
KyberMat: Efficient Accelerator for Matrix-Vector Polynomial
Multiplication in CRYSTALS-Kyber Scheme via NTT and

Polyphase Decomposition
Weihang Tan⋆, Yingjie Lao†, and Keshab K. Parhi⋆

⋆Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
†Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA

wtan@umn.edu, ylao@clemson.edu, parhi@umn.edu

Abstract—CRYSTAL-Kyber (Kyber) is one of the post-quantum cryp-
tography (PQC) key-encapsulation mechanism (KEM) schemes selected
during the standardization process. This paper addresses optimization for
Kyber architecture with respect to latency and throughput constraints.
Specifically, matrix-vector multiplication and number theoretic transform
(NTT)-based polynomial multiplication are critical operations and bottle-
necks that require optimization. To address this challenge, we propose an
algorithm and hardware co-design approach to systematically optimize
matrix-vector multiplication and NTT-based polynomial multiplication
by employing a novel sub-structure sharing technique in order to reduce
computational complexity, i.e., the number of modular multiplications
and modular additions/subtractions consumed. The sub-structure sharing
approach is inspired by prior fast parallel approaches based on polyphase
decomposition. The proposed efficient feed-forward architecture achieves
high speed, low latency, and full utilization of all hardware components,
which can significantly enhance the overall efficiency of the Kyber scheme.
The FPGA implementation results show that our proposed design, using
the fast two-parallel structure, leads to an approximate reduction of 90%
in execution time (µs), along with a 66× improvement in throughput
performance.

Index Terms—Post-quantum Cryptography, CRYSTALS-Kyber,
Lattice-based Cryptography, Number Theoretic Transform, Matrix-
Vector Multiplication, Fast Parallel Filter, Polyphase Decomposition,
Sub-structure Sharing

I. INTRODUCTION

As part of the post-quantum cryptography (PQC) initiative, the
NIST has identified and chosen the CRYSTALS-Kyber (Kyber)
scheme as one of the recommended public-key encryption (PKE)
and key-encapsulation mechanism (KEM) algorithm in 2022 [1].

Kyber is derived from the learning with errors (LWE) prob-
lem [2] that belongs to lattice-based cryptography. However, unlike
other lattice-based cryptography schemes, the computational prob-
lem utilized in Kyber is module-learning with errors (M-LWE) [3]
which requires matrix-vector and vector-vector polynomial (mod-
ular) multiplications. As the entries in the matrices and vectors
are polynomials over the ring, all the polynomials are converted
to their number theoretic transform (NTT)-domain representation to
reduce the complexity when performing entry-entry multiplication. In
addition, the latest Kyber scheme employs a special parameter setting
that requires polyphase decomposition before performing the NTT-
based polynomial multiplication, which results in a more complicated
implementation [1].

In fact, the integration of polyphase decomposition, fast filter-
ing, NTT-based polynomial multiplication, sub-structure sharing, and
matrix-vector polynomial multiplication in Kyber presents notable
implementation and scheduling challenges not only for the algorithm
but also for the hardware design. This paper presents a novel approach
focused on co-designing hardware and algorithm for matrix-vector
polynomial multiplication and NTT-based polynomial multiplication

in Kyber. We propose a novel algorithm that leverages the sub-
structure sharing technique [4], [5] for matrix-vector polynomial
multiplication in the NTT-domain.

Based on the algorithmic optimization, an efficient hardware ar-
chitecture design, KyberMat, for Kyber matrix-vector polynomial
multiplication using the NTT algorithm is presented. Due to the large
data size in the Kyber, it becomes imperative for hardware architec-
tures to exhibit fast data processing, efficient communication, and
minimize data movement to memory. Consequently, the development
of a high-throughput hardware implementation becomes crucial in
order to enable the swift execution of computations and handle greater
number of data sequences within a given accelerator. In addition, the
proposed KyberMat accelerator uses feed-forward architecture with
only one direction from input to output and is pipelined through
different stages to ensure a short critical path. KyberMat accelerator
achieves a high-speed, real-time, and high-throughput performance.

The contributions of this paper are summarized as follows:

• We point out the connection between fast parallel finite impulse
response (FIR) filter [5]–[7] and point-wise multiplication of
polynomials in NTT-domain. This enables us to use higher-
level parallelism, such as four- or eight-parallel, and different
types of fast FIR filters. For example, prior work was limited
to only specific two-parallel FIR structures in the context of a
single polynomial modular multiplication [8]–[10], as opposed
to matrix-vector multiplication of polynomials.

• This paper presents novel sub-structure sharing [4], [5] ap-
proaches for point-wise multiplication in matrix-vector polyno-
mial multiplication based on original-form and transpose-form
fast FIR filters. The use of sub-structure sharing is the key to
reduce the number of modular multiplications and additions.

• We present a novel and efficient algorithm for the matrix-vector
polynomial multiplication for Kyber, which reduces the number
of modular multiplications and additions required, compared to
previous optimizations. To the best of our knowledge, this work
is the first to systematically explore optimizations for matrix-
vector multiplication in the NTT-domain for the Kyber scheme.

• Furthermore, the parallelism of the architecture can be arbitrary;
this will lower the latency and increase throughput at the expense
of an increase in hardware. These architectures are ideal for
cloud computing.

• Our experimental results demonstrate that the proposed Kyber-
Mat significantly enhances both execution time (measured in
µs) and throughput performance over existing state-of-the-art
designs.

The rest of this paper is structured as follows. Section II pro-
vides a brief overview of the Kyber scheme along with the related

ar
X

iv
:2

31
0.

04
61

8v
1

 [
cs

.C
R

]
 6

 O
ct

 2
02

3

hardware architectures and algorithms in previous works. Section III
presents the insight into the relationship between parallel FIR filter
structure and NTT-based polynomial multiplication using polyphase
decomposition. Section IV describes the proposed novel and efficient
algorithm-hardware co-optimized KyberMat architecture. Section V
presents the performance analysis of the proposed architecture, with
detailed comparisons to previous works. Finally, Section VI con-
cludes the paper.

II. BACKGROUND

A. Notation and parameter space

In this paper, the single polynomial over the ring Rq = Zq/(x
n +

1) is denoted as a(x). The bold symbols represent the polynomial
vector, a ∈ Rk

q and polynomial matrix A ∈ Rk×k
q , whose entries

are polynomials. The notations aT and â denote the transpose of the
matrix (or vector) and the NTT-domain representation of the vari-
able, respectively, and ◦ symbol represents point-wise multiplication
between two polynomials.

B. Kyber scheme

The Kyber scheme is a secure KEM that is indistinguishable under
chosen-ciphertext attack (IND-CCA) and consists of three algorithms:
key generation (KeyGen), encapsulation (Encaps), and decapsulation
(Decaps) [1]. It is primarily described as an indistinguishable under
chosen-plaintext attack (IND-CPA) security public-key encryption
(PKE) scheme, which can be further transformed into the IND-CCA
secure KEM using the Fujisaki-Okamoto transform [11].

Kyber provides three different security levels, i.e., Kyber-512,
Kyber-768, and Kyber-1024, to satisfy NIST security levels 1, 3,
and 5, respectively. To scale the security level for the Kyber scheme,
we only require to change the module dimension k in k = 2, 3, and
4 with multiple fixed length-n polynomials over the ring Rq .

The central component of the Kyber scheme is the M-LWE
sample, which requires computations over vector and matrix [1], [12].
Specifically, the Encaps algorithm generates two M-LWE samples
u ∈ Rk

q . For example,

u = ATr + e1, (1)

where A ∈ Rk×k
q and r ∈ Rk

q are the random matrix and vector,
respectively. e1 ∈ Rk

q is the noisy vector, sampled from the centered
binomial distribution (CBD) [1].

C. Matrix-vector polynomial multiplication in Kyber scheme

The operations required to perform on M-LWE samplers involve
polynomial-based computations on matrices and vectors (module).
The core operations and bottlenecks are matrix-vector and vector-
vector polynomial multiplications since they involve polynomial
modular multiplication and polynomial modular addition. The Kyber
scheme incorporates the NTT-domain representation into its definition
to reduce the computational complexity of polynomial modular mul-
tiplication. In particular, the random matrix A is naturally sampled
in the NTT-domain as Â, and the keys are also stored in the NTT-
domain.

To efficiently perform entry-entry multiplications in Equation (1),
NTT-based polynomial multiplication is used. This operation requires
an NTT computation for the random vector r, which is represented
as r̂ = NTT(r).

In general, the process of NTT-based polynomial multiplication
involves converting the polynomials to their corresponding NTT-
domain representations. These representations enable point-wise mul-
tiplication to generate the NTT-domain polynomial. The resulting

polynomial is then transformed back to the original algebraic domain
using an inverse NTT (iNTT) computation to obtain the polynomial
product [13].

By using the NTT-domain representation, Equation (1) can be re-
represented as

u = iNTT(ÂT · NTT(r)) + e1. (2)

The NTT-domain matrix-vector polynomial multiplication in Equa-
tion (2) plays a critical role in the Kyber scheme due to its dominance
with respect to the number of modular (integer) multiplications.
Hence, optimizing these computationally intensive operations in
hardware can significantly improve the performance of the Kyber
scheme.

D. Prior optimizations for Kyber scheme

The latest version of the Kyber scheme chooses a new prime q =
3329, which does not satisfy q ≡ 1 mod 2n when n = 256. As a
result, the NTT-based polynomial multiplication requires a polyphase
decomposition, where the NTT computations rely on 128-point and a
subsequent complex point-wise multiplication as presented in [1] and
1PtNTT algorithm detailed in [8]. The prior hardware accelerations
for Kyber [9], [14]–[16] apply the polyphase decomposition before
NTT computation, which then requires several rounds of 128-point
NTT computation.

The prior work presented in [9] and 1IPtNTT algorithm described
in [10] exploit fast convolution concepts to reduce the number of
modular multiplications during point-wise multiplication, which is
similar to the original fast filtering algorithm [5]. This method is
subsequently adopted in later designs as in [14], [15]. However,
these previous studies exclusively focus on optimizing NTT-based
polynomial multiplication utilizing polyphase decomposition for a
two-parallel design only. They do not concurrently take into account
the optimization of matrix-vector polynomial multiplication in the
Kyber scheme, thereby leaving unexplored design space that can
further reduce computational complexity.

The paper points out the connection between fast FIR filter and
point-wise multiplication in NTT-domain. This allows the use of
higher-level parallelism such as four-parallel or eight-parallel in
polynomial multiplication. Then the paper considers matrix-vector
polynomial multiplication and proposes novel sub-structure sharing
to further reduce the number of multiplications for point-wise multi-
plication. Sub-structure sharing has been used both at the algorithm
level [5], [17] and at the hardware level [4], [5]. Sub-structure sharing
leads to significant reduction in the complexity of the proposed
architectures.

III. RELATIONSHIP BETWEEN PARALLEL FIR FILTER

STRUCTURE AND POLYNOMIAL MODULAR MULTIPLICATION

USING NTT AND POLYPHASE DECOMPOSITION

The FIR filter is one of the important elements in digital signal
processing. The FIR filter is also applied to perform the convolution
on a digital signal with a finite number of taps. Efficient hardware
and software implementations of the FIR filter have been widely
studied [18]–[21]. In particular, the fast filtering algorithm and its
structure (i.e., fast filtering structure) have been used to increase the
parallelism and reduce complexity, ultimately improving throughput
performance [5]. Fast filtering structures, as represented in Fig. 1(a)
and Fig. 1(c), exhibit the same computational complexity [5]. How-
ever, they differ in the data flow. Fig. 1(a) displays the original
fast filtering structure, while Fig. 1(c) demonstrates its equivalent
transposed structure.

Pre-computed
NTT(0,1,0,…,0,0)

NTT

NTT

iNTT

iNTT

NTT NTT

Pre-computed
NTT(0,1,0,…,0,0)

NTT

NTT

iNTT

iNTT

D D

(a) (c)(b) (d)

: Modular Adder
: Modular Multiplier

: Integer Adder
: Sub-filter

_

_

_

_

_
_

_
_

Fig. 1. Data-flow graph for two-parallel fast filtering structure and NTT-based polynomial multiplication using polyphase decomposition. (a) Original
two-parallel fast filtering structure. (b) NTT-based polynomial multiplication using original parallel fast filtering structure. (c) Transposed two-parallel
fast filtering structure. (d) NTT-based polynomial multiplication using transposed parallel fast filtering structure.

_

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

NTT

NTT

NTT

NTT

iNTT

iNTT

iNTT

iNTT

D

D

D

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

iNTT

iNTT

iNTT

iNTT

D

D

D

NTT

NTT

NTT

NTT

(a)

(c)

(b)

(d)

_
_

_
_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

Fig. 2. Data-flow graph for four-parallel fast filtering structure and NTT-based polynomial multiplication using polyphase decomposition. (a) Original
four-parallel fast filtering structure. (b) NTT-based multiplication using original parallel fast filtering structure. (c) Transposed four-parallel fast filtering
structure. (d) NTT-based multiplication using transposed parallel fast filtering structure.

The process of computing the fast filtering algorithm Y (z) =
H(z)X(z) first involves the polyphase decomposition [18]. The
input sequence x[0], x[1], x[2], · · · is initially represented as X(z) =
x[0] + x[1]z−1 + x[2]z−2 + · · · in the z-domain, which then exe-
cutes the polyphase decomposition X(z) = X0(z

2)+X1(z
2) · z−1,

where X0(z
2) and X1(z

2) are Z-transforms of the even indexed-
terms (x[2l]) and odd indexed-terms (x[2l + 1]), respectively. The
filter coefficients H(z) undergo a similar polyphase decomposition
to obtain H0(z

2) and H1(z
2).

The outputs of the fast filtering algorithm are expressed as:

Y0(z
2) = X0(z

2)H0(z
2) + z−2X1(z

2)H1(z
2) (3)

Y1(z
2) = X0(z

2)H1(z
2) +X1(z

2)H0(z
2)

=
(
H0(z

2) +H1(z
2)
) (

X0(z
2) +X1(z

2)
)

−X0(z
2)H0(z

2)−X1(z
2)H1(z

2), (4)

where Y (z) = Y0(z
2) + Y1(z

2) · z−1.

Such operation involves three length-n
2

point-wise multiplications
and five length-n

2
point-wise additions/subtractions, as illustrated in

Fig. 1(a) and Fig. 1(c). The delay element boxed in green plays the
role of multiplication with z−2 in a two-parallel architecture. The fast
filter approach has been exploited to reduce the number of operations
in the polynomial modular multiplication in the time domain [22].
In this context, the delay element in the fast filter is equivalent to
multiplication by x2.

The focus of this paper is the use of fast filter approaches to
reduce the number of multiplications in the frequency domain. Here
the polynomial modular multiplication is described in the frequency
domain first. For a general polynomial modular multiplication p(x) =
r(x) · a(x) mod (xn + 1), its NTT representation is defined as

p(x) = iNTT (NTT(r(x)) ◦ NTT(a(x)))

= iNTT (r̂(x) ◦ â(x)) . (5)

By leveraging the polyphase decomposition and fast filtering algo-
rithm for the NTT-based polynomial multiplication, the Equation (3)
and Equation (4) can be expressed as

p0(x
2) = iNTT

(
r̂0(x

2) ◦ â0(x
2) + x2 · r̂1(x2) ◦ â1(x

2)
)

(6)

p1(x
2) = iNTT

(
r̂0(x

2) ◦ â1(x
2) + r̂1(x

2) ◦ â0(x
2)
)

= iNTT
((

r̂0(x
2) + r̂1(x

2)
)
◦
(
â0(x

2) + â1(x
2)
)

− r̂0(x
2) ◦ â0(x

2)− r̂1(x
2) ◦ â1(x

2)
)
, (7)

where r̂0(x
2), r̂1(x

2), â0(x
2), and â1(x

2) represent the NTT of
the input polynomials after polyphase decomposition, and p(x) =
p0(x

2) + p1(x
2) · x.

To apply the fast filtering algorithm to NTT-based polynomial
multiplication, this work transforms Fig. 1(a) and Fig. 1(c), into NTT-
based structures in the frequency domain, as shown in Fig. 1(b) and

Fig. 1(d). However, directly utilizing the delay element in the time
domain to represent multiplication by x2 is not feasible in the NTT-
domain. Instead, a point-wise multiplication with a pre-computed
constant set, NTT(x2), of length n

2
is utilized. It may be noted that

the structure in Fig. 1(c) is equivalent to the structure referred to
as 1IPtNTT algorithm in in [10] and optimized algorithm in [9].
Higher-level parallelism can also be used. For example, Fig. 2(a) and
Fig. 2(c) present the fast four-parallel structures for efficient FIR filter
design in [7]. Note that equivalent fast structures based on sub-filters
(H0 − H1) can also be used instead of (H0 + H1) [5].

IV. ALGORITHM-HARDWARE CO-OPTIMIZED KYBERMAT

ARCHITECTURE

To employ the NTT algorithm and polyphase decomposition for
polynomial modular multiplication for the Kyber scheme, the earlier
studies utilized the traditional two-parallel FIR filter implementation
for the matrix-vector polynomial multiplication in NTT-domain [1],
[8]. To minimize the number of modular multiplication in the point-
wise multiplication, additional optimizations reduced the five length-
n
2

point-wise multiplications down to four for each entry-entry
multiplication [9], [10]. A data-flow graph, based on an example
when k = 2 from [9], and derived from Fig. 1(b), is shown in
Fig. 3(a). Its equivalent transposed structure is depicted in Fig. 3(c).
However, all of these prior optimizations still necessitate executing
length-n

2
point-wise multiplication with NTT(x2) for each entry-

entry multiplication, leading to k2 such operations in total for a single
matrix-vector polynomial multiplication.

Different from these prior works, this paper proposes the Ky-
berMat architecture, a novel and efficient algorithm and hardware
co-optimization for matrix-vector polynomial multiplication in the
Kyber scheme. In this section, we first use the transposed structure
(Fig. 3(c)) as a baseline example design to demonstrate our opti-
mization by utilizing the sub-structure sharing technique to reduce
computational complexity. Subsequently, we extend and generalize
this optimization to the original structure (Fig. 1(a)). We also show
different fast filtering algorithms and structures that can be utilized
to realize various benefits. Finally, a low-latency architecture design
for KyberMat is presented. It is important to note that the use of sub-
structure sharing in the fast NTT structures is the key to achieving
hardware savings in the proposed KyberMat architecture. The sub-
structure sharing is achieved in a natural way in the fast transpose
structure and after applying distributivity and associativity in the
original fast structure.

A. Efficient algorithm of KyberMat using transposed two-parallel fast
filtering structure

The proposed algorithm for KyberMat to compute p = ATr ∈ Rk
q

is illustrated in Algorithm 1, which consists of three stages: (i) pre-
processing for the input matrix and vector (Lines 1-8), (ii) efficient
point-wise multiplication in NTT-domain (Lines 9-11), and (iii) post-
processing (Lines 12-18). Fig. 4 shows the overview and an example
for our proposed algorithm when k = 2.

The first step required in matrix-vector polynomial multiplication
in Equation (2) is the NTT computation for polynomial-based entries
in vector r. As required by Kyber, each polynomial inside the
vector initially undergoes a polyphase decomposition. Note that after
polyphase decomposition, each entry in the matrix or vector becomes
a vector with two polynomials, i.e., ri = [ri,e(x

2), ri,o(x
2)]T , for

i ∈ [0, k − 1], as elaborated in Fig. 4 Step ❶.
To perform the entry-entry multiplication in the NTT-domain, two

128-point NTT computations are required for each entry (Fig. 4

Algorithm 1 Efficient Matrix-Vector Polynomial Multiplication
for Kyber

Input: ÂT and r
Output: p = ATr ∈ Rk

q

1: for i = 0 to k − 1 do
2: ri(x) = ri,e(x

2) + ri,o(x
2) · x

3: r̂i,e = NTT(ri,e(x2)); r̂i,o = NTT(ri,o(x2))
4: fi,{0,1,2} = {r̂i,o − r̂i,e, r̂i,e, r̂i,o ◦ NTT(x2)− r̂i,e}
5: for i = 0 to k − 1 do
6: for j = 0 to k − 1 do
7: âij = âij,e + âij,o · x
8: gij,{0,1,2} = {âij,e, âij,e + âij,o, âij,o}
9: for i = 0 to k − 1 do

10: for j = 0 to k − 1 do
11: βij,{0,1,2} = gji,{0,1,2} ◦ fi,{0,1,2}
12: for i = 0 to k − 1 do
13: for j = 0 to k − 1 do
14: sumi,{0,1,2} = sumi,{0,1,2} + βij,{0,1,2}
15: for i = 0 to k − 1 do
16: p̂i,e = sumi,1 + sumi,2; p̂i,o = sumi,1 + sumi,0

17: pi,e(x
2) = iNTT(p̂i,e); pi,o(x2) = iNTT(p̂i,o)

18: pi(x) = pi,e(x
2) + pi,o(x

2) · x

Step ❷). Since matrix ÂT is naturally in NTT representation after
sampling, no NTT computation is required. Nevertheless, each entry
âij(x) in the matrix has to perform the polyphase decomposition, i.e.,
âij = [âij,e(x

2), âij,o(x
2)]T , j ∈ [0, k−1], so all the coefficients in

even indexed-terms and odd indexed-terms polynomials are aligned
when executing the point-wise multiplication.

As described in Fig. 4 Step ❸ and outlined in Line 4 of Algo-
rithm 1, each vector r̂i, i ∈ [0, k−1] is transformed into a new vector
fi = [fi,0, fi,1, fi,2] ∈ R3

n/2 with three length-n
2

polynomials. In a
similar fashion, each âij , i ∈ [0, k − 1], j ∈ [0, k − 1] is redefined
as gij = [gij,0, gij,1, gij,2] ∈ R3

n/2, as illustrated in Lines 5-8 in
Algorithm 1 and Fig. 4 Step ❹.

After the pre-processing stage, a total of 3k2 point-wise multipli-
cations are executed for the polynomials in fi and gji, i, j,∈ [0,−k].
As a result, 3k2 intermediate products βij are produced, as illustrated
in Fig. 4 Step ❺ (Lines 9-11 in Algorithm 1). As Â is transposed
before the matrix-vector polynomial multiplication in Equation (2),
fi is multiplied by gji instead of gij .

The post-processing stage, presented in Lines 12-16 in Algorithm 1
and Fig. 4 Step ❻, only requires computing the sum of βij in each
row by additions. Subsequently, these sums are combined to form
p̂i,e(x

2) and p̂i,o(x
2), i ∈ [0, k − 1].

The corresponding data-flow graph for Algorithm 1 is shown in
Fig. 3(d), which demonstrates a significant reduction in the required
number of components compared to the data-flow graph depicted
in Fig. 3(c) having the same functionality. The optimization of our
proposed algorithm relies on the sub-structure sharing technique,
which can be explained as follows.

The prior literature requires multiplications with NTT(x2) in each
entry-entry multiplication, thereby resulting in k2 length-n

2
point-

wise multiplications [14]–[16], [23], [24]. However, this approach
does not integrate steps across different levels. Further optimization
could be achieved by minimizing the repetitive computations that are
shared across different operational levels, such as matrix-vector mul-
tiplication and NTT-based polynomial multiplication using polyphase
decomposition. The proposed optimized algorithm, however, employs

(After using sub-structure
sharing technique)

Pre-computed
NTT(0,1,0,…,0,0)

_

Pre-computed
NTT(0,1,0,…,0,0)

_

Pre-computed
NTT(0,1,0,…,0,0)

_

Pre-computed
NTT(0,1,0,…,0,0)

_

NTT iNTT

_

_

_

_

(a) (c)

_

_

Pre-computed
NTT(0,1,0,…,0,0)

_

Pre-computed
NTT(0,1,0,…,0,0)

_

_

Pre-computed
NTT(0,1,0,…,0,0)

_

_

Pre-computed
NTT(0,1,0,…,0,0)

_

_

_

_

(d)

_

_

_

_

(b)
(After using sub-structure

sharing technique)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Fig. 3. Data-flow diagram illustrating the matrix-vector polynomial multiplication algorithm for the Kyber scheme using NTT and polyphase
decomposition when k = 2 using fast two-parallel structure (NTT/iNTT computations at the top are omitted for simplicity). (a) Original form
structure before our optimization. (b) Original form structure with sub-structure sharing. (c) Transposed form structure before our optimization. (d)
Transposed form structure with sub-structure sharing.

: Entry (Initially is
len.-256 polynomial)

: len.-128 polynomial

=

NTT

iNTT

(Convert back to one poly.
with no cost)

Polyphase Decomposition:1

0 Initialization:

NTT comput.:2

Point-wise mult.:5

Post-processing:6 iNTT comput.:7

Compute3 :Compute4 :

Fig. 4. Overview of our proposed efficient algorithm for KyberMat
accelerator design when k = 2.

a sub-structure sharing technique to reduce the number of point-
wise multiplications with NTT(x2) from k2 to k. Furthermore, this
algorithm performs the summation of entry-entry products, βij , prior
to their combination back into two polynomials, to minimize the
number of point-wise additions.

The matrix-vector polynomial multiplication requires the dot-
product in each row of ÂT to multiply with the same r̂. This
algorithm can reduce the total computational cost by increasing the
reuse opportunities for the intermediate results achieved from the ex-
pensive operation. Since the operation of point-wise multiplication is
expensive, this algorithm arranges the multiplications with NTT(x2)
and the vector r̂i in the pre-processing stage by leveraging the
transposition property from the transposed two-parallel fast filtering
structure for the sub-structure sharing. Therefore, fi, i ∈ [0, k − 1]
containing the intermediate result from the expensive operation can
then be shared by the entry-entry multiplication as illustrated in
Fig. 3(d).

The data-flow graph shown in Fig. 3(a) can be optimized to reduce
the number of modular multiplications and additions by applying the
sub-structure sharing, i.e., the sub-structure NTT(x2), and exploiting
distributivity property of multiplication and associativity property of
add operations to utilize the sub-structure sharing technique in our
proposed Algorithm 1. These optimizations allow relocation of point-
wise multiplication with NTT(x2) to occur after the summation of
the intermediate results βij,2 rather than before. This optimization
can be described by:(

β00,0 + NTT(x2)β00,2

)
+

(
β01,0 + NTT(x2)β01,2

)
=(β00,0 + β01,0) + NTT(x2)(β00,2 + β01,2). (8)

This reordering minimizes the total number of expensive point-
wise multiplications. The optimized data-flow graph is presented
in Fig. 3(b), and its computational complexity is same as that of
Fig. 3(d). It is important to note that the sub-structure sharing is
applied in different ways to the original and transpose structures;
however, both designs have the same computational complexity after
applying the sub-structure sharing technique. Both structures can be
used interchangeably.

B. KyberMat using various fast filtering structures and levels of
parallelism

As presented in Section III, matrix-vector polynomial multiplica-
tion using the NTT algorithm can be designed by exploiting various
types of fast filter approaches that are well-known in the signal
processing literature [5]–[7], [25]. The fast filter algorithms are
non-unique. The transpose form of a fast filter structure is another
equivalent fast filter. Higher-length parallel filters can be designed
by either iterating shorter-length filters or by using iterated fast
convolution algorithms followed by post-processing. The reader is
referred to the textbook for a detailed discussion on this topic [5].

We utilize a fast four-parallel (filtering) structure (L = 4) in [7]
as a case study to demonstrate complexity reduction of the four-
parallel polynomial modular multiplication. The data-flow graph
for matrix-vector polynomial multiplication, when k = 2 using
a fast four-parallel transposed structure and sub-structure sharing
technique, is shown in Fig. 5. This example examines our proposed
optimization for enhanced parallelism and higher throughput archi-
tecture due to the expansion of the number of input and output
data-path. Specifically, each polynomial ri(x) is decomposed into
four polynomials of length-64 in the polyphase decomposition step:
ri(x) = ri,0(x

4)+ri,1(x
4) ·x+ri,2(x

4) ·x2+ri,3(x
4) ·x3, denoted

as ri = [ri,0(x
4), ri,1(x

4), ri,2(x
4), ri,3(x

4)]T . Consequently, the
64-point NTT/iNTT computations and length-64 point-wise multipli-
cations can be utilized.

Note that the depicted graph only illustrates the components for
computing p̂0, as the structures for computing p̂0 and p̂1 are similar
in terms of their point-wise multiplication and post-processing stages.
Our proposed sub-structure sharing technique provides a notable ad-
vantage of reduced computational complexity. As the structure’s data-
paths increase, the complexity reduction is achieved by decreasing
the number of required point-wise multiplications and point-wise
additions in each data-path.

...

_

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

_
_

_
_

_

_
_

_
_

_
_

_

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

Pre-computed
NTT(0,1,0,…,0,0)

_
_

_
_

_

_
_

_
_

_
_

A similar structure is used to
compute to

Fig. 5. Data-flow graph for matrix-vector polynomial multiplication when
k = 2 using fast four-parallel transposed structure and sub-structure
sharing technique. Components for computing p̂1 are omitted.

In addition to the reduction of computational complexity, employ-
ing a fast four-parallel structure in the hardware implementation of the

algorithm can also reduce the latency of the system as the parallelism
is increased. Since each component is responsible for only n

4
modular

multiplications, the latency consumption is halved compared to the
fast two-parallel structure.

Significantly, utilizing a fast eight-parallel structure framework
(L = 8) offers further enhancements to both throughput and latency
performance. The application of our sub-structure sharing technique
leads to a substantial reduction in computational complexity. For
example, when employing the structure in [7], the number of point-
wise multiplications with NTT(x2) diminishes from k2(L − 1) to
k(L− 1).

C. Efficient low-latency implementation for KyberMat

This paper uses the data-flow graph in Fig. 3(d) as an exam-
ple to introduce the proposed low-latency design for KyberMat
accelerator. The proposed low-latency design for KyberMat ac-
celerator is illustrated in Fig. 6. The first building block is the
NTT computation module that duplicates 2k 128-point NTT pro-
cessors to convert all the polynomials in r = [r0, r1, · · · , rk−1]
to NTT-domain simultaneously, where ri = [ri,e(x

2), ri,o(x
2)]T .

The NTT/iNTT processors are instantiated by the optimized radix-2
multi-path commutator (R2MDC)-based architecture for NTT/iNTT
computation [26]–[29] reconfigured for Kyber’s parameter setting to
satisfy the design criteria with real-time, multi-channels and feed-
forward architecture. Besides, two input data-paths are used in each
R2MDC-based architecture to increase the accelerator’s throughput,
similar to FFT architectures [30]. Each 128-point NTT processor
structure consists of seven modular multipliers and fourteen modular
adders/subtractors, resulting in 14k modular multipliers and 28k
modular adders/subtractors for the entire NTT computation module.

The next building block is the proposed novel matrix-vector
polynomial multiplication in NTT-domain module, as shown in Fig. 6.
This architecture can compute all the point-wise multiplications
between the polynomials in fi and gji simultaneously. As illustrated
on the right-hand-side in Fig. 6, it maps each length-n

2
point-wise

multiplication and addition in Fig. 3(d) into two modular multipliers
and two modular adders for upper and lower data-paths. As a
result, (6k2 + 2k) modular multipliers and (8k2 + 2k) modular
adders/subtractors are employed in the matrix-vector polynomial
multiplication in NTT-domain module. The hardware consumption in
the iNTT computation module also employs 2k 128-point iNTT pro-
cessors. As a result, the architecture requires 14k modular multipliers
and 56k modular adders/subtractors in total for iNTT computation.

The main advantage of the low-latency architecture design for
KyberMat is the significantly reduced clock cycle consumption and
increased throughput. In contrast to previous works that require a
large number of clock cycles for point-wise multiplication, the low-
latency design parallelizes more modular multipliers in the data-path,
reducing the latency in point-wise multiplication to only a few clock
cycles utilized for pipelining.

V. PERFORMANCE EVALUATION

To make a fair comparison with prior works, we implement the
KyberMat designs using Verilog HDL and then map them to the
AC701 evaluation kit, one of the NIST-recommended Xilinx Artix-7
series FPGAs. The experimental results and comparison are presented
in Fig. 7 and Table I. The prior works [9], [14], [27], [31], [32] are
selected to compare with the proposed low-latency hardware design
based on the same hardware platform and Kyber’s parameter (i.e.,
n = 256, and q = 3329). Two performance metrics, area and timing
performances, are mainly derived in terms of LUTs (look-up tables),

M
at

rix
-V

ec
to

r P
ol

yn
om

ia
l

M
ul

tip
lic

at
io

n
in

 N
TT

-
do

m
ai

n
M

od
ul

eNTT Processor
(Odd)

NTT Processor
(Even)

NTT Processor
(Odd)

NTT Processor
(Even)

iNTT Processor
(Even)

iNTT Processor
(Odd)

iNTT Processor
(Even)

iNTT Processor
(Odd) _

_

Pre-computed
NTT(0,1,0,…,0,0)...

...

Data-Flow Graph

...

_
_

Pre-computed
NTT(0,1,0,…,0,0)...

_
_

Pre-computed
NTT(0,1,0,…,0,0)...

...

Map DFG to
hardware using
multi-channel
architecture

NTT Computation Module iNTT Computation Module

Fig. 6. Top-level architecture of low-latency design for KyberMat when k = 2.

TABLE I. Performance of the proposed KyberMat accelerator design and prior works for Kyber-512 (k = 2, n = 256) in Artix-7 FPGA

Design LUTs (AT2P ×104) FFs DSPs (AT2P ×102) Freq.[MHz] Cycles (µs) TP[Gb/s]
Xing [9] 1737 (68.37) 1167 2 (7.87) 161 3200 (19.84) 0.31
Guo [31] 1549 (16.27) 788 4 (4.12) 159 1614 (10.15) 0.61

Bisheh [14] 720 (121.33) 290 6 (101.11) 115 4721 (41.05) 0.15
Bisheh (Parallel) [14] 1474 (148.57) 580 12 (121.12) 115 3654 (31.77) 0.19

Zhao [27] 25674 (22.34) 3137 64 (5.57) 97.2 287 (2.95) 2.00
Yaman [32] 9508 (54.63) 2684 16 (9.19) 172 1304 (7.58) 0.81

Ours (Two-parallel) 15842 (1.58) 11110 84 (0.84) 222 222 (1.00) 21.31
Ours (Four-parallel) 33712 (1.50) 24302 180 (0.80) 222 148 (0.67) 42.62

FFs (flip-flops), DSPs (digital signal processors), clock frequency,
clock cycles, and throughput.

A. Theoretical analysis and experimental results for KyberMat ac-
celerator in Kyber-512, Kyber-768, and Kyber-1024

Theoretical analysis: The computational complexities of different
security levels, specifically Kyber-512, Kyber-768, and Kyber-1024,
are primarily determined by the dimension of the matrix or vector.

When theoretically analyzing and comparing the computational
complexity for matrix-vector polynomial multiplication in NTT-
domain (i.e., excluding the NTT and iNTT computation), the opti-
mized algorithm reduces the number of modular multiplications and
modular additions/subtractions. Table II presents the computational
complexity analysis for the matrix-vector polynomial multiplication
in NTT-domain from different approaches when using the fast two-
parallel structure.

It shows that the optimized algorithm achieves an average 15.97%
reduction in modular multiplications and a 30.40% reduction in
modular additions, compared to the approach presented in [9], when
k = {2, 3, 4}. Compared to the conventional method of the Kyber
scheme [8], it utilizes 70.57% fewer modular additions, but the opti-
mized algorithm reduces 33.56% modular multiplications. Note that
modular multiplication is much more costly than modular addition.
Hence, the proposed optimization algorithm significantly reduces the
overall computational complexity compared to prior designs.

TABLE II. Computational complexity of matrix-vector polynomial
multiplication (excluding NTT/iNTT) using fast two-parallel structure

Algorithm
ModMult # ModAdd/Sub

(k = 2, n = 256) (k = 2, n = 256)
[9] 2k2n (2048) 7k2n

2
− kn (3072)

[8] 5k2n
2

(2560) k2n− kn (512)
Proposed kn+3k2n

2
(1792) kn+4k2n

2
(2304)

Table III presents the computational complexity analysis for
matrix-vector polynomial multiplication in the NTT-domain using
the fast four-parallel structure, with and without the sub-structure
sharing technique. The results indicate that the proposed technique
leads to an average reduction of 22.43% and 37.17% in the number
of modular multiplications and modular additions/subtractions, re-
spectively, for Kyber-512, Kyber-768, and Kyber-1024 security-level
(k = {2, 3, 4}).

TABLE III. Computational complexity of matrix-vector polynomial
multiplication (excluding NTT/iNTT) using fast four-parallel struc-
ture

Algorithm
ModMult # ModAdd/Sub

(k = 2, n = 256) (k = 2, n = 256)

w.o. Sub-struc. Share 13k2n
4

(3328) (38k2−9k)n
4

(8576)
w. Sub-struc. Share 9k2n+3kn

4
(2688) (4k2 + 4k)n (6144)

FPGA results: Fig. 7 shows the FPGA implementation results
for our KyberMat accelerator in Kyber-512, Kyber-768, and Kyber-
1024. The area consumption and clock frequency for one matrix-
vector polynomial multiplication in the NTT-domain module (i.e.,
excluding the NTT and iNTT computation modules) are separately
presented in Table IV as well. In a cryptosystem, the speed of
the Encaps (encryption) and Decaps (decryption) processes plays
a vital role in determining the usability of the overall application.
Recognizing this critical metric, we prioritize the timing performance
in the designs, distinguishing our approach from previous compact
architecture designs that rely on limited hardware resources. We adopt
a trade-off strategy that involves dedicating more hardware resources
to achieve higher clock frequency, lower clock cycles, and higher
throughput.

Latency and speed analysis: For the timing performance, the
proposed design maintains nearly constant clock cycle consumption
when the security level grows. Since more hardware resources are

devoted, the latency in terms of the clock cycle is reduced, which
can be summarized as

TLat =
n

L
− 2 +Npipe, (9)

where L is the level of parallelism (L = 2 when using the fast two-
parallel structure), and Npipe represents the additional clock cycles
in pipelining stages added to the data-path in order to reduce the
critical path. Note that the latency is considered as the number of
clock cycles elapsed between the first data in and the last data out.
In the proposed implementation, each modular multiplier is pipelined
by five stages (i.e., Npipe = 5). After employing additional pipelining
stages into the data-paths, the critical path only requires 4.4 ns among
Kyber-512, Kyber-768, and Kyber-1024.

Kyber-512 Kyber-768 Kyber-1024
Security Level

80

120

160

200

240

#
 o

f D
SP

84

144

216

220

224

228

232

#
 o

f C
lo

ck
 C

yc
le

s

222
223

224

DSP Consumption
Latency

(a) DSP usage versus clock cycle

Kyber-512 Kyber-768 Kyber-1024
Security Level

19500

26000

32500

39000

#
 o

f L
U

T

15842

24954

36776

220

224

228

232

#
 o

f C
lo

ck
 C

yc
le

s

222
223

224

LUT Consumption
Latency

(b) LUT usage versus clock cycle
Fig. 7. Artix-7 FPGA implementation result for KyberMat accelerator
using two-parallel structure based on different security levels in 222 MHz
clock frequency.

Observation and analysis: Despite utilizing higher numbers of
LUTs, DSPs, and FFs in our proposed designs, the growth trend of
LUTs/DSPs usage follows a linear trajectory, with the overhead in
the number of LUTs or DSPs only increasing by a factor of around
1.59× upon rising to the next higher security level. This is mainly
due to the advantages provided by sub-structure sharing. Notably, the
proposed design still satisfies the hardware resource constraints of the
recommended Artix-7 FPGA. For instance, the proposed low-latency
design for the expensive Kyber-1024 only utilizes 9.08%, 4.17%,
and 13.78% over the total LUTs, FFs, and DSPs resources provided
by the Artix-7 FPGA, respectively, as presented in Fig. 7.

TABLE IV. Area and timing performance for matrix-vector polyno-
mial multiplication (excluding NTT/iNTT) module in Artix-7 FPGA

Security-level LUTs FFs DSPs Freq.[MHz] Npipe

Kyber-512 3526 2996 28 222 12
Kyber-768 6480 6030 60 222 13

Kyber-1024 12144 11158 104 222 14

B. Comparison with prior works

We then discuss the performance of the proposed matrix-vector
polynomial multiplication accelerator designs based on the two-
parallel and four-parallel structures, and compare them with prior
works for the case when Kyber-512 security level (k = 2), as
presented in Table I.

Reduced execution time: Regarding the timing performance, the
proposed low-latency design outperforms other designs in terms
of clock cycles and clock frequency, thus reducing execution time
significantly when compared to prior works. Note that the execution
time is computed as the number of clock cycles divided by frequency,
denoted in microseconds (µs).

The compact designs in the literature, which are memory-based,
often suffer from a communication overhead as all intermediate
results must be read from and written to memory. For example, the
compact design in [9] requires 512, 256, and 576 clock cycles for
NTT computation, point-wise multiplication, and iNTT computation,
respectively, with a clock frequency of 161MHz.

In contrast, our architectures are highly optimized for pipelining,
minimizing the critical path. Consequently, our low-latency design
using a fast two-parallel structure reduces execution time by 89.74%
on average, while using a fast four-parallel structure can further
reduce the average execution time by 93.16%.

High-throughput: In this paper, we uses the block processing time
(BPT) to evaluate the performance of a real-time architecture, defined
as the time to process 256 · k input coefficients or output samples.
Specifically, the BPT for the low-latency design utilizing a fast two-
parallel structure is 64 clock cycles. The BPT is decreased to 32
clock cycles when a fast four-parallel structure is deployed.

Each sample is 12-bit, leading to the total number of input bit-
stream is (256 · k · 12) bits. As the proposed designs operate at a
clock frequency of 222MHz, the throughput in low-latency design
can be calculated as 256·12·k·222

BPT ·103 Gb/s when the system is in steady-
state (i.e., after the first data comes out). This is equivalent to 4k
samples per clock cycle and 8 samples per clock cycle for a fast
two-parallel structure. The throughput of the design using a fast four-
parallel structure is doubled since 16 data-paths are placed in parallel.

However, since the PEs in the prior memory-based designs have
to be reconfigured to execute different operations, no data from the
new input sequence can be loaded in before the entire matrix-vector
polynomial multiplication computation is finished, which thus results
in low throughput. As illustrated in Table I, our low-latency design
using the fast two-parallel structure improves throughput by 65.81
times compared to the prior designs, while the improvement enhances
to 131.63 times when using the fast four-parallel structure.

Furthermore, the low-latency designs using the fast two-parallel
and four-parallel structures outperform the previous works in terms
of throughput per DSP (TPD) and throughput per LUT (TPL). The
results demonstrate an improvement of around 94.05% and 87.34%
in TPL performance, and 87.63% and 73.50% in TPD performance,
respectively, for two- and four-parallel designs.

Hardware cost efficiency analysis: The proposed designs demand
more LUTs, FFs, and DSPs in trading off for speed. For instance,
the proposed low-latency design using the fast two-parallel structure
requires around 55.28% and 78.10% more LUTs and DSPs than
prior works. The LUTs and DSPs consumption overhead increases
to 76.75% and 89.78%, respectively, when using the fast four-parallel
structure. To make a fair comparison between the prior compact
architectures and the proposed designs, this paper also considers
the Area Timing Square Product (AT2P) to jointly evaluate area
performance and timing performance, as speed is more important in
the proposed design. The AT2P results with respect to the DSP and
LUT usages presented in Table I further demonstrate the superiority
of the proposed designs over the previous works.

VI. CONCLUSION

This paper proposes a novel efficient low-latency matrix-vector
polynomial multiplication algorithm for the Kyber PQC scheme
to reduce the number of modular multiplications and additions
required. The FPGA experimental results demonstrate that the pro-
posed designs achieve a better timing performance compared to the
prior works. Although two-parallel and four-parallel structures are
considered in this paper, other parallelism levels and other structures
can be incorporated depending on application requirements.

ACKNOWLEDGEMENT

This work is supported in part by the Semiconductor Research
Corporation under contract number 2020-HW-2998, and the NSF
under Grant numbers CCF-2243052 and CCF-2243053.

REFERENCES

[1] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, , and D. Stehlé, “CRYSTALS–
kyber: Algorithm specification and supporting documentation (version
3.02),” Round-3 submission to the NIST Post-Quantum Cryptography
Standardization Project, 2020, https://cryptojedi.org/papers/#kybernistr3.

[2] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[3] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Designs, Codes and Cryptography, vol. 75, no. 3, pp.
565–599, 2015.

[4] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple con-
stant multiplications: Efficient and versatile framework and algorithms
for exploring common subexpression elimination,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 2, pp. 151–165, 1996.

[5] K. K. Parhi, VLSI digital signal processing systems: design and imple-
mentation. John Wiley & Sons, 1999.

[6] D. A. Parker and K. K. Parhi, “Low-area/power parallel FIR digital filter
implementations,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 17, no. 1, pp. 75–92, 1997.

[7] C. Cheng and K. K. Parhi, “Hardware efficient fast parallel FIR filter
structures based on iterated short convolution,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 51, no. 8, pp. 1492–1500,
2004.

[8] S. Zhou, H. Xue, D. Zhang, K. Wang, X. Lu, B. Li, and J. He,
“Preprocess-then-NTT technique and its applications to Kyber and New
Hope,” in Information Security and Cryptology: 14th International
Conference, Inscrypt 2018, Fuzhou, China, December 14-17, 2018,
Revised Selected Papers 14. Springer, 2019, pp. 117–137.

[9] Y. Xing and S. Li, “A compact hardware implementation of CCA-
secure key exchange mechanism CRYSTALS-KYBER on FPGA,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
328–356, 2021.

[10] Y. Zhu, Z. Liu, and Y. Pan, “When NTT meets karatsuba: preprocess-
then-NTT technique revisited,” in Information and Communications Se-
curity: 23rd International Conference, ICICS 2021, Chongqing, China,
November 19-21, 2021, Proceedings, Part II. Springer, 2021, pp. 249–
264.

[11] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Annual international cryptology
conference. Springer, 1999, pp. 537–554.

[12] P. Ravi, A. Chattopadhyay, J. P. D’Anvers, and A. Baksi, “Side-channel
and fault-injection attacks over lattice-based post-quantum schemes
(Kyber, Dilithium): Survey and new results,” Cryptology ePrint Archive,
2022.

[13] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “SWIFFT:
A modest proposal for FFT hashing,” in International Workshop on Fast
Software Encryption. Springer, 2008, pp. 54–72.

[14] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-set accelerated implementation of CRYSTALS-kyber,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
no. 11, pp. 4648–4659, 2021.

[15] A. Aikata, A. C. Mert, M. Imran, S. Pagliarini, and S. S. Roy, “KaLi:
A crystal for post-quantum security using Kyber and Dilithium,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2022.

[16] X. Hu, J. Tian, M. Li, and Z. Wang, “AC-PM: An area-efficient and
configurable polynomial multiplier for lattice based cryptography,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2022.

[17] L. E. Lucke and K. K. Parhi, “Parallel processing architectures for rank
order and stack filters,” IEEE Transactions on Signal Processing, vol. 42,
no. 5, pp. 1178–1189, 1994.

[18] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing.
Prentice Hall Press, USA, 3rd edition, 2009.

[19] T. Yuan, W. Liu, J. Han, and F. Lombardi, “High performance CNN
accelerators based on hardware and algorithm co-optimization,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 1,
pp. 250–263, 2020.

[20] B. W. Denkinger, M. Peón-Quirós, M. Konijnenburg, D. Atienza, and
F. Catthoor, “VWR2A: a very-wide-register reconfigurable-array archi-
tecture for low-power embedded devices,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 895–900.

[21] C. Cheng and K. K. Parhi, “Fast 2D convolution algorithms for convo-
lutional neural networks,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 5, pp. 1678–1691, 2020.

[22] W. Tan, A. Wang, X. Zhang, Y. Lao, and K. K. Parhi, “High-speed VLSI
architectures for modular polynomial multiplication via fast filtering
and applications to lattice-based cryptography,” IEEE Transactions on
Computers, vol. 72, no. 9, pp. 2454–2466, 2023.

[23] Y. Xing and S. Li, “An efficient implementation of the NewHope-Simple
key exchange on FPGAs,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 3, pp. 866–878, 2019.

[24] M. Li, J. Tian, X. Hu, and Z. Wang, “Reconfigurable and high-efficiency
polynomial multiplication accelerator for CRYSTALS-Kyber,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

[25] Z.-J. Mou and P. Duhamel, “Short-length FIR filters and their use in fast
nonrecursive filtering,” IEEE Transactions on Signal Processing, vol. 39,
no. 6, pp. 1322–1332, 1991.

[26] W. Tan, S.-W. Chiu, A. Wang, Y. Lao, and K. K. Parhi, “PaReNTT: Low-
latency parallel residue number system and NTT-based long polynomial
modular multiplication for homomorphic encryption,” arXiv preprint
arXiv:2303.02237, 2023.

[27] Y. Zhao, R. Xie, G. Xin, and J. Han, “A high-performance domain-
specific processor with matrix extension of RISC-V for Module-LWE
applications,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 69, no. 7, pp. 2871–2884, 2022.

[28] H. Nejatollahi, S. Shahhosseini, R. Cammarota, and N. Dutt, “Exploring
energy efficient quantum-resistant signal processing using array proces-
sors,” in ICASSP 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 1539–1543.

[29] F. Hirner, A. C. Mert, and S. S. Roy, “PROTEUS: A tool to generate
pipelined number theoretic transform architectures for FHE and ZKP
applications,” Cryptology ePrint Archive, 2023.

[30] M. Ayinala, M. Brown, and K. K. Parhi, “Pipelined parallel FFT
architectures via folding transformation,” IEEE Transactions on Very
Large Scale Integration Systems, vol. 20, no. 6, pp. 1068–1081, 2012.

[31] W. Guo, S. Li, and L. Kong, “An efficient implementation of KYBER,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69,
no. 3, pp. 1562–1566, 2022.

[32] F. Yaman, A. C. Mert, E. Öztürk, and E. Savaş, “A hardware accelerator
for polynomial multiplication operation of CRYSTALS-KYBER PQC
scheme,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2021, pp. 1020–1025.

https://cryptojedi.org/papers/#kybernistr3

	Introduction
	Background
	Notation and parameter space
	Kyber scheme
	Matrix-vector polynomial multiplication in Kyber scheme
	Prior optimizations for Kyber scheme

	Relationship Between Parallel FIR Filter Structure and Polynomial Modular Multiplication using NTT and Polyphase Decomposition
	Algorithm-Hardware Co-Optimized KyberMat Architecture
	Efficient algorithm of KyberMat using transposed two-parallel fast filtering structure
	KyberMat using various fast filtering structures and levels of parallelism
	Efficient low-latency implementation for KyberMat

	Performance Evaluation
	Theoretical analysis and experimental results for KyberMat accelerator in Kyber-512, Kyber-768, and Kyber-1024
	Comparison with prior works

	Conclusion
	References

