
Checkpoint Placement

for Systematic Fault-Injection Campaigns

Accepted at ICCAD’23

Christian Dietrich

Hamburg University of Technology
0000-0001-9258-0513

christian.dietrich@tuhh.de

Tim-Marek Thomas

Leibniz Universität Hannover
0009-0000-8197-2423

thomas@sra.uni-hannover.de

Matthias Mnich

Hamburg University of Technology
0000-0002-4721-5354

matthias.mnich@tuhh.de

Abstract—Shrinking hardware structures and decreasing operating
voltages lead to an increasing number of transient hardware faults,
which thus become a core problem to consider for safety-critical
systems. Here, systematic fault injection (FI), where one program-
under-test is systematically stressed with faults, provides an in-depth
resilience analysis in the presence of faults. However, FI campaigns
require many independent injection experiments and, combined, long
run times, especially if we aim for a high coverage of the fault space.
One cost factor is the forwarding phase, which is the time required to
bring the system-under test into the fault-free state at injection time.
One common technique to speed up the forwarding are checkpoints
of the fault-free system state at fixed points in time.

In this paper, we show that the placement of checkpoints has a
significant influence on the required forwarding cycles, especially
if we place faults non-uniformly on the time axis. For this, we
discuss the checkpoint-selection problem in general, formalize it as
a maximum-weight reward path problem in graphs, propose an ILP
formulation and a dynamic programming algorithm that find the
optimal solution, and provide a heuristic checkpoint-selection method
based on a genetic algorithm. Applied to the MiBench benchmark
suite, our approach consistently reduces the forward-phase cycles
by at least 88 percent and up to 99.934 percent when placing 16
checkpoints.

Index Terms—Fault Injection, Checkpoint Placement

I. Introduction

Functional safety standards (e.g., ISO 26262 or IEC 61508 [1], [2])

demand that we assess the effects of transient hardware faults (soft

errors) on our systems. As soft errors are rare in reality [3], [4], it is

common to use systematic fault injection (FI) [5], [6] to quantify the

resilience of a program. Such systematic FI campaigns are typically

executed in three steps:

t
t0 tC tf

tcrash
tend

Saved by C Fault-Free Forward
Faulty Flow

Benign Flow

Fig. 1: Phases of an Injection Experiment: The golden run spans

[t0, tend], the injection is done at tf , and the checkpoint C restores

the program state at tC

(1) trace a fault-free program execution as the golden run, which
spans up the fault space (FS) of all potential faults (one fault per

every time step and for every bit of information).

(2) prune the FS [7]–[9] to plan a representative subset of faults as

pilot injections, which will be carried out.

(3) re-execute the program for every planned pilot, inject it at the
planned time and location, and classify the following program

behavior.

0 20 40 60 80 100
Time [% of golden run]

0

100

200

300

400

(a) Injection Distribution: D(t)
Injections

0 20 40 60 80 100
Time [% of golden run]

0

2000

4000

6000

8000

10000

12000

14000

Forward Cycles: 100.00%

(b) Population P(t)
Population
Forward Cycles

0 20 40 60 80 100
Time [% of golden run]

0

2000

4000

6000

8000

10000

12000

14000

C1 C2 C3 C4 C5

Remaining Forward Cycles: 16.17%

(c) Uniform Checkpoints
Population
Forward Cycles
Saved Cycles

0 20 40 60 80 100
Time [% of golden run]

0

2000

4000

6000

8000

10000

12000

14000

C1 C2 C3 C4 C5

Remaining Forward Cycles: 10.86%

(d) Optimal Checkpoints
Population
Forward Cycles
Saved Cycles

Fig. 2: Checkpoints on an example FI distribution. (a) The distribution

of the 14,000 injection experiments determines the (b) population

of the required per-experiment forward cycles. Its integral (red

area) is the total number of forward cycles for the FI campaign,

which can be reduced by checkpoints (green areas). The (c) uniform

placement of checkpoints is the state of the art, which is significantly

outperformed by (d) an optimal checkpoint-selection algorithm.

For each injected fault f in step (3), we need to bring the FI platform

into the fault-free state at tf (Fig. 1): After a reset to t0, the platform
forwards the program by fault-free execution to tf . There, we inject f
and continue the—now faulty—execution flow until the FI platform

detects a crash, a completion, or a timeout:

Depending on the program-under-test, the fault model, and the

employed pruning strategy in step (3), the distribution D(t) of pilot
injections over the run time t is typically not uniform. For instance, if

DRAM is unprotected while processor caches employ ECC, potential

soft errors manifest whenever the program loads new data into the

cache. A pruning strategy that takes this into account would yield a

FI distribution as shown in Fig. 2 (a). Please note that selecting pilot

injections, is not subject of this paper. For our proposed method,

the distribution D(t) of planned/executed fault injections is given.

The later the fault, the more forward instructions are executed

before the actual injection takes place; earlier instructions are

ar
X

iv
:2

30
8.

05
52

1v
1

 [
cs

.A
R

]
 1

0
A

ug
 2

02
3

https://orcid.org/0000-0001-9258-0513
https://orcid.org/0009-0000-8197-2423
https://orcid.org/0000-0002-4721-5354

forwarded more often than later instructions (Fig. 2 (b)). For this, we

introduce the term population, which is the number of experiments

that are in the forward phase at a given point in time if we would

start them all in parallel at t0. With tf of a fault f , that fault leaves
the population; making it a monotonically decreasing function.

A broadly applied technique to speed up the (repetitive) forwarding

is checkpointing [10], [11]: By resetting the system not to the initial

state at t0, but to some later state at tC ≤ tf (Fig. 1), we save a

significant amount of forwarding cycles.

In this paper, we address the question of checkpoint placement.
The state-of-the art approach [11]–[15] is to distribute checkpoints

uniformly on the time axis (Fig. 2 (c)). However, this is not

ideal: Significantly higher savings can be obtained by our optimal

placement strategy of the checkpoints (Fig. 2 (d)). For the paper, we

claim the following contributions:

• We describe the Checkpoint problem for a fixed number of

checkpoints and reduce it to a maximum-weighted reward path

problem for directed acyclic graphs (DAGs).
• We point out the shortcomings of the naive time-uniform

checkpoint selection and propose three distribution-dependent

checkpoint-selection methods.

• We quantify the benefits of our approach on real-world FI

distributions and show that our methods outperform the uniform

selection in the best case by 82.85 percentage points.

The remainder of this paper is organized as follows: Sec. II

describes our FI model and characterizes the checkpoint-selection

problem. In Sec. III, we reduce the problem to a constant-length

maximum-weight reward path in a transitive DAG and provide three

selection methods. We evaluate and compare all methods in Sec. IV,

discuss our findings in Sec. V, review the relevant literature in

Sec. VI, and conclude the paper in Sec. VII.

II. Fault-Injection Model and Problem Description

Systematic FI Campaigns We target systematic FI campaigns,

which plan and inject many different faults into deterministic re-runs

of the same program-under-test (PUT). From a fault-free golden run,

which has the temporal extent [t0, tend], a fault-planning strategy

chooses F faults for injection. For each fault f , we bring the FI

platform (e.g., simulator or FPGA) into the fault-free state at tf
(see Fig. 1): After a reset to t0, the platform forwards the program

by fault-free execution to tf . There, we inject f and continue the,

now faulty, execution flow until the FI platform detects a crash, a

completion, or aborts the injection (e.g., timeout).

With checkpoints, we cut the fault-free forwarding time: Instead

of resetting to t0, we restore to a previously-saved checkpoint C ,

which brings us directly into the fault-free state at tC . From there,

we endure a shorter forwarding phase, which saves us tC − t0
cycles for this injection (see Fig. 1). A checkpoint Ci is usable for

all faults with tCi ≤ tf , but it should only be used for faults with

tCi ≤ tf < tCi+1 to maximize savings.

We assume that we can perform exactly k checkpoints at different

points in time. This is, for example, the case when we employ

FPGAs as FI platform [16] and use duplicated flip-flops to store

the checkpoint, which allows for checkpoint restoration in a single

cycle but limits k to the number of FPGAs. We further assume

that checkpoint restoration is equally fast or faster than a full reset,

which is inherently the case if resets are also implemented by a

checkpoint at t0 (as in GemFI [17] or MEFISTO [18]). We further

assume that the time axis is discretized into equal intervals, for

whose we use the term cycle.

Checkpoint Selection Problem Our goal is to reduce the number

of required forwarding cycles over all planned fault injections F
with k checkpoints. To give an intuition for this problem, we look at

the relation between fault distribution, checkpoints, and the number

of forwarding cycles in Fig. 2: In Fig. 2 (a), we show an artificial FI

distribution D(t) over [t0, tend], where over 400 injections happen

around t = 10 while almost none are at t = 40.
Fig. 2 (b) shows the FI-experiment population P (t) that execute a

specific forward cycle if we do not employ checkpoints: At t = 0, all
14 000 experiments start and run until their respective tf , where they
leave the forwarding population, whereby P (t) is a monotonically

decreasing function from P (t0) to P (tend) = 0. Formally, the non-

checkpointed FI population is

P (t) =

∫ t
end

t

D(t)

As each running experiment executes tf − t0 forwarding cycles,

the sum of all forwarding cycles for the whole FI campaign is equal

to the integral

∫ t
end

t0
P (t). It is our overall goal to shrink this integral.

In Fig. 2 (c) and (d), we see how checkpoints achieve this goal: At

tCi , only those faults f enter the population whose tf ∈ [tCi , tCi+1).
Each checkpoint “cuts out” a (green) rectangle of area w and we

end up with the vastly reduced red areas (see (c) and (d)), which

however vary depending on the position of the checkpoints. More

formally, the set of checkpoints C, whose size is determined by the

FI platform, saves us S(C) forwarding cycles over all fault injections.

For notational ease, we use the system reset at t0 as an artificial

checkpoint C0.

S(C) =
k−1∑
i=0

wCi
Ci+1

=

k−1∑
i=0

(tCi+1 − tCi) · P (tCi+1)

After these fundamental considerations, we can describe the Check-

point problem more precisely: Given P and k, where should we

place our checkpoints to maximize S(C)?

III. Checkpoint Selection

The state-of-the-art checkpoint selection strategy, termed

uniform(), involves evenly distributing checkpoints along the

time axis between t0 and tend. While this method is frequently

employed in the literature [11]–[15], it neglects the FI distribution

and fails to utilize a degree of freedom available on the time

axis. Consequently, it is evident that uniform() typically does not

maximize savings. However, given its negligible computation cost,

S(C) can directly contribute to end-to-end savings without the

need to offset any selection overheads. Therefore, any checkpoint-

selection methodology has to strike a balance between the production

of optimal results and computational overhead.

Moving forward, we will delve into the underlying computational

complexity of the checkpoint-selection problem and introduce three

Variables Description

t0 . . . t . . . tend discrete time axis

D : t 7→ N0 FI distribution

P : t 7→ N0 FI population, integral of D.

s0 . . . sn steps in P (), there are n steps.

{C1 . . . Ck} ∈ C set of k (real) checkpoints

C0 = s0 = t0 artificial checkpoint to model system reset

Ra
b the rectangle below P from (sa, 0) to

(sb, P (sb)) and with area wa,b.

TABLE I: Notation Overview

distinct solution strategies: ilp(), DP(), and genetic(). Tab. I gives

an overview of our notation.

A. Theoretical Considerations

First, we aim to examine the structure of the Checkpoint problem

to gain insight into its computational complexity. Despite the

qualitative nature of Fig. 2 (b), P (t) is, in reality, a step function with

a discrete abscissa (time axis) and steps s0 . . . sn. The maximum

number of steps is n ≤ tend, but fewer steps may be present if no

experiments are scheduled for a certain t (D(t) = 0). However, the
number of steps is generally large.

Moreover, we only need to consider these steps as potential

locations for checkpoints, because moving a checkpoint cj that is

located between two steps (si < cj < si+1) to si+1 will always

increase savings by (si+1−cj)·P (si+1). Therefore, we can translate

any C to a C′
with S(C′) ≥ S(C) by relocating all checkpoints to

the next step.

We associate Checkpoint with finding the maximum-weight

reward path of constant length in a DAG. This problem was recently

connected [19] to the Knapsack problem, a foundational problem in

combinatorial optimization, known to be NP-complete [20]. However,

in a graph with m edges, we can find the maximum-weight reward

path of length k using dynamic programming in O(km) time [19].

Yet, we are not aware of any implementation in an actual application

of that theoretical result.

The correlation with Checkpoint is as follows: consider our

population function P , with steps s0, . . . , sn at discrete time steps

on the abscissa, where s0 < . . . < sn. For notational simplicity, we

define s0 := 0. In our reduction, we create several rectangles for

each time step st; the height of each rectangle is chosen to be P (st),
fitting precisely beneath the curve P at st. For each step st, we
create exactly t rectangles R0

t , . . . , R
t−1
t and set the width of Ri

t

to st − si for i = 0, . . . , n. The rectangle’s area w equals its height

times its width. The total number of rectangles created by this

reduction is

∑n
i=0 i = O(n2). The optimal checkpoint selection is

then equivalent to find k rectangles that maximize the covered area

under the P ().
To construct a DAG, we create one node vt for each step st and

introduce the artificial entry and exit nodes (v0, vn) that act as
start and end points for our desired paths. Moreover, we add one

arc ei,j = (vi, vj) for each rectangle Ri
j we created and set its

weight to the rectangle area wi,j . Our graph is directed (i.e., in a

positive direction), acyclic (i.e., no backward edges), and complete

(i.e., transitive). Finding k optimal checkpoints can then be stated as

finding the maximum-weight path between v0 and vn that visits k
inner nodes.

The intuition behind this reduction is that selecting k checkpoints

is, in fact, a step-wise under-approximation of P () with k rectangles.

If maximized, this approximation minimizes the integral of the error

to P (); this integral comprises the remaining forwarding cycles of

our FI campaign. In our reduction, we created all possible rectangles

under P () that span between two steps. But to calculate a k-stepped
under-approximation of P , we must (a) avoid selecting overlapping

rectangles, (b) ensure no gaps between adjacent rectangles, and (c)

select k rectangles so their combined width is tend − t0.
Our graph structure encodes these constraints: (a) if we select

the arc ei,j we cannot select an arc ea,b with a ≤ j and b ≥ i
because the graph contains no backward arcs. (b) If we enter an

inner node vi via the arc eℓ,i, we also must visit a leaving arc ei,r to

reach the non-inner node vn, meaning all selected rectangles “touch”

each other. (c) As the arc ei,j represents the rectangle Ri
j with width

s0

v0

s1

v1

s2

v2

s3

v3

R0
1

R1
2

R2
3

R0
2

R0
3 R1

3

e0,1

e0,2

e0,3

e1,2

e1,3

e2,3

Maximize (Edge Weights)∑
i∈[0,n]

∑
l∈[0,i[

(
el,i · wl,i

)

Subject To (Flow Constraints)
∀i∈[0,n] : vi =

∑
l∈[0,i[el,i

∀i∈[0,n] : vi =
∑

r∈[i+1,n] ei,r

v0 = vn = 1
Subject To (Path Length)∑

i∈[0,n] vi = k + 2

Binary Variables
∀i∈[0,n] : vi ∀i∈[0,n]∀l∈[0,i[: el,i

Fig. 3: ILP formulation of the checkpoint selection problem.

sj − si, and we select only adjacent rectangles between v0 and vn,
our selection spans from t0 to tend.

B. ILP-Based Checkpoint Selection

To operationalize our reduction of Checkpoint, we use integer
linear programming (ILP) to formulate the selection of checkpoints as

the optimization problem ilp(). More precisely, we use the implicit
path enumeration technique (IPET), which is also widely used in the

real-time domain [21], [22] to find the worst-case execution path

through a program. In contrast to control-flow graphs, our graph is

acyclic, arc-weighted, and we search for a constant-length path.

For our IPET formulation (see Fig. 3), we introduce one binary

variable vt for every inner node in the previously described DAG. If

the ILP solver sets vt to one, this indicates that step st is selected

as a checkpoint. Further, we introduce the artificial nodes v0 and

vn, which act as entry and exit nodes to our DAG. In our example,

v3 is vn. With the constraint

∑
vt = k + 2, we force the solver to

select a constant-length path through our DAG, visiting exactly k
inner nodes; placing k “real” checkpoints.

With IPET flow constraints, we encode the DAG structure: For

each arc, we introduce a binary variable ei,j that determines whether

the arc from vi to vj is on the chosen path. For each inner node,

the sum of incoming (e∗,t) and the sum of outgoing (et,∗) must be

equal to the node variable vt. The intuition behind this is that an

inner node is entered as often as it is left. Further, the entry and

exit nodes are surely part of the chosen path. As our graph has no

cycles, each node and each arc can be visited exactly once and all

variables have a binary domain.

As maximization objective, we sum up all arc variables, which

we weight by the area w of the rectangles they represent. For

example, e0,2 is weighted with w0,2 = (s2 − s0) · P (s2) (blue

dashed rectangle). By construction, our ILP formulation will result

in the optimal checkpoint placement for a given FI distribution. In

total, we require O(n2) many binary variables for a distribution

with n steps. For our example, with k = 1, the solver has only one

degree of freedom in choosing an inner node for a checkpoint. The

possible solutions are {v0, v1, v3} and {v0, v2, v3}, which reflect the

paths e0,1 → e1,3 and e0,2 → e2,3.

C. Checkpoint Selection with Dynamic Programming

As solving integer linear programs is usually computationally

expensive, and moreover does not come with any worst-case run

times in general, we further provide a dynamic programming

algorithm DP() to find the maximum-weight reward path in an

arc-weighted DAG G. We use v0 and vn as DAG entry and exit

nodes (source and sink), and search for a path with length k + 1
and maximum weight between v0 and vn.

We create a dynamic programming table T , which contains

entries T [i, j] which encode the maximum weight of any path

in G which starts at v0 and ends at vi, uses at most j internal nodes

from v1,. . . ,vi. Thus, the table has n · (k + 1) entries.

We initialize the table by setting T [i, 0] = w0,i for i ∈ [0, n]
where and wa,b is the weight of the edge between node va and vb;
further, wa,a = 0 for all nodes a. We compute all other entries

T [i, j] with j > 0 recursively through

T [i, j] =
i

max
x=0

{T [i− x, j − 1] + wi−x,i} .

The correctness of this recursion follows from the fact that to

compute the j-step maximum-weight path between v0 and vi, we
consider all possibilities for the additional step being located at vi−x.

Left of vi−x, we have a j − 1-step path of weight T [i− x, j − 1],
while we append one additional step of weight wi−x,i to the right

of vi−x. We fill the table T step by step for increasing values of i
and j and read off the maximum weight of a solution in the table

entry T [n, k]. All entries are positive, and for each step only values

from the previous row j − 1 are required.

To identify the inner nodes (i.e., the selected checkpoints) that

are part of the maximum-weight path, we use a second table X of

size n · (k + 1) that records the value x for the selected maximum

as X[i, j] = x. Afterwards, we set Cj = X[Cj + 1, j] with Ck =
X[n, k].

As we have to consider up to n possibilities for each entry and

there are n · (k + 1) entries, the whole procedure takes O(k · n2)
time and O(k ·n) space. In the checkpoint-selection case, it is likely

that we can further reduce the computation complexity by using

that our DAG is a complete graph (i.e., a tournament), and moreover,

the arc weights may satisfy the triangle inequality.

D. Genetic Checkpoint Selection

As the computation time requirement of DP() is still quadratic, we

propose the heuristic checkpoint-selection strategy genetic() based

on genetic algorithms [23]. We have chosen genetic algorithms as

(1) checkpoint selection is a discrete optimization problem and (2)

we expect that combining two good solutions (cross-over operation)

will often yield an even better result. Using a heuristic also allows

us to abort the selection process when we see no further progress

or when a pre-defined time budget runs out. We describe genetic()

by defining the used genome, the genome-derived phenotype, the

fitness function, as well as the used mutation operators.

For the genome, which encodes one valid checkpoint selection,

we choose an k-sized vector of steps from P . As phenotype, we use

the rectangles spanned by the selected steps and use S(C) as the
fitness function, which we aim to maximize.

As random mutation operators, we combine two genomes by a

two-point crossover with p=0.5, or mutate the one checkpoint by

(each with p=0.125): (1) moving it one step to the left/right, (2)

moving it three steps to the left/right, (3) moving it to a random

step, or moving it to the middle between its left and right neighbor.

Initially, we start with a population of 100 random genomes. In

each round, we enlarge this population by cross-over and mutation to

300 individuals. After sorting them according to the fitness function,

we surely select the 10 best genomes and exchange place 11 to 100

with p=0.5 with another randomly-picked individual to avoid getting

stuck in a local optimum. We execute this heuristic search up to

a given number of seconds in parallel and return the globally-best

selection of checkpoints. The described algorithm does not guarantee
an optimal solution.

IV. Evaluation

With our evaluation, we demonstrate that (1) uniform() shows a

wide range of forward-cycle reductions, (2) our selection methods

produce consistently better (or equal) results than uniform(), (3) the

achieved advantage correlates with the non-uniformity of the fault

distribution, and (4) genetic()’s results were optimal for multiple

hundreds of distributions but at lower costs than ilp() and DP().

We compare our methods by saved cycles, runtime, and sensitivity

to the uniformity of the distribution. We consider uniform() to be

the state-of-art checkpoint-selection method (see Sec. VI). For our

evaluation, we use synthetic benchmarks and realistic FI distributions,

which we derive from the MiBench benchmark suite [24].

A. Non-Uniformity Metric

As we already discussed, the shortcoming of uniform() is that

it does not exploit the temporal variance of the FI distribution. To

quantify the intuition that genetic() can perform better on less

uniform distributions, we require an metric to measure the “non-

uniformity” U−
of the distribution D. For this, we normalize it as D

in time and height to 100 percent and propose the linearly-weighted
frequency spectrum (WFFT) metric with ffti being the i-th element

of the fast Fourier transformation:

U−(D) =

100∑
i=0

i ·
∣∣
ffti(D)

∣∣
With this metric, we look at the distribution in the frequency

domain and weight low-frequency signal shares with a higher

value than high-frequency shares. Thereby, the perfectly-uniform

distribution will result in U− = 0 and distributions with larger gaps

end up with a higher score.

B. Synthetic FI Distributions

Our initial objective is to compare the uniform(), genetic(),

and ilp() approaches on synthetic FI distributions. These synthetic

distributions are designed to qualitatively emulate different real-

world distributions (see also Fig. 6), while offering the flexibility to

span a wide variety of distributions and degrees of non-uniformity.

The use of synthetic benchmarks enables us to scale tend, which in

turn determines the number of steps st and consequently the number

of ILP variables. As different programs and/or pruning methods only

differ in the fault distribution at the checkpoint-selection stage, our

evaluation demonstrates the generalizability of our approach.

Generation of FI Distributions To synthesize random distribu-

tions, we start with a uniform distribution of faults which serves as a

“noise carpet”. Onto this carpet, we overlay between 2 and 100 (log-

normal distribution) peaks shaped by the Gumbel distribution [25].

Each peak’s height ranges from 2 to 5 times (uniform distribution)

that of the carpet, with a width constituting 2 to 10 percent (uniform)

of the total distribution. The Gumbel peaks simulate localized FI

maxima, while the uniform carpet establishes a “base height”.

To illustrate the end results of our distribution generation method,

refer to Fig. 4 which presents 36 FI histograms with 10000 steps,

sorted and color-coded by their WFFT. Our generation approach

produces distributions with diverse characteristics and a broad

spectrum of non-uniformity. For instance, the top row displays more

uniform distributions punctuated by a few shallow peaks, indicative

of a low WFFT. In contrast, the bottom row exhibits distributions

Hi
st

og
ra

m
 o

f F
au

lt
Di

st
rib

ut
io

n

-2.2% -1.6% -0.7% -2.0% -2.5% -4.0%

-2.6% -2.0% -2.7% -2.9% -9.6% -6.4%

-10.9% -8.6% -11.4% -13.3% -14.1% -10.4%

-16.7% -17.4% -12.5% -11.7% -23.4% -20.1%

-14.1% -22.4% -19.4% -25.6% -20.6% -21.3%

-24.8% -24.8% -11.4% -25.9% -26.6%

Time

-33.2%

WFFT

10000 20000 30000 40000 50000

Fig. 4: 36 randomly generated distributions, colored and sorted by

their WFFT and arranged in left-to-right and top-to-bottom order.

Each tile is annotated with the percentual forward-cycle reduction

that genetic() achieves over uniform() for placing 8 checkpoints.

TABLE II: Scalability on Synthetic Distributions

ILP DP Genetic Algorithm

Steps Run Time Run Time Run Time Optimal?

500 10.6±2.9 s 1.7±0.1ms 1.2±0.3 s 100/100

1000 9.5±0.6 s 6.5±0.2ms 1.3±0.3 s 100/100

1500 22.8±1.4 s 14.3±0.2ms 1.3±0.3 s 100/100

2000 43.2±2.3 s 25.2±0.8ms 1.3±0.3 s 100/100

2500 75.9±9.9 s 38.9±0.8ms 1.3±0.4 s 100/100

3000 157.6±103.5 s 55.9±1.2ms 1.3±0.3 s 100/100

10000 – 0.7±0.0 s 1.5±0.4 s 100/100

50000 – 16.9±0.7 s 1.8±0.8 s 100/100

100000 – 71.6±3.4 s 2.2±1.6 s 100/100

150000 – 175.2±10.7 s 3.1±2.2 s 97/100

with a high WFFT, resulting from a few pronounced peaks and a

smaller portion of uniformly distributed faults.

Each tile in Fig. 4 is additionally annotated with the percentual

savings in forward cycle achieved by the genetic() algorithm over

the uniform() method when eight checkpoints are placed. The

additional savings range from 0.7 to 33.2 percent. It is noteworthy

that less uniform distributions, as denoted by a higher WFFT, tend

to yield larger genetic() gains. This trend is especially pronounced

in distributions characterized by a few high peaks, as the genetic()

algorithm can effectively pinpoint these to position the checkpoints,

unlike the uniform() method which remains oblivious to the

distribution characteristics.

Scalability With our synthetic distributions, we want to compare

the scalability of ilp(), DP(), and genetic(). This demonstrates

the efficiency of our heuristic checkpoint-placement strategy and we

can quantify the costs associated with finding an optimal solution

with ilp() and DP(). To this end, we generate 100 distributions

for varying numbers of steps and place checkpoints using all three

methods (refer to Tab. II).

These experiments were conducted on an AMD Ryzen 7 Pro 5850U

CPU (16 HW threads, 48GiB DRAM) and utilized Gurobi 10.0.1 to

solve the ILP instance. For the genetic() algorithm, we set a time

limit of 10 seconds, and we recorded the moment at which the last

improvement occurred—that is, when the solution initially stabilized

at the final result. In contrast, we restricted ilp() and DP() to run

approximately 3 minutes; we employed Gurobi’s standard options.

For more than 3000 steps, ilp() ran into the time limit and we

cannot report run-time numbers.

A key observation, as evidenced by Tab. II, is that the genetic()

algorithm arrived at the optimal selection, as discovered by ilp()

or DP(), for 99.7 percent of all generated distributions. Only for 3
distributions, all having 150 000 steps, genetic() did not converge

on the optimal solution. For these three, however, the geometric

mean of the over-approximation is only 3.61 · 10−4
percent.

Further, we note that solving ilp() with Gurobi, which is a

general-purpose solver not specifically target at our problem, scales

worst. With DP(), we can scale to 50 times larger problems within

the same time limit. In contrast, genetic() scales best for these

distributions and converges to a final solution well within the time

limit. Hence, we deduce that the genetic() algorithm is well-suited

to solve the checkpoint-placement problem, as it demonstrates both

speed and efficiency in yielding favorable results.

C. Real-World Distributions

Next, we want to explore the benefits our selecting methodology

when applied to real-world FI distributions that we derive from traces

of the MiBench. As these distributions have a high number of steps

(up to 872 million), we only compare uniform() and genetic() as

it is unrealistic to solve the resulting ILP instance or to execute DP().

For these experiments, we used an Ampere Altra machine with 80

aarch64 cores and 256GiB of DRAM.

Fault Model To explore different levels of “non-uniformity”, we

chose a fault model that allows us to scale this metric while still

being connected to a real hardware implementation: With our fault

model, all main-memory cells are uniformly vulnerable to single-

event upsets (bit flips), while the caches are more robust against

faults (due to being SRAM). Since the cache “filters” the CPU’s

memory accesses, only some accesses actually access the memory,

from where the system incorporates and, thereby, activates faults.

To exploit this bursty fault-activation pattern, a FI planner would

employ def-use pruning [26] and inject faults at cache-miss time.

MiBench Traces With the valgrind tool, we execute the MiBench

benchmarks as Linux programs (aarch64, x86-64), and collect the

memory-stage and the instruction-fetch accesses that happen after

invoking main(). We choose x86-64 as a representative for CISC

architectures and aarch64 as representative for load-store RISC

architectures. With the obtained access traces, we use the pycachesim

cache simulator [27] to derive the cache-miss distribution for different

instruction- and data-cache setups: we simulate four-way associative

caches with six sizes that range from 2KiB to 64 KiB, which reflects

the cache hierarchies of the safety-relevant Arm M7 processor family.

For x86 the benchmarks ispell, sphinx and rsynth from the office

branch and the tiff’s and mad from the consumer branch are not

compilable. For aarch64, the pgp_{d,e} benchmarks is buggy while

valgrind crashes for ghostscript and rijndael_{d,e} due to a known

0.25
0.50
0.75

1
Fo

rw
ar

d
Cy

cle
 R

ed
uc

tio
n

(fo
r 1

6
Ch

ec
kp

oi
nt

s)

σG=0.94
σU=0.93

0K

σG=0.94
σU=0.93

2K

σG=0.95
σU=0.92

4K

σG=0.95
σU=0.91

8K

σG=0.96
σU=0.86

16K

σG=0.96
σU=0.82

32K

σG=0.95
σU=0.76

64K
D-M

em
aarch64

0.25
0.50
0.75

1

σG=0.94
σU=0.94

σG=0.95
σU=0.91

σG=0.96
σU=0.91

σG=0.97
σU=0.92

σG=0.97
σU=0.90

σG=0.98
σU=0.91

σG=0.99
σU=0.90

I-M
em

aarch64

0.25
0.50
0.75

1

σG=0.94
σU=0.93

σG=0.94
σU=0.92

σG=0.95
σU=0.92

σG=0.95
σU=0.90

σG=0.96
σU=0.86

σG=0.95
σU=0.81

σG=0.95
σU=0.73

D-M
em

x86

0.25
0.50
0.75

1

σG=0.94
σU=0.94

σG=0.95
σU=0.90

σG=0.96
σU=0.90

σG=0.96
σU=0.89

σG=0.97
σU=0.88

σG=0.98
σU=0.88

Benchmark, sorted by Uniform

σG=0.98
σU=0.88

I-M
em

x86

Genetic Uniform

Fig. 5: Forward-cycle reduction for different cache sizes and 16 checkpoints. The x-axis is sorted by the forward-cycle reductions for

uniform(). σG and σU refer to the average reduction for genetic() and uniform() respectively.

bug. With the two architectures (aarch64/x86-64), 23/28 benchmarks,

two memory-access paths, and 7 cache sizes (including no cache),

we end up with 714 FI distributions. We use these distributions

as D(t) and apply uniform() and genetic(), which we execute for

10 seconds.

Fixed Number of Checkpoints To show that genetic()

produces consistent results, we evaluate the selection strategies

under different parameters: the cache size, difference in architecture

and the number of checkpoints. First, we quantify the influence

of the cache size for different architectures (aarch64, x86-64) and

memories (instruction, data). While larger caches result in less

uniform distributions, they have an especially high impact in the

instruction-memory accesses as loops result in a high locality.

In Fig. 5, we show the reductions for selecting a fixed amount

of 16 checkpoints over different cache sizes and architectures.

While uniform() is able to result in large reductions for many

benchmarks, we also see that its results significantly deteriorate for

large cache sizes. Over the shown matrix, we see that genetic()

(σG ∈ [93.73, 98.52]) consistently outperforms uniform() (σU ∈
[72.86, 93.75]).

When looking at individual benchmarks, genetic() achieves at

least a reduction by 88.35 percent (for gsm_d, D-Mem, 64K), while
uniform() even resulted in no improvement for one benchmark

(ghostscript, I-Mem, 16K) as all injections were planned before

the first uniform checkpoint. In the best case, genetic() even

achieves 99.934 percent (for bitcnts, I-Mem, 8K) savings. Regarding
the architecture, we see no significant difference between aarch64

and x86, which brings us to the conclusion that our findings are

also generalizable to other architectures.

Qualitatively, we could identify three patterns: (1) when everything

fits into the cache, cache misses only occur in the warm-up period

and genetic() correctly sets the checkpoints in the warm-up period,

while uniform() distributes them blindly over the whole program

run. We could observe this for the D-Mem of all benchmarks with

a small input (e.g., bitcount, ADPCMs and stringsearch). (2) for

In
je

ct
io

n
Di

st
rib

ut
io

n

Mean

JPEG_C, x86, D-Mem, 8K Cache, 8 CPs
Un

i

Reduction: 76.8%

0 25 50 75 100
Injection Time [in %]

Ge
n

Reduction: 84.5%

Fig. 6: Distribution and checkpoints for JPEG compression. After the

cache has warmed (t ≈ 30), the data memory is only rarely read,

leading to a skewed injection distribution.

benchmarks with a high cache pressure, cache misses occur regularly,

and the injection instructions become more uniformly distributed.

For these benchmarks (e.g., PATRICIA with its >270KiB input

size), the advantage of genetic() disappears. (3) for benchmarks

with an irregular cache-miss distribution, uniform() often places

checkpoints in periods of low cache-miss rates, and the effect of the

checkpoint is not optimally utilized. For example, in Fig. 6, uniform()

disadvantageously places checkpoints in a period with nearly no

misses, while genetic() uses those in initial cache warming phase,

leading to a 7.7 percentage-point improvement.

Varying Number of Checkpoints Next, we are interested how

both strategies perform when we scale the number of checkpoints

between 2 and 16. The results are shown in Fig. 7, where we plot

0

0.25

0.50

0.75

1
Fo

rw
ar

d
Cy

cle
 R

ed
uc

tio
n

σ(Gen-Uni)=+0.10

D-Mem

σ(Gen-Uni)=+0.10

I-Mem

aarch64

4 8 12 16
0

0.25

0.50

0.75

1

σ(Gen-Uni)=+0.10

4 8 12 16
Checkpoints

σ(Gen-Uni)=+0.11

x86

Genetic Uniform

Fig. 7: Varying Number of Checkpoints. Effect of the checkpoint

count on the forward-cycle reduction over all cache sizes and

benchmarks. Horizontal jitter to reduce overprinting.

0

0.25

0.50

0.75

1

Fo
rw

ar
d-

Cy
cle

 R
ed

uc
tio

n

Checkpoints: 2 Checkpoints: 4

0 100K 200K 300K 400K 500K
0

0.25

0.50

0.75

1
Checkpoints: 8

more uniform

0 100K 200K 300K 400K 500K
Non-Uniformity U −

Checkpoints: 16

larger gaps

Genetic Uniform

Fig. 8: Sensitivity with Respect to the Non-Uniformity of the Fault

Distribution. (N=714)

the achieved reduction per benchmark as two points (one red and

one blue). The lines mark the average reduction per checkpoint

count and placement strategy, while higher is better. Further, we

tile the results along the CPU architecture and cache-type axis to

determine if those dimensions have an significant impact on the

achieved savings.

First, we can see that increasing the number of checkpoints has

a diminishing effect for both strategies and the 16th checkpoint

has a far smaller effect than the third one. However, on average,

genetic() has a consistent advantage, regardless of the memory

kind or the architecture, which uniform() cannot close, even with 16

checkpoints. At worst, and averaged over all benchmarks, genetic()

requires 7 checkpoints for aarch64 D-Mem to achieve the same

reduction as 16 uniform checkpoints. For x86 I-Mem, we even require

only 6 checkpoints to achieve an average reduction of 89.8 percent

(uniform: 77.72 %).

Sensitivity with Respect to Non-Uniformity Next, we in-

vestigate the influence of the “non-uniformity” of our real-world

distributions to further substantiate our conjecture that genetic()

has superior performance over uniform() for less uniform inputs. In

Fig. 8, we plot the achieved forward cycle reductions per benchmark

against U−
. Again, each benchmark appears as two points (red

for genetic() and blue for uniform()) per tile. To highlight the

trend for more non-uniform distributions, we plot a linear regression

through both result sets. We show results for four checkpoint counts

(2, 4, 8, 16) and higher is better.

First, we see that real-world FI distributions that stem from our

fault model have an even higher WFFT score than our synthetic

benchmarks. Making the checkpoint selection problem even more

important for real-world FI campaigns.

Further, while uniform()’s performance deteriorates for less

uniform distributions, genetic()’s performance even exhibits an

improvement, particularly when the number of available checkpoints

is small. This can be attributed to the fact that a checkpoint placed

immediately prior to a significant peak yields a greater reduction

than one positioned before an extended, shallow hill.

V. Discussion

We evaluated the proposed checkpoint-selection algorithm on

the MiBench benchmark suite for both aarch64 and x86, with

varying numbers of checkpoints and cache sizes. In addition, we

demonstrated that genetic() is able to the achieve (almost) the

same optimal results as ilp() and DP() while it scales better when

confronted with larger problems.

Our evaluation reveals a greater efficiency in our checkpoint-

placement methods for more irregular distributions. These gains are

attributed to our adherence to the actual distribution rather than

the blind, uniform placement of checkpoints. For a fault model

that provoked non-uniform distributions, our method correctly

pinpoints and leverages areas of high importance such as the

cache warm-up period, characterized by a high density of injection

sites. Our approach, irrespective of architecture and memory type,

consistently outperforms uniform() in selecting superior checkpoints

and reducing forward-phase cycles.

The premise of this paper rests on the assumption of a fixed

number of checkpoints, possibly constrained by the FI platform.

Yet in situations with an unrestricted number of checkpoints,

they are not without cost. Firstly, checkpoints require memory

and storage, potentially significant if the entire DRAM state is

captured. Secondly, the process of creating, storing, and distributing

checkpoints to the fault injector consumes time, effectively reducing

the net savings; more checkpoints may paradoxically lead to fewer

savings. Thirdly, our evaluation demonstrated diminishing returns

from additional checkpoints. In contrast, improving the placement of

existing checkpoints enhances their effectiveness with marginal cost

increase. For instance, even for the worst outcome, genetic() with

six checkpoints achieves a greater reduction than uniform() with

16 checkpoints. However, determining the Pareto-optimal number

of checkpoints for distribution-aware placement remains an area for

future research.

Additionally, the overhead incurred by determining checkpoint

distribution is minor compared to the cycles saved. In our experi-

ments, we limited genetic()’s runtime to 10 seconds, although it

often converged sooner (see Tab. II). The total runtime of a complete

systematic FI campaign, while indeed dependent on the specific PUT,

typically spans several hours or even days. Consequently, investing

an additional ten seconds to optimize checkpoint placement using

genetic() is always justifiable. Given these considerations, we argue

that an optimized checkpoint selection ought to become the norm

for any FI campaign that has, either by a constraint or by a design

decision, a fixed number of checkpoints.

VI. Related Work

When we look into literature, FI tools and, when reported, the

way checkpoints are placed in evaluations can be divided into

three categories. The first common approach is to use them to

skip the startup sequence of the simulator, which is often longer

than the loading time for a checkpoint. This is done in both fault

injection tools GemFI [17] and MEFISTO [18]. In addition, several

works report utilizing checkpoints in this way to accelerate their

evaluation [28], [29]. The next approach is to use more than a

single checkpoint. For example, GangES [12] saves checkpoints

periodically during recording the golden run, which results in a

uniform distribution. Several other works [11], [13]–[15] distribute

them uniformly. However, in all this works the distribution of

checkpoints is not a focus, and thus they do not report on the

effect of using checkpoints. Some FI tools like FAIL* [30] leave the

decision, where to place checkpoints and how many to the user.

Very few studies attempt to quantify the impact of checkpoints on

FI-campaign run time. Ruano et al. [31] positioned a single checkpoint
at three-quarters of the total runtime and “almost at the end”. Their

analysis found that the later checkpoint led to more significant

runtime savings and they concluded that a detailed examination

of checkpoint selection is necessary. Parotta et al. [32] uniformly
place checkpoints to accelerate hardware-assisted FI-campaigns. They

find that beyond a certain number of checkpoints—in their case, 10

checkpoints—, savings become diminishing; a result that aligns with

our own. Schirmeier et al. [33] propose smart-hopping, an improved

forwarding mechanism based on hardware breakpoints, to speed up

the forwarding phase for hardware-assisted fault injection. Although

they briefly explore checkpoint placement, their placement method

results in the uniform distribution if used without smart-hopping and

hardware support. In contrast, we provide a fundamental study of

checkpoint selection that is hardware and FI-mechanism independent.

While not being our focus, the efficient storage and retrieval of

checkpoints is another important topic [34].

VII. Conclusion

One cost factor of comprehensive FI campaigns is the forwarding

phase, which is the time required to bring the program-under-
test (PUT) into the fault-free state at injection time. The common

technique to speed up this process are checkpoints of the fault-free

system state at fixed points in time. In this paper, we show that the

placement of checkpoints has a significant influence on the required

forwarding cost, especially if the planned faults are non-uniformly

distributed in time. For this, we discuss the checkpoint-selection

problem in general, reduce it to the problem of finding the maximum-

weight reward path in DAGs, and propose three distinct methods;

two of them provide the optimal solution, while the third is a

heuristic based on genetic algorithms.

We compared the proposed methods with synthetic benchmarks

and applied our genetic algorithm on the MiBench benchmark suite

on both aarch64 and x86, with varying amounts of checkpoints

and cache size reflecting those of the M7 processor family. This

evaluation parameters resulted in a total of 714 FI distributions.

Our approach consistently performs better than a time-uniform

checkpoint selection regardless of the underlying architecture and

equally for data- and instruction-fetch accesses. Overall, with 16

checkpoints, we are able to consistently reduce the forward-phase

cycles, with reductions of at least 88 percent and up to 99.934 percent.

Acknowledgements

We thank the anonymous reviewers (in advance) for their valuable

feedback and dedicated efforts in helping us improve this paper.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 468988364, 501887536.

The source code and fault distributions used for the evaluation

are available as an data artifact [35].

References

[1] ISO 26262-9, ISO 26262-9:2011: Road vehicles – Functional safety
– Part 9: Automotive Safety Integrity Level (ASIL)-oriented and
safety-oriented analyses. 2011.

[2] IEC, IEC 61508 - Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems. 1998.

[3] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and

S. Gurumurthi, “Feng shui of supercomputer memory: Positional

effects in DRAM and SRAM faults,” in Proc. Intl. Conf. High
Performance Comput., Networking, Storage Anal., ser. SC ’13, 2013,

22:1–22:11. doi: 10.1145/2503210.2503257.

[4] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation

of memory hardware errors and software system susceptibility,”

in 2010 USENIX Annual Tech. Conf., 2010. [Online]. Available:
https : / /www.usenix .org /conference/usenix - atc - 10 / realistic -

evaluation-memory-hardware-errors-and-software-system.

[5] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,

E. Martins, and D. Powell, “Fault injection for dependability

validation: A methodology and some applications,” IEEE Trans.
Software Engin., vol. 16, no. 2, pp. 166–182, 1990. doi: 10.1109/32.
44380.

[6] H. Ziade, R. A. Ayoubi, and R. Velazco, “A survey on fault injection

techniques,” The Intl. Arab J. Information Tech., vol. 1, no. 2,
pp. 171–186, 2004.

[7] D. T. Smith, B. W. Johnson, J. A. Profeta, and D. G. Bozzolo, “A

method to determine equivalent fault classes for permanent and

transient faults,” in Proc. Annual Reliability and Maintainability
Symp., 1995, IEEE, 1995, pp. 418–424. doi: 10.1109/RAMS.1995.

513278.

[8] J. Guthoff and V. Sieh, “Combining software-implemented and

simulation-based fault injection into a single fault injection

method,” in Proc. 25th Intl. Symp. on Fault-Tolerant Computing,
1995, pp. 196–206. doi: 10.1109/FTCS.1995.466978.

[9] O. Pusz, C. Dietrich, and D. Lohmann, “Data-flow–sensitive fault-

space pruning for the injection of transient hardware faults,” in

Proc. 2021 ACM SIGPLAN/SIGBED Conf. on Languages, Compilers
and Tools for Embedded Syst., 2021, pp. 97–109. doi: 10 .1145/
3461648.3463851.

[10] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating

systems with time-traveling virtual machines (awarded general

track best paper award!)” In Proc. 2005 USENIX Annual Tech. Conf.,
2005, pp. 1–15. [Online]. Available: http://www.usenix.org/events/

usenix05/tech/general/king.html.

[11] L. Berrojo, I. Gonzalez, F. Corno, M. Reorda, G. Squillero, L.

Entrena, and C. Lopez, “New techniques for speeding-up fault-

injection campaigns,” in Design, Automation & Test in Europe Conf.
& Exhibition 2002, 2002, pp. 847–852. doi: 10.1109/DATE.2002.
998398.

[12] S. K. S. Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi, “Ganges:

Gang error simulation for hardware resiliency evaluation,” in

ACM/IEEE 41st Intl. Symp. on Comput. Architecture, ISCA 2014,
2014, pp. 61–72. doi: 10.1109/ISCA.2014.6853212.

[13] L. Berrojo, I. González, F. Corno, M. S. Reorda, G. Squillero,

L. Entrena, and C. López, “An industrial environment for high-level

fault-tolerant structures insertion and validation,” in 20th IEEE
VLSI Test Symp., Without Testing It’s a Gamble, 2002, pp. 229–236.
doi: 10.1109/VTS.2002.1011143.

https://doi.org/10.1145/2503210.2503257
https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system
https://www.usenix.org/conference/usenix-atc-10/realistic-evaluation-memory-hardware-errors-and-software-system
https://doi.org/10.1109/32.44380
https://doi.org/10.1109/32.44380
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/RAMS.1995.513278
https://doi.org/10.1109/FTCS.1995.466978
https://doi.org/10.1145/3461648.3463851
https://doi.org/10.1145/3461648.3463851
http://www.usenix.org/events/usenix05/tech/general/king.html
http://www.usenix.org/events/usenix05/tech/general/king.html
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1109/DATE.2002.998398
https://doi.org/10.1109/ISCA.2014.6853212
https://doi.org/10.1109/VTS.2002.1011143

[14] I. Tuzov, J. C. Ruiz, D. de Andrés, and P. J. Gil, “Speeding-up

simulation-based fault injection of complex HDL models,” in 2016
Seventh Latin-American Symp. on Dependable Computing, LADC
2016, Cali, Colombia, October 19-21, 2016, 2016, pp. 51–60. doi:
10.1109/LADC.2016.18.

[15] F. Rosa, F. L. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable

fault injection framework to evaluate multi/many-core soft error

reliability,” in 2015 IEEE Intl. Symp. on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems, DFTS 2015, 2015, pp. 211–214.
doi: 10.1109/DFT.2015.7315164.

[16] R. Nowosielski, L. Gerlach, S. Bieband, G. Payá-Vayá, and H. Blume,

“Flint: Layout-oriented fpga-based methodology for fault tolerant

asic design,” in 2015 Design, Automation Test in Europe Conf.
Exhibition (DATE), 2015, pp. 297–300.

[17] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas,

“Gemfi: A fault injection tool for studying the behavior of

applications on unreliable substrates,” in 44th Annual IEEE/IFIP Intl.
Conf. on Dependable Syst. Networks, DSN 2014, 2014, pp. 622–629.
doi: 10.1109/DSN.2014.96.

[18] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson, “Fault

injection into VHDL models: The MEFISTO tool,” in Digest of
Papers: FTCS/24, The Twenty-Fourth Annual Intl. Symp. on Fault-
Tolerant Comput., 1994, pp. 66–75. doi: 10.1109/FTCS.1994.315656.

[19] K. Axiotis and C. Tzamos, “Capacitated dynamic programming:

Faster knapsack and graph algorithms,” in Proc. ICALP 2019,
ser. Leibniz Int. Proc. Informatics, vol. 132, 2019, 19:1–19:13. doi:

10.4230/LIPIcs.ICALP.2019.19.

[20] R. M. Karp, “Reducibility among combinatorial problems,” in

Complexity of computer computations, 1972, pp. 85–103.
[21] P. Puschner and A. Schedl, “Computing maximum task execution

times: A graph-based approach,” Real-Time Systems, vol. 13, pp. 67–
91, 1997.

[22] Y.-T. S. Li and S. Malik, “Performance analysis of embedded

software using implicit path enumeration,” in ACM SIGPLAN
Notices, ACM, vol. 30, 1995, pp. 88–98.

[23] J. H. Holland, “Genetic algorithms and the optimal allocation of

trials,” SIAM J. Comput., vol. 2, no. 2, pp. 88–105, 1973.
[24] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown, “Mibench: A free, commercially representative

embedded benchmark suite,” in Proc. 4th Annual IEEE Intl. Work.
on Workload Characterization. WWC-4, 2001, pp. 3–14.

[25] E. J. Gumbel, “The return period of flood flows,” The annals of
mathematical statistics, vol. 12, no. 2, pp. 163–190, 1941.

[26] V. Sieh, O. Tschäche, and F. Balbach, “VERIFY: Evaluation of

reliability using VHDL-models with embedded fault descriptions,”

in Proc. 27th Intl. Symp. Fault-Tolerant Comput., 1997, pp. 32–36.
doi: 10.1109/FTCS.1997.614074.

[27] J. Hammer, Pycachesim- a single-core cache hierarchy simulator
written in python. [Online]. Available: https://github.com/RRZE-

HPC/pycachesim.

[28] R. Amarnath, S. N. Bhat, P. Munk, and E. Thaden, “A fault injection

approach to evaluate soft-error dependability of system calls,”

in 2018 IEEE Intl. Symp. on Software Reliability Engin. Workshops
(ISSREW), IEEE, 2018, pp. 71–76.

[29] A. Mahmoud, R. Venkatagiri, K. Ahmed, S. Misailovic, D. Marinov,

C. W. Fletcher, and S. V. Adve, “Minotaur: Adapting software

testing techniques for hardware errors,” in Proc. 24th Intl. Conf. on
Architectural Support for Programming Languages and Operating
Syst., 2019, pp. 1087–1103.

[30] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann,

and O. Spinczyk, “FAIL*: An open and versatile fault-injection

framework for the assessment of software-implemented hardware

fault tolerance,” in Proc. 11th European Dependable Comput. Conf.,
2015, pp. 245–255. doi: 10.1109/EDCC.2015.28.

[31] O Ruano, J. Maestro, and P Reviriego, “Performance analysis and

improvements for a simulation-based fault injection platform,” in

2008 IEEE Intl. Symp. on Industrial Electronics, IEEE, 2008, pp. 2299–
2304.

[32] B Parrotta, M. Rebaudengo, M. S. Reorda, and M. Violante, “New

techniques for accelerating fault injection in vhdl descriptions,” in

Proc. 6th IEEE Intl. On-Line Testing Work., IEEE, 2000, pp. 61–66.
doi: 10.1109/OLT.2000.856613.

[33] H. Schirmeier, L. Rademacher, and O. Spinczyk, “Smart-hopping:

Highly efficient ISA-level fault injection on real hardware,” in

Proc. 19th IEEE European Test Symp., 2014.
[34] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka,

“Distributed diskless checkpoint for large scale systems,” in Proc.
10th IEEE/ACM Intl. Conf. on Cluster, Cloud and Grid Comput.,
2010, pp. 63–72. doi: 10.1109/CCGRID.2010.40.

[35] C. Dietrich, T.-M. Thomas, and M. Mnich, Artifact for: Checkpoint
Placement for Systematic Fault-Injection Campaigns (ICCAD’23),
2023. doi: 10.5281/zenodo.8233288. [Online]. Available: https:

//doi.org/10.5281/zenodo.8233288.

https://doi.org/10.1109/LADC.2016.18
https://doi.org/10.1109/DFT.2015.7315164
https://doi.org/10.1109/DSN.2014.96
https://doi.org/10.1109/FTCS.1994.315656
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.1109/FTCS.1997.614074
https://github.com/RRZE-HPC/pycachesim
https://github.com/RRZE-HPC/pycachesim
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/OLT.2000.856613
https://doi.org/10.1109/CCGRID.2010.40
https://doi.org/10.5281/zenodo.8233288
https://doi.org/10.5281/zenodo.8233288
https://doi.org/10.5281/zenodo.8233288

	Introduction
	Fault-Injection Model and Problem Description
	Checkpoint Selection
	Theoretical Considerations
	ILP-Based Checkpoint Selection
	Checkpoint Selection with Dynamic Programming
	Genetic Checkpoint Selection

	Evaluation
	Non-Uniformity Metric
	Synthetic FI Distributions
	Real-World Distributions

	Discussion
	Related Work
	Conclusion

