory-intensive applications like DNNs. Our experimental
results demonstrate that VECOM can significantly improve
the throughput of ReRAM-based PIM architectures by up
to 9.1 times without any software overhead. Additionally,
VECOM improves energy efficiency and reliability against
variation in ReRAM PIM operations. VECOM is designed to
be lightweight and easily implementable, making it suitable
for deployment in resource-constrained devices. Moreover,
the increased sparsity resulting from VECOM’s encoding
method can be effectively combined with model compres-
sion techniques, further boosting performance gains. Another
noteworthy aspect of VECOM is its stability even at low R-
ratios and cell precision levels beyond multi-level cell (MLC).
This makes it applicable to advanced ReRAM technologies
that may emerge in future studies. We firmly believe that
the proposed techniques in VECOM hold substantial practi-
cal implications for real-world scenarios involving ReRAM-
based PIM architectures in memory-intensive applications like
DNNs. By addressing reliability concerns through VECOM,
we can achieve significant improvements in performance
speedup, energy efficiency, accuracy, and reliability, thereby
paving the way for the widespread adoption of ReRAM-based
PIM architectures in memory-intensive applications.
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