
DeepBurning-MixQ: An Open Source
Mixed-Precision Neural Network Accelerator

Design Framework for FPGAs
Erjing Luo1,2∗, Haitong Huang1,3∗, Cheng Liu1†, Guoyu Li1,3, Bing Yang4, Ying Wang1, Huawei Li1, Xiaowei Li1

1SKLP, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2School of Information and Electronics, Beijing Institute of Technology, Beijing, China

3Dept. of Computer Science, University of Chinese Academy of Sciences, Beijing, China
4Dept. of Computer Science and Technology, Harbin University of Science of Technology, Harbin, China

{huanghaitong21s, liucheng, liguoyu21s}@ict.ac.cn, 1120192664@bit.edu.cn

Abstract—Mixed-precision neural networks (MPNNs) that en-
able the use of just enough data width for a deep learning task
promise significant advantages of both inference accuracy and
computing overhead. FPGAs with fine-grained reconfiguration
capability can adapt the processing with distinct data width
and models, and hence, can theoretically unleash the potential
of MPNNs. Nevertheless, commodity DPUs on FPGAs mostly
emphasize generality and have limited support for MPNNs
especially the ones with lower data width. In addition, primitive
DSPs in FPGAs usually have much larger data width than
that is required by MPNNs and haven’t been sufficiently co-
explored with MPNNs yet. To this end, we propose an open
source MPNN accelerator design framework specifically tailored
for FPGAs. In this framework, we have a systematic DSP-
packing algorithm to pack multiple lower data width MACs
in a single primitive DSP and enable efficient implementation
of MPNNs. Meanwhile, we take DSP packing efficiency into
consideration with MPNN quantization within a unified neural
network architecture search (NAS) framework such that it can
be aware of the DSP overhead during quantization and optimize
the MPNN performance and accuracy concurrently. Finally, we
have the optimized MPNN fine-tuned to a fully pipelined neural
network accelerator template based on HLS and make best use
of available resources for higher performance. Our experiments
reveal the resulting accelerators produced by the proposed
framework can achieve overwhelming advantages in terms of
performance, resource utilization, and inference accuracy for
MPNNs when compared with both handcrafted counterparts and
prior hardware-aware neural network accelerators on FPGAs.

Index Terms—DSP packing, mixed precision neural network,
neural network architecture search, quantization and implemen-
tation co-optimization.

I. INTRODUCTION

Quantization is a straightforward yet effective approach [1]
[2] to compress neural network models that are usually both
computing- and memory-intensive. Since neural network’s
sensitivity to quantization varies across the layers, mixed-
precision quantization that allows more fine-grained quan-
tization achieves significant advantages in both computing
efficiency and memory access efficiency compared to classical

∗ These authors contributed equally to this work.
† Corresponding authors.
This work is supported by the National Key R&D Program of China under

Grant (2022YFB4500405), and the National Natural Science Foundation of
China under Grant 62174162.

uniform quantization [3] [4], which contributes to the neural
network processing throughput and energy efficiency even-
tually. Nevertheless, most of the commodity neural network
computing engines including CPU, GPU, and NPU usually
have limited support for arbitrary mixed-precision neural net-
work (MPNN) processing especially low data width processing
due to the lack of native mixed precision computing elements.
In contrast, FPGAs with fine-grained reconfiguration capabil-
ity can provide model specific implementation [5] [6] and
suit various computing requirements of MPNNs with native
hardware, and hence, can unleash the potential of MPNNs.

Despite the fine-grained reconfiguration capability, FPGAs
mainly rely on digital signal processing unit (DSP) cores
with limited reconfiguration for efficient arithmetic implemen-
tations. For example, Xilinx integrates DSP48E2 which can
support a 27 × 18 two’s complement multiplication on its
UltraScale FPGAs [7], while Intel Arria 10 devices have DSP
cores that can be configured to two 18 × 19 multipliers or one
27 × 27 multiplier [8]. Although Lookup-Tables (LUTs) can
also be utilized to implement arithmetic operations with ar-
bitrary data width, DSPs generally outperform the LUT-based
implementations in terms of both latency and energy efficiency
[9] especially for higher data width operations. While MPNNs
typically involve many low data width operations that are
much smaller than data width of primitive DSPs, straightfor-
ward implementation of MPNNs can result in considerable
waste of the DSP resources. To address the problem, a variety
of works have attempted to pack multiple low data width
operations into a single DSP block [10] [11] [12] and make
full use of the computing capability of the DSPs. For instance,
Xilinx’s INT8 [12] and INT4 [11] demonstrate that two 8-
bit multiplications and four 4-bit multiplications can be fit
into a single DSP48E2. The authors in [10] also explored the
use of high data width processing engines for low data width
processing.

While MPNN quantization affects not only the accuracy but
also the DSP packing efficiency and performance eventually,
performing the quantization and DSP packing separately will
lead to sub optimal results. In fact, there have been intensive
efforts devoted to optimize the neural network model accuracy
and performance at the same time. For instance, [13] employs

ar
X

iv
:2

30
8.

11
33

4v
1 

 [
cs

.A
R

] 
 2

2 
A

ug
 2

02
3



a RL agent with direct hardware metrics feedback to co-
optimize accuracy, latency, and energy consumption. [14]
incorporates quantization and other neural architecture param-
eters into a design space, and has gradient-decent method
for optimizing both algorithms and hardware implementation.
However, there is still a lack of co-optimization between DSP
packing and MPNN quantization.

In this work, we propose a systematic DSP packing algo-
rithm that can squeeze multiple low data width arithmetic
operations into a single primitive DSP of FPGAs. While
the DSP packing efficiency varies substantially across the
convolution kernels with different parameters, the overall
performance of a MPNN network can be inconsistent with the
data width of the model. Then, we leverage a differentiable
NAS to take both the DSP packing and MPNN quantization
into consideration and co-optimize the model accuracy and
performance at the same time. Finally, with the optimized DSP
packing and quantization determined by the NAS, we have a
MPNN accelerator generated automatically based on a fully
pipelined neural network accelerator template.

The major contributions of this work can be summarized as
follows:

• We propose a mixed DSP packing algorithm that takes
advantage of both Kernel Packing strategy and Filter
Packing strategy for arbitrary low data width convolution
on FPGAs. In addition, we also enhance the DSP packing
with Overpacking technique and Operation Separation
technique. The resulting DSP packing algorithm outper-
forms all the existing strategies significantly.

• On top of the proposed DSP packing algorithm, we
propose a MPNN accelerator design framework that
leverages a differentiable NAS to take both the DSP
packing and quantization into a consideration and op-
timizes the model accuracy and performance at the same
time. With the optimized DSP packing strategy and
quantization setups, this framework can further generate
high-performance MPNN accelerator based on a fully
pipelined HLS template. The framework is open sourced
on Github1.

• According to our experiments on a set of different
MPNNs, the MPNN accelerators generated with the pro-
posed framework outperform state-of-the-art counterparts
in terms of performance, resource utilization, and predic-
tion accuracy significantly.

II. RELATED WORK

Mixed-precision neural networks (MPNNs) that enable just
enough data width for each different neural network layer can
greatly reduce the requirements of computing, memory band-
width, and storage. Therefore, MPNNs promise great comput-
ing efficiency when compared to neural network models with
unified data width. Since the number of low bit-width op-
erations is inconsistent with the realistic computing efficiency
due to the lack of primitive MPNN implementation on existing

1https://github.com/fffasttime/AnyPackingNet/

computing engines including CPUs, GPUs, and NPUs. Many
prior work seek to co-optimize the quantization and computing
efficiency [15] [16] to ensure efficient MPNN implementation
on specific computing engines. Specifically, [13] [17] [18]
[19] [20] [21] leverage network architecture search (NAS)
technique that automates the neural network design for the co-
optimization. For instance, [20] has a hardware performance
model added to differentiable NAS such that performance of
neural network candidates on GPUs can be evaluated with the
model accuracy at the same time. Similar approaches have also
been successfully applied to lightweight neural network design
for mobile phones [22]. However, the above hardware aware
neural network design and optimization approaches essentially
adapt the neural network models to the target computing
engines that have fixed computing architectures and have little
native low data width operation support, and hence, fail to fully
unleash the potential of MPNNs.

In contrast, FPGAs with fine-grained reconfiguration capa-
bility are suitable for model specific customization and can
be a good fit for MPNNs. To explore the reconfiguration
capability of FPGAs for efficient neural network specific
implementation, the authors in [3] [13] [14] proposed different
co-optimization approaches that take both neural network
accuracy and hardware implementation efficiency into consid-
eration in a unified framework. [13] applies time-consuming
reinforcement learning NAS. Although such NAS approach
could have the accelerator design parameters included in the
same NAS search space along with the network architecture
and have different design metrics considered at the same time
during NAS evaluation stage, it enlarges the search space dra-
matically and usually induce many time-consuming evaluation
of metrics such as accuracy, hardware overhead, and imple-
mentation quality, which makes the entire optimization pro-
hibitively expensive and difficult to converge. [14] formulates
the co-optimization as a differentiable NAS problem in terms
of both accuracy and implementation efficiency. It avoids the
conventional iterative NAS search procedures and reduces
the optimization to a standard training procedure. Essentially,
it makes the hardware-aware optimization much easier to
converge. However, it is difficult to explicitly represent and
model all hardware design parameters within a differentiable
NAS framework, as many hardware parameters are discrete,
making it difficult to construct differentiable proxy loss and
obtain global optimal solutions. Different from these above
NAS approaches, [3] takes the co-optimization as a integer
programming problem by introducing an accuracy predictor
and a performance predictor, which do not rely on any complex
black box simulation or evaluation procedures. Particularly,
it demonstrates the great potential of using a simplified co-
optimization framework for neural network acceleration on
FPGAs, but the accuracy prediction can be relatively limited
to some specific scenarios.

In addition, the fine-grained reconfiguration capability of
FPGAs has not been explored sufficiently. FPGAs mainly
rely on primitive DSP blocks with fixed data width for
high performance arithmetic operations while straightforward

https://github.com/fffasttime/AnyPackingNet/


Conv

BN + ReLU

···

···

DSP

DSP Packing Optimizer

Differentiable NAS for DSP-aware Quantization

Input Model

2 3 8···

Σ

Weight

2 3 8···

Activation

Σ

𝜋2
𝑤 𝜋3

𝑤 𝜋8
𝑤

Mix Conv

BN + ReLU Mix Output
···

Packing Lookup Tables

𝜋2
𝑎 𝜋3

𝑎 𝜋8
𝑎

𝑎𝑏 , 𝑤𝑏 ∈ {2, 3, 4, 5, 6, 7, 8}

Quantization
Search Space

Accelerator Customization

Quantization 
Config.

Packed Operations Primitive DSP

Packing 
Config.

Dynamic 
Programming

HLS-based Accelerator Templates

𝑳𝒐𝒔𝒔𝒄𝒐𝒎𝒑

𝑳𝒐𝒔𝒔𝒂𝒄𝒄

MPNN
Accelerator

Bayesian Ridge 
Regression Predictor

Resource 
Constraints

Super Net

Synthesized
Samples

DSPs
LUTs

Timing

Fig. 1. Overview of the proposed mixed-precision neural network accelerator design framework.

implementation of low data width such as 2-bit and 3-bit
operations on these primitive DSP blocks can lead to con-
siderable waste because the data width of these DSP blocks is
much larger. LUTs in FPGAs can also be utilized to construct
operations with arbitrary data width, but the performance is
usually much lower especially for operations with larger data
width due to the more complex routing. To fully explore the
fine-grained reconfiguration capability of FPGAs, researchers
from both academia and industry have proposed a variety of
approaches to pack multiple low-precision operations into a
single DSP (especially multiplier) concurrently to fully utilize
the primitive DSPs [9] [10] [11] [12] [23] and then extract the
outputs of the low-precision operations from the disjoint bit
segments of the DSP blocks concurrently. For instance, Xilinx
INT4 optimization [11] leverages the 27 × 18 two’s comple-
ment multiplier to simultaneously calculate four 4-bit products.
[24] [25] proposes to construct efficient low data width matrix-
matrix multiplication overlay based on primitive DSP blocks.
Particularly, it takes the interconnection between primitives
into consideration for the sake of higher operation frequency.
Then, it has neural network models implemented based on the
overlay to ensure high-performance neural network processing
on FPGAs. Essentially, it optimizes the hardware implemen-
tation first without being aware of the models and adapts the
model to the FPGA implementation afterwards. HiKonv [10]
specifically explores the DSP packing algorithm to maximize
low data width operations on a single DSP block, but there is
a lack of co-optimization of the hardware implementation and
neural network models. In summary, there is still a lack of co-
optimization framework that takes the neural network model
accuracy and fine-grained FPGA implementation efficiency
into consideration at the same time for FPGAs.

III. MPNN ACCELERATOR DESIGN FRAMEWORK

In this work, we propose a mixed-precision neural network
accelerator design framework as shown in Fig. 1. Essentially,
it is a hardware and software co-optimization framework for
MPNNs and seeks to optimize both the processing perfor-
mance and accuracy. In general, it adjusts the quantization
of MPNNs to fulfill the accuracy requirement and optimize
the resulting accelerator implementation which mainly relies
on the various low data width operation mapping efficiency
over primitive DSPs within FPGAs.

The framework starts with a floating point neural network
model or fixed point model with unified quantization. With the
model architecture, it utilizes differentiable NAS to determine
the optimized MPNN quantization. Specifically, it defines the
quantization search space in which the data width of the model
in each layer ranges from 2bit to 8bit. Based on the search
space, it further extends the input neural network model by
adding all the possible candidate quantization branches to all
the links between layers in the original input neural network
and constructs a super-net for the NAS. The branches in the
super-net are weighted and they can be adapted to optimize
the model accuracy through back propagation. Other than the
accuracy, it also has the NAS to be aware of the hardware
implementation efficiency especially the DSP requirements
which is usually the resource bottleneck. While the hardware
implementation relies on the model quantization in each layer
as well as the low data width operation mapping efficiency
over primitive DSPs in FPGAs, a DSP Packing Optimizer
is utilized to pack the various low data width operations of
MPNNs within primitive DSPs. Then, we have the optimal
DSP packing configurations produced by DSP Packing Opti-
mizer stored in a lookup table such that they can be referred
to immediately during NAS and utilized to co-optimize the
MPNN accuracy and DSP overhead. Basically, we utilize a
combined accuracy and DSP overhead loss to train the super-
net where the accuracy loss is obtained through standard
forward processing and DSP overhead is evaluated based on
the lookup table of the DSP packing. At the end of the super-
net training, the branches with highest weights will be selected
as the optimized quantization configurations and DSP packing
configurations accordingly.

After the DSP-aware quantization, the framework proceeds
to the accelerator customization stage. Essentially, it orches-
trates the design parameters of our pipelined neural network
accelerator templates based on the optimized quantization and
DSP packing configurations of the neural network model for
the sake of higher performance under the specified FPGA
resource constraints. Essentially, it is an resource allocation
problem that allocates the hardware resources to different
pipeline stages such that the implementation of each pipeline
stage is optimized and the performance of the different
pipeline stages are balanced at the same time. To address the
constrained resource allocation problem, we have a dynamic



𝒘𝟎𝒂𝟎 𝒘𝟏𝒂𝟎 𝒘𝟐𝒂𝟎

𝒘𝟎𝒂𝟏 𝒘𝟏𝒂𝟏 𝒘𝟐𝒂𝟏

𝒘𝟎𝒂𝟐 𝒘𝟏𝒂𝟐 𝒘𝟐𝒂𝟐

𝒘𝟎𝒂𝟑 𝒘𝟏𝒂𝟑 𝒘𝟐𝒂𝟑

𝒘𝟎 𝒘𝟏 𝒘𝟐

···

DSP

𝒘𝟎 𝒘𝟏 𝒘𝟐

𝒂𝟏 𝒂𝟎

𝒂𝟑 𝒂𝟐

𝒂𝒏−𝟏 𝒂𝒏−𝟐

··· ···

···

Intermediate Coefficient Accumulation

𝑵

𝑵𝒑

𝒑𝒃 𝒘𝒃 𝒑𝒃

𝒂𝒃

Mapping Sub-
tasks to DSP

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 ··· 𝒂𝐧−𝟐 𝒂𝐧−𝟏

Feature Maps Division 

𝟑 × 𝟑 Kernel 
Division

Filter Packing Sub-task Division

𝒘𝟏

𝒘𝟎

DSP
𝒂𝟏 𝒂𝟎

𝒘𝒎−𝟏
𝒂𝒏−𝟏 𝒂𝒏−𝟐

𝒘𝟏 𝒘𝟎

𝒘𝒎−𝟏 𝒘𝒎−𝟐

···

···
𝒘𝟏𝒂𝟏 𝒘𝟏𝒂𝟎 𝒘𝟎𝒂𝟏 𝒘𝟎𝒂𝟎

···

𝒑𝒃

𝟐𝒑𝒃𝒆𝒃 = 𝒘𝒃

𝒅𝒃 = 𝒂𝒃

Port E

Port D
N𝑒 = 2

N𝑑 = 2

𝒑𝒃

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 ··· 𝒂𝐧−𝟐 𝒂𝐧−𝟏

𝒘𝒎−𝟐

···

𝒂𝟑 𝒂𝟐

Feature Maps Division 

Mapping Sub-
tasks to DSP 𝒘𝒎−𝟏𝒂𝒏−𝟏 𝒘𝒎−𝟏𝒂𝒏−𝟐 𝒘𝒎−𝟐𝒂𝒏−𝟏 𝒘𝒎−𝟐𝒂𝒏−𝟐

𝒘𝟏𝒂𝟑 𝒘𝟏𝒂𝟐 𝒘𝟎𝒂𝟑 𝒘𝟎𝒂𝟐𝟏 × 𝟏 Kernel 
Division

Kernel Packing Sub-task Division(a)

(b)

Fig. 2. DSP packing strategies: (a) Kernel Packing; (b) Filter Packing. Suppose both weights and activations are unsigned.

programming algorithm to tune the design parameters of
the pipelined accelerator. The tuning procedure requires a
large number of evaluation of different design options and
the evaluation metrics can be hardware overhead like DSPs
and timing quality, which are prohibitively expensive using
standard tools from FPGA vendors. In this work, we utilize a
Bayesian Ridge Regression predictor to estimate resource uti-
lization and the timing of each pipeline stage implementation.
Although it needs additional sampling data for pre-training of
the predictors, the resulting prediction models can be orders of
magnitude faster and ensures rapid accelerator customization
of a specific MPNN.

IV. DSP PACKING OPTIMIZER

In order to efficiently map mixed-precision arithmetic op-
erations onto primitive DSPs in FPGAs, we propose our DSP
Packing Optimizer which further generalizes the state-of-the-
art DSP packing algorithms [10] [11] [12] as two optional
strategies and also incorporates two additional techniques for
further enhancement. For a convolution operator, the optimizer
traverses all possible packing configurations to find the optimal
one for each bit-width combination, and stores it in lookup ta-
bles to direct quantization search and hardware customization.

A. DSP Packing Strategies

1) Kernel Packing: For the first strategy, as illustrated in
Fig. 2(a), weights and activations respectively from adjacent
kernels and pixels are squeezed into one DSP following Eq. 1.
Specifically, through left-shift and addition, Nd db-bit weights
(activations) and Ne eb-bit acitvations (weights) are mapped
onto two input ports, D and E, where we assume port E’s
bit-width is larger or equal to port D’s (i.e. PE

b ≥ PD
b ),

then Nd × Ne independent multiplications are concurrently
performed within one DSP. The gb in Eq. 1 is called guard
bits, which are deliberately preserved to prevent bit segment
overlap between neighbor multiplications or to support overall
result accumulation for saving decoding logic.

(

Nd−1∑
i=0

d[i]2ipb) · (
Ne−1∑
j=0

e[j]2jNdpb) (1)

subject to 
pb = db + eb + gb

gb ≥ 0

db + (Nd − 1)pb ≤ PD
b

eb + (Ne − 1)Ndpb ≤ PE
b

2) Filter Packing: Instead of packing weights from adjacent
kernels, Filter Packing factorizes multidimensional convolu-
tion into 1-D counterparts, and packs the filter on an input
port. Suppose there are a Kp-element weight filter f and a
Np-element activation sequence s. Based on the mathematical
equivalence between 1-D convolution and polynomial multi-
plication, the convolution (c = f ∗ s) can be reformulated as
polynomial representation, as shown in Eq. 2, which can then
be implemented with one large bit-width multiplier. However,
in practice, due to the limitation of port widths (i.e. PA

b

and PW
b ), one multiplier cannot contain a large convolution

entirely. Therefore, for processing a long K-element filter and
a long N -element sequence, this strategy can be generalized
by dividing the original polynomial into ⌈ K

Kp
⌉ × ⌈ N

Np
⌉ sub-

tasks. As illustrated in Fig. 2(b), through iteratively calculating
these sub-tasks and accordingly accumulating intermediate
coefficients, correct convolution can be obtained. In this case,
the guard bits must be greater than ⌈log2 min{Kp, Np}⌉, since
min{Kp, Np} accumulations are inherently introduced by its
polynomial nature.

c(2pb) =f(2pb)s(2pb) = (

Kp−1∑
i=0

f [i]2ipb) · (
Np−1∑
j=0

s[j]2jpb)

=

Kp+Np−1∑
i=0

c[i]2ipb

(2)
subject to 

pb = ab + wb + gb

gb ≥ ⌈log2 min{Kp, Np}⌉
ab + (Np − 1)pb ≤ PA

b

wb + (Kp − 1)pb ≤ PW
b

3) Mixed Packing: Compared with Kernel Packing that
leaves larger space (i.e. Ndpb) between the operands on port



E to guarantee multiplications’ independence, Filter Packing
can pack operands more densely. However, for small kernel
size, this advantage might not be unleashed as the filter cannot
fully occupy DSP’s port width (e.g. point-wise convolution).
For fairly comparing different strategies and configurations,
we use two metrics to evaluate our DSP packing strategies.

Primarily, we expect to maximally accommodate multipli-
cations into these DSP primitives for highest multiplication
throughput. However, we do not intuitively define it as the
total number of concurrent multiplications in one DSP, because
this neglects the up-rounding redundancy introduced by sub-
task division in Filter Packing, especially the division for filter
whose length is shorter and can lead to severe waste. Hence,
we define the multiplication throughput Tmul as the average of
the effective multiplication performed in one DSP, as shown
in Eq. 3. Next, based on the consideration that guard bits can
be utilized for supporting accumulations before decoding, we
also expect our optimizer to increase it. As Filter Packing
inherently introduces accumulations, we define extra guard bits
Eg with Eq. 4, and regard it as the subsidiary optimization
objective.

Tmul =

{
NdNe, Kernel Packing

KN
⌈ K
Kp

⌉⌈ N
Np

⌉ , Filter Packing (3)

Eg =

{
gb, Kernel Packing
gb − ⌈log2 min{Kp, Np}⌉, Filter Packing

(4)

B. Packing Enhancement

As explained in Eq. 1 and Eq. 2, multiplication throughput
is restricted by both guard bits and port width constrains. In
order to further enhance it, our optimizer also introduces two
enhancement techniques.

1) 1-bit Overpacking: The guard bits in packing algorithms
are deliberately preserved to avoid result overlap. Nonetheless,
they inevitably consume the precious bit-widths. Inspired by
[9], we introduce 1-bit overpacking (i.e. allowing 1-bit over-
lap) to mitigate this constrain, and further propose a method
to fully compensate the error.

When 1-bit overlap is permitted, the LSB of high-position
segment BH

LS and the MSB of low-position segment BL
MS

overlaps with each other. In order to decode correctly, we
recalculate BH

LS with additional LUT resources, and leverage
it for calibration. As shown in Fig. 3, the LSB of a product
can be obtained by applying an AND gate to the LSBs of
its multiplicants. If the high-position segment is the sum of
several products, we apply an XOR logic to all products’
LSBs to calculate BH

LS . For correcting BL
MS , we directly add

the recalculated BH
LS to it to counteract the contamination.

For high-position segment, the error is possibly introduced
by the sign extension of the low-position segment, which is
equivalent to subtracting the result by one. To detect and
compensate the unknown extension, we add the XOR of the
overlapped bit and BH

LS for correction.
2) Operand Separation: In packing algorithms, we expect

to find suitable Kp and Np (or Nd and Ne) combinations that
can fully occupy the precious port widths. However, as these

… …

𝑓[0]𝑠[0]+𝑓[1]𝑠[1]

…

…

𝑓[1]𝑠[0]+𝑓[2]𝑠[1]

𝑓[0]𝐿𝑆𝐵
𝑠[0]𝐿𝑆𝐵

𝑓[1]𝐿𝑆𝐵
𝑠[1]𝐿𝑆𝐵

Fig. 3. 1-bit overpacking correction.

values are discrete, it’s unavoidable to leave some bit-width
unused. This phenomenon is especially conspicuous for large
bit-width combinations, since the available packing choices
are more limited. Therefore, we propose using Operand Sep-
aration to alleviate it.

The basic idea is to split a high bit-width operand (weight
or activation) into two low bit-width counterparts. Take Filter
Packing as an example. Following Eq. 5, a wb-bit filter f [k]
can be split into a (wb − ⌈wb/2⌉)-bit fH [k] and a (⌈wb/2⌉)-
bit fL[k]. Then, the original polynomial multiplication can
be reformulated as two low bit-width counterparts, and be
separately implemented with two multipliers. Clearly, the
separation halves the number of concurrent multiplications in
one DSP. However, the resulting smaller bit-widths might be
able to occupy input ports more densely, thus might serve to
further enhance multiplication throughput.

c(2pb) =

Kp−1∑
i=0

Np−1∑
j=0

f [i]s[j]2(i+j)pb

=

Kp−1∑
i=0

Np−1∑
j=0

(fH [k]2⌈
wb
2 ⌉ + fL)s[j]2

(i+j)pb

= 2⌈
wb
2 ⌉fH(2pb)s(2pb) + fL(2

pb)s(2pb)

(5)

V. DSP-AWARE QUANTIZATION

Inspired by prior works [14] [19], we mainly leverage the
differentiable NAS technique for hardware-efficient quantiza-
tion of MPNNs. As DSP is usually the resource bottleneck of
NN accelerators on FPGAs [5] [9] [14], it is utilized as the
major hardware metric in the hardware-aware NAS.

Given input model A, a super-net with candidate quanti-
zation branches as shown in Fig. 1 will be generated. Each
branch is assigned an architecture parameter πi to represent
selection probability. The accuracy and hardware evaluation
metrics are then formulated as differentiable functions with re-
spect to these parameters. For inference accuracy, each layer’s
weight and activation candidate branches are weighted by
these selection parameters in propagation such that the mixed
accuracy loss Lossacc(π

w, πa) is calculated. For hardware-
efficiency, to fully exploit the critical DSP resources on
FPGAs, we regard the packed multiplications as one DSP
operation, and propose to use the total DSP operations of
all layers for evaluation, as defined in Eq. 6, where Oplmul,
Ql

w, and Ql
a denote the number of multiplication operations

and quantization bit-widths in the lth layer respectively. To
orchestrate it with the super-net, each layer’s multiplication



throughput lookup table T l
mul is weighted with the correspond-

ing selection probability as shown in Eq. 7. The complexity
loss Losscomp(π

w, πa) is therewith defined as the probability
expectation of the total DSP operations, and is added to
accuracy loss with an adjustable hyper-parameter η for tuning
relative significance as shown in Eq. 9. In back-propagation,
the two loss functions are minimized based on target dataset
until converge or reaching certain epochs, through which the
bit-width selections are consequently optimized. In the end,
the sub-path with highest selection probability is chosen as
the finalized quantization configurations.

Opdsp =

L∑
l=1

Oplmul

T l
mul(w

l
b, a

l
b)

(6)

T l
mul(π

w, πa) =
∑

wb∈Qw

∑
ab∈Qa

πw
i π

a
j T

l
mul(wb, ab) (7)

Losscomp(π
w, πa) =

L∑
l=1

Oplmul

T l
mul(π

w, πa)
(8)

Loss(πw, πa) = Lossacc(π
w, πa)+ηLosscomp(π

w, πa) (9)

VI. ACCELERATOR CUSTOMIZATION

We use HLS to design hardware templates based on our
DSP packing algorithms. After quantization search, the frame-
work will automatically configure the templates and map each
layer as a pipeline stage. Each stage will be assigned Pf l

DSPs to construct a parallel computing array similar with [5].
However, as LUTs can also be efficient computing resources
when bit-width is small [3] [14], our design also provides
an alternative to construct computing arrays with equivalent
LUT arithmetic, but it must satisfy timing constrain. Given
the maximum DSPs Rmax

dsp and LUTs Rmax
lut , we formulate the

accelerator customization problem as Eq. 10. Here, as pipeline
stages are connected through FIFOs, we assume the overall
Worst Negative Slack (WNS) is determined by the worst stage.

To solve above problem, we randomly sample and syn-
thesize a set of possible hardware configurations with our
templates, and pre-train a Bayesian Ridge Regression model
to estimate each stage’s DSPs R̂l

dsp, LUTs R̂l
lut, and WNS

t̂lwns. Next, we propose utilizing dynamic programming to
find the optimal resource allocation, as shown in Algorithm 1.
It employs a three-dimension table to memorize the optimal
pipeline configurations of a sub-problem, and leverages recur-
rence relation to solve a larger sub-problem. Specifically, we
use Lat[l][Rcur

dsp][R
cur
lut ] to represent the minimal latency when

Rcur
dsp DSPs and Rcur

lut LUTs are available for the first l-stage
pipeline of the entire design. If R̂l

dsp out of the Rcur
dsp DSPs

and R̂l
lut out of the Rcur

lut LUTs are allocated for the lth stage,
the recurrence relation can be formulated as Eq. 11. Based
on this, we can search for the optimal solution in bottom-up
fashion. The time complexity of the proposed algorithm only
grows linearly with the depth and resource scale, which means
a thorough design space exploration is completely affordable.

Algorithm 1: Accelerator Customization

1 Initialize all Lat = max{Opldsp} and Config.
2 for l = 1, 2, . . . , L do
3 for Rcur

dsp = 0 to Rmax
dsp do

4 for Rcur
lut = 0 to Rmax

lut do
5 for all possible Pf l do
6 Estimate R̂l

dsp, R̂l
lut, and t̂lwns

7 Latnew = max{Opl
dsp

Pf l , LatPre}
8 C1 = Latnew < Lat[l][Rcur

dsp][R
cur
lut ]

9 C2 = R̂l
dsp ≤ Rcur

dsp & R̂l
lut ≤ Rcur

lut

10 C3 = t̂lwns > 0
11 if C1&C2&C3 then
12 update Lat[l][Rcur

dsp][R
cur
lut ] and

corresponding Config.

13 Return Lat[L][Rmax
dsp ][Rmax

lut ] and Config.

min Lat = max{Latl} = max{
Opldsp
Pf l

}

s.t.

L∑
l=1

Rl
dsp ≤ Rmax

dsp ,

L∑
l=1

Rl
lut ≤ Rmax

lut

min{tlwns} > 0

(10)

Lat[l][Rcur
dsp][R

cur
lut ] = max{

Opldsp
Pf l

, Latpre} (11)

where
Latpre = Lat[l − 1][R̂pre

dsp][R̂
pre
lut ]

R̂pre
dsp = Rcur

dsp − R̂l
dsp

R̂pre
lut = Rcur

lut − R̂l
lut

VII. EXPERIMENT

A. Experiment Setup

We evaluate our framework with two datasets, the single
object detection dataset in Design Automation Conference
System Design Contest (DAC-SDC) [26] and CIFAR-10.
For DAC-SDC, we deploy two commonly-adopted models,
UltraNet [27] and SkyNet [28], with full pipeline structure,
and target the bit-width selection from top-3 teams as the
baseline. In order to fairly compare with previous results, we
retrain and evaluate all models with the same hyper-parameter
on the DAC-SDC public dataset. For CIFAR-10, we adopt a
VGG-alike model (denoted as VGG-Tiny) with 6 convolution
layers and one fully-connected layer, and manually design
the bit-width selection as the baseline. For deployment, we
target an embedded FPGA Ultra96-V2 (with 360 DSPs),
and measure throughput, inference accuracy, utilization, and
energy consumption for evaluation. In experiments, test frames
are loaded into the DDR in advance and are then transferred to
the accelerator by DMA. The throughput and energy consump-
tion during inference are then measured following DAC-SDC



20222. The inference accuracy is calculated with Intersection-
Over-Union (IOU) for DAC-SDC and top-1 accuracy for
CIFAR-10.
B. DSP Packing Efficiency Comparison

We start with our DSP Packing Optimizer. As an illustrative
example, Fig. 4 compares a 3 × 3 kernel’s multiplication
throughput lookup tables that are respectively searched by
HiKonv [10] and our optimizer. As can be seen, our optimizer
achieves higher multiplication throughput in 25 out of the 49
combinations. Furthermore, for 1 × 1 and 5 × 5 kernels, 16
and 27 cases witness throughput improvement respectively. As
for the LUT overhead, we randomly sample and synthesize 30
optimized combinations. The results indicate that only 16.4 ex-
tra LUTs are required on average. These results demonstrates
the effectiveness of our DSP Packing Optimizer in generating
more efficient DSP packing configurations.

2 3 4 5 6 7 8
Activation Bit-width

2
3

4
5

6
7

8
W

ei
gh

t B
it-

w
id

th

15.0 12.0 9.0 6.0 6.0 6.0 3.0

12.0 6.0 6.0 6.0 6.0 3.0 3.0

6.0 6.0 6.0 6.0 6.0 3.0 3.0

6.0 6.0 6.0 6.0 3.0 3.0 2.0

6.0 6.0 4.5 3.0 2.0 2.0 2.0

6.0 4.5 3.0 2.0 2.0 2.0 2.0

3.0 3.0 3.0 2.0 2.0 2.0 2.0

HiKonv

2 3 4 5 6 7 8
Activation Bit-width

15.0 12.0 12.0 9.0 6.0 6.0 6.0

15.0 12.0 7.5 6.0 6.0 6.0 3.0

12.0 6.0 6.0 6.0 6.0 3.0 3.0

7.5 6.0 6.0 6.0 6.0 3.0 3.0

7.5 6.0 6.0 3.0 3.0 3.0 3.0

6.0 6.0 4.5 3.0 3.0 2.2 2.2

6.0 3.0 3.0 3.0 3.0 2.0 2.0

This Work

Fig. 4. DSP packing efficiency comparison for a 3× 3 convolution kernel.

20 25 30 35 40

DSP Operations (M)

71

72

73

74

75

IO
U

This Work
EdMIPS

Fig. 5. DSP-aware NAS results comparison with EdMIPS [19].

C. Bit-width Search Results

1) NAS Comparison: To assess our DSP-aware quantiza-
tion search, we compare it with EdMIPS [19] on UltraNet.
Following Eq. 6, we target DSP operations as the proxy
signal to balance inference accuracy and DSP operations,
while EdMIPS uses the product of activation bit-width and
weight bit-width to formulate computation complexity loss.
Through adjusting hyper-parameter η, different solutions can
be obtained as the relative significance changes, as illustrated
in Fig. 5. Clearly, our method produces a pareto-optimal curve
with respect to both accuracy and DSP operations, which
demonstrates our metrics can effectively direct the NAS to
conduct DSP-aware quantization.

2) Bit-width Selection Comparison: Then, we compare the
searched bit-width settings with the manually crafted counter-
parts in Fig. 6. For UltraNet, we compare with iSmart3 (2nd
in DAC-SDC 2021). They adopt high bit-width in the first

2https://github.com/jgoeders/dac sdc 2022
3https://github.com/jgoeders/dac sdc 2021 designs/tree/main/iSmart

and last layers, and apply 4-bit weight and activation in the
rest layers such that they can leverage one DSP to pack 6
multiplications. Similar quantization scheme is also applied to
VGG-tiny. For SkyNet4, we quantize the weight and activation
to 5 bits and 8 bits by referring to SkrSkr (1st in DAC-SDC
2021), and squeeze two multiplications into one DSP.

The experiment results demonstrate that our NAS can effec-
tively optimize both inference accuracy and DSP operations.
For accuracy, mixed-precision UltraNet, SkyNet, and VGG-
Tiny respectively achieve IOU or top-1 accuracy of 74.29%,
75.44% and 91.36%, while the accuracy of handcrafted de-
signs are 73.37%, 74.85% and 91.45%. Except for a trivial loss
for VGG-Tiny, the other two models witness non-trivial accu-
racy improvement. As for computation complexity, 27.12%,
44.10% and 42.71% of the DSP operations are reduced.

The optimization can be explained as our NAS conducts
a more reasonable bit-width allocation for each layer based
on its sensitivity and computation complexity. The second
and third layer of UltraNet dominate nearly 60% of the
overall MACs. Hence, our NAS adopts ultra-low bit-width
combinations to pack 12 multiplications onto one DSP block,
and in the meanwhile, increases the bit-widths in behind layers
to counteract the accuracy loss. SkyNet mainly consist of six
stacked bundles of depth-wise and point-wise convolution.
Due to the huge complexity dichotomy between these two
types of operators, larger bit-width is preferred for depth-wise
convolution. In addition, unlike SkrSkr that uniformly applies
larger bit-width to activation than weights, our NAS takes the
opposite strategy in several layers. For VGG-Tiny, our NAS
nearly choose lower bit-width for every middle layer. This
means we underestimate model’s tolerance to quantization
when manually designing the bit-width settings.
D. Deployment Results

Then, we deploy these models at different resources con-
strains to separately compare utilization and throughput. We
firstly allocate DSPs as many as possible to deploy the
manually crafted models at their highest throughput (MC-HP)
that can be supported by the platform. Next, for evaluating
utilization, we deliberately reduce the available DSPs to deploy
our MPNNs at the nearest throughput (Mix-BP) with the
corresponding baselines. Finally, we allow our framework to
maximize DSP allocation (Mix-HP). Additionally, we also
enable LUT-replacement (Mix-LUT) to further improve per-
formace. All deployment results are summarized in Table I.

As can be observed, due to the reduced DSP operations,
our mixed-precision models demand less parallel factors to
achieve the same FPS. Compared with MC-HP, Mix-BP im-
plementations theoretically reduce 72 (26.9%), 70 (41.7%) and
96 (36.5%) parallel factors respectively. Since DSPs can be
mapped to other logic (e.g. batch normalization) as well, the
final DSP savings are 100 (29.5%), 49 (21.5 %), and 100 (36.0
%). In terms of throughput, Mix-HP implementations achieve
1.59×, 1.71× and 1.97× speedup. For UltraNet and VGG-
Tiny, the highest throughput is restricted by the available DSP

4https://github.com/jgoeders/dac sdc 2021 designs/tree/main/SkrSkr

https://github.com/jgoeders/dac_sdc_2022
https://github.com/jgoeders/dac_sdc_2021_designs/tree/main/iSmart
https://github.com/jgoeders/dac_sdc_2021_designs/tree/main/SkrSkr


Layer
8

6

4

2

0

2

4

6

8

B
it-

w
id

th

UltraNet Bit-width

Layer
8

6

4

2

0

2

4

6

8

B
it-

w
id

th

VGG-Tiny Bit-width

Layer
8

6

4

2

0

2

4

6

8

B
it-

w
id

th

SkyNet Bit-width

Weight
Activation
MC

Fig. 6. Bit-width selections of our mixed-precision models and manually crafted counterparts (MC).

TABLE I
DEPLOYMENT DETAILS OF THE MIXED-PRECISION MODELS AND MANUALLY CRAFTED COUNTERPARTS.

Backbone Implem. Accuracy Opdsp (M) Pfdsp Pflut DSP kLUT BRAM FPS Power (W)

UltraNet

MC-HP 73.37% 40.78 268 0 339 (94.2%) 38.0 (53.9%) 96.0 (44.4%) 1232.10 1.38
Mix-BP

74.29% 29.72
196 0 239 (66.4%) 38.2 (54.2%) 108.5 (50.2%) 1234.59 1.39

Mix-HP 296 0 332 (92.2%) 44.6 (63.2%) 130.0 (60.2%) 1954.30 1.44
Mix-LUT 264 128 307 (85.3%) 62.0 (87.9%) 160.5 (74.3%) 2534.20 1.53

Skynet

MC-HP 74.85% 200.6 168 0 228 (63.3%) 44.2 (62.6%) 215.0 (99.5%) 193.30 2.99
Mix-BP

75.44% 112.13
98 0 179 (49.7%) 35.8 (50.8%) 210.5 (97.5%) 193.21 2.66

Mix-HP 183 0 273 (75.8%) 40.6 (57.6%) 200.5 (92.8%) 330.93 1.72
Mix-LUT 119 64 209 (58.1%) 43.6 (61.8%) 200.5 (92.8%) 330.92 3.02

Vgg-Tiny

MC-HP 91.45% 25.78 263 0 278 (77.2%) 42.5 (60.2%) 213.5 (98.8%) 2011.55 1.79
Mix-BP

91.36% 14.77
167 0 178 (49.4%) 32.1 (45.6%) 128.0 (59.3%) 2011.29 1.43

Mix-HP 333 0 348 (96.7%) 46.6 (66.0%) 133.5 (61.8%) 3970.87 1.36
Mix-LUT 307 144 340 (94.4%) 62.7 (89.0%) 158.0 (73.0%) 4877.76 1.44

TABLE II
HARDWARE COMPARISON WITH PREVIOUS CO-DESIGN WORKS.

FILM-QNN [29] N3H-Core [30] HAO [3] SEUer [31] This Work
DSP Optimization INT4, INT8 Bit-Parallel INT8 HiKonv Packing Optimizer

Backbone ResNet-50 ResNet-18 Searched UltraNet UltraNet SkyNet VGG-Tiny
Precison 95%W4+5%W8, A5 Mix(2-8) W-mixed, A8 4W4A, 8FL Mix(2-8) Mix(2-8) Mix(2-8)
Platform ZCU102 XC7Z045 ZU3EG

DSP 2092 900 360 337 307 273 340
kLUT 180.1 152.9 55.1 50.2 62.0 40.6 62.7

Frequency(MHz) 150 100 - 250 250 250 250
FPS 109.10 123.2 50.0 2084.6 2534.2 330.9 4877.8

GOPS 891.4 446.8 217.1 828.6 1007.4 263.2 1489.6
GOPS/DSP 0.426 0.50 0.60 2.46 3.28 0.96 4.38

GOPS/kLUT 4.948 2.92 3.94 16.51 16.25 6.48 23.76
Power(W) 12.9 - 5.5 1.6 1.5 1.7 1.4

Energy Efficiency
(GOPS/W) 69.1 - 39.5 533.2 658.8 153.0 1099.6

resources, but our SkyNet designs suffer from lack of BRAMs
which prevents us from utilizing more DSPs. After enabling
LUT-replacement, our framework replaces 128, 64, and 144
DSPs respectively for the three MPNNs. This further boosts
the FPS of UltraNet and VGG-Tiny to 2534.20 and 4877.76.
For SkyNet, while FPS remains the same, we are surprised to
find that power consumption is increased from 1.72 to 3.02 W
after replacing a part of DSPs.

In Table II, we also compare our designs with prior FPGA-
based accelerators that focus on quantization and implemen-
tation co-optimization. FILM-QNN [29] restricts quantization
choices as either W4A5 or W8A5, and respectively applies
INT4 and INT8 for packing optimization. In order to support
flexible bit-widths, N3H-Core [30] implements 4-bit multi-
plication with DSPs, and applies bit-serial LUT-cores for
others. Similarly, HAO [3] leverages INT8 for high-precision
multiplications and LUTs for those under 4-bit. The champion
team of DAC-SDC 22, SEUer [31], adopts the same bit-width
and packing strategy as our UltraNet baseline, but they further
boost the throughput by replacing the high bit-width arithmetic

with LUTs in the first and last layer, which leads to poor
WNS as a result. Based on optimized DSP packing strategies,
DSP-aware bit-width exploration, and fine-grained resource
allocation scheme, our solutions show unparalleled throughput
and arithmetic intensity compared with these designs.

VIII. CONCLUSION

In this paper, we present a framework to co-optimize the
implementation and quantization of MPNNs on FPGAs. We
further optimize the state-of-the-art DSP packing algorithms
to support efficient implementation of arbitrary-precision con-
volution arithmetic. Then, we leverage differentiable NAS for
automatically crafting bit-width settings based on a compre-
hensive assessment of accuracy and DSP operations. Finally,
with our fine-grained resources allocation scheme, pipelined
accelerators are customized according to specific resource re-
quirements. According to our experiment results, our solutions
reveal superior accuracy, resource utilization, and throughput,
compared with manually crafted solutions and other related
designs.



REFERENCES

[1] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” CoRR, vol. abs/1606.06160, 2016. [Online]. Available:
http://arxiv.org/abs/1606.06160

[2] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[3] Z. Dong, Y. Gao, Q. Huang, J. Wawrzynek, H. K. So, and K. Keutzer,
“Hao: Hardware-aware neural architecture optimization for efficient
inference,” in 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2021, pp.
50–59.

[4] C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and D. Z. Pan, “Mixed
precision neural architecture search for energy efficient deep learning,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2019, pp. 1–7.

[5] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and
D. Chen, “Dnnbuilder: an automated tool for building high-performance
dnn hardware accelerators for fpgas,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[6] X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W.-M. Hwu, and
D. Chen, “Dnnexplorer: A framework for modeling and exploring a
novel paradigm of fpga-based dnn accelerator,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–9.

[7] Xilinx, “Ultrascale architecture dsp slice,” 2021. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp

[8] Intel, “Intel® arria® 10 native fixed point dsp ip core user guide,” 2017.
[Online]. Available: https://www.intel.com/content/www/us/en/docs/
programmable/683583/current/intel-arria-native-fixed-point-dsp-ip.html

[9] J. Sommer, M. A. Özkan, O. Keszocze, and J. Teich, “Dsp-packing:
Squeezing low-precision arithmetic into fpga dsp blocks,” in 2022 32nd
International Conference on Field-Programmable Logic and Applica-
tions (FPL), 2022, pp. 160–166.

[10] X. Liu, Y. Chen, P. Ganesh, J. Pan, J. Xiong, and D. Chen, “Hikonv: High
throughput quantized convolution with novel bit-wise management and
computation,” in 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2022, pp. 140–146.

[11] Xilinx, “Convolutional neural network with int4 optimization on xilinx
devices,” 2020. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
wp521-4bit-optimization

[12] ——, “Deep learning with int8 optimization on xilinx
devices,” 2017. [Online]. Available: https://docs.xilinx.com/v/u/en-US/
wp486-deep-learning-int8

[13] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 8604–8612.

[14] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and
D. Chen, “Edd: Efficient differentiable dnn architecture and implemen-
tation co-search for embedded ai solutions,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[15] L. Yang and Q. Jin, “Fracbits: Mixed precision quantization via frac-
tional bit-widths,” in AAAI Conference on Artificial Intelligence, 2020.

[16] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train
one network and specialize it for efficient deployment,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://arxiv.org/pdf/1908.09791.pdf

[17] H. Bai, M. Cao, P. Huang, and J. Shan, “Batchquant: Quantized-for-all
architecture search with robust quantizer,” in NeurIPS, 2021. [Online].
Available: https://arxiv.org/pdf/2105.08952.pdf

[18] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J. A. Garcia,
S. Tiedemann, T. Kemp, and A. Nakamura, “Mixed precision dnns: All
you need is a good parametrization,” in International Conference on
Learning Representations, 2019.

[19] Z. Cai and N. Vasconcelos, “Rethinking differentiable search for mixed-
precision neural networks,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 2346–2355.

[20] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani,
“Efficient design space exploration for sparse mixed precision neural
architectures,” in Proceedings of the 31st International Symposium on

High-Performance Parallel and Distributed Computing, ser. HPDC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
265–276. [Online]. Available: https://doi.org/10.1145/3502181.3531463

[21] W. Chen, Y. Wang, S. Yang, C. Liu, and L. Zhang, “You only search
once: A fast automation framework for single-stage dnn/accelerator co-
design,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1283–1286.

[22] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
10 726–10 734.

[23] Y. Zhang, B. Sun, W. Jiang, Y. Ha, M. Hu, and W. Zhao, “Wsq-
addernet: Efficient weight standardization based quantized addernet
fpga accelerator design with high-density int8 dsp-lut co-packing
optimization,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, ser. ICCAD ’22. New York,
NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3508352.3549439

[24] A. Samajdar, T. Garg, T. Krishna, and N. Kapre, “Scaling the cascades:
Interconnect-aware fpga implementation of machine learning problems,”
in 2019 29th International Conference on Field Programmable Logic
and Applications (FPL), 2019, pp. 342–349.

[25] R. Shi, Y. Ding, X. Wei, H. Li, H. Liu, H. K.-H. So, and C. Ding, “Ftdl:
A tailored fpga-overlay for deep learning with high scalability,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[26] X. Xu, X. Zhang, B. Yu, X. S. Hu, C. Rowen, J. Hu, and Y. Shi, “Dac-
sdc low power object detection challenge for uav applications,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 2, pp. 392–403, 2021.

[27] K. Zhan, J. Guo, B. Song, W. Zhang, and Z. Bao, “Ultranet : A
fpga-based object detection for the dac-sdc 2020,” 2020. [Online].
Available: https://github.com/heheda365/ultra net

[28] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,
T. Huang, H. Shi, W.-m. Hwu, and D. Chen, “SkyNet: a hardware-
efficient method for object detection and tracking on embedded sys-
tems,” in Conference on Machine Learning and Systems (MLSys), 2020.

[29] M. Sun, Z. Li, A. Lu, Y. Li, S.-E. Chang, X. Ma, X. Lin, and
Z. Fang, “Film-qnn: Efficient fpga acceleration of deep neural networks
with intra-layer, mixed-precision quantization,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 134–145. [Online]. Available:
https://doi.org/10.1145/3490422.3502364

[30] Y. Gong, Z. Xu, Z. He, W. Zhang, X. Tu, X. Liang, and
L. Jiang, “N3h-core: Neuron-designed neural network accelerator via
fpga-based heterogeneous computing cores,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 112–122. [Online]. Available:
https://doi.org/10.1145/3490422.3502367

[31] J. Zhang, X. Cao, Y. Zhang, G. Li, and M. Zhang, “Seuer :
Dac-sdc 2022 champion,” 2022. [Online]. Available: https://github.com/
AiArtisan/dac sdc 2022 champion

http://arxiv.org/abs/1606.06160
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://www.intel.com/content/www/us/en/docs/programmable/683583/current/intel-arria-native-fixed-point-dsp-ip.html
https://www.intel.com/content/www/us/en/docs/programmable/683583/current/intel-arria-native-fixed-point-dsp-ip.html
https://docs.xilinx.com/v/u/en-US/wp521-4bit-optimization
https://docs.xilinx.com/v/u/en-US/wp521-4bit-optimization
https://docs.xilinx.com/v/u/en-US/wp486-deep-learning-int8
https://docs.xilinx.com/v/u/en-US/wp486-deep-learning-int8
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/2105.08952.pdf
https://doi.org/10.1145/3502181.3531463
https://doi.org/10.1145/3508352.3549439
https://github.com/heheda365/ultra_net
https://doi.org/10.1145/3490422.3502364
https://doi.org/10.1145/3490422.3502367
https://github.com/AiArtisan/dac_sdc_2022_champion
https://github.com/AiArtisan/dac_sdc_2022_champion

	Introduction
	Related Work
	MPNN Accelerator Design Framework
	DSP Packing Optimizer
	DSP Packing Strategies
	Kernel Packing
	Filter Packing
	Mixed Packing

	Packing Enhancement
	1-bit Overpacking
	Operand Separation


	DSP-aware Quantization
	Accelerator Customization
	Experiment
	Experiment Setup
	DSP Packing Efficiency Comparison
	Bit-width Search Results
	NAS Comparison
	Bit-width Selection Comparison

	Deployment Results

	Conclusion
	References

