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Abstract—This paper presents a novel solution to the occlusion
handling problem in pedestrian tracking using labeled random
finite set theory. The occlusion handling module uses motion
and color cues of tracked targets to recover target labels after
occlusion. An effective algorithm is also proposed for false alarm
detection and removal which is designed based on tracked targets
features such as, overlap ratio, size similarity and the time of track
initialization of the tracked targets. We implement our solution
using sequential Monte Carlo method, and compare it with
state-of-the-art visual tracking methods. The results show that
the proposed algorithm perform favorably in terms of various
standard performance metrics.

I. INTRODUCTION

Online visual multi-target tracking is one of the challenging
and ubiquitously addressed problems in computer vision.
These techniques use the detections in the current and previous
frames to estimate the states of the targets at each time
step [1]–[4] which is in stark contrast to the batch process-
ing methods. Batch processing methods utilize the extracted
information from the entire sequence of frames and iteratively
optimize the detection assignment of the current frame using
past and future information [5]–[9]. While they manage miss-
detections better than online methods [10], they can not be
used in real-time applications, such as surveillance.

One of the prominent challenges in visual multi-target track-
ing is long and short term occlusions. The solutions imple-
mented for this issue include using occlusion geodesics [11],
connecting short tracklets to form longer trajectories and
bridging the gaps due to occlusions [12], and considering
relative overlap, depth ordering and visibility of targets to
formulate analytical global occlusion models [6].

In this paper we propose a new solution for online occlusion
handling. We adapt the Vo-Vo filter for online visual multi-
target tracking. Vo-Vo filter or δ-Generalized Labeled Multi-
Bernoulli, (δ-GLMB) filter is a Bayesian recursion filter which
has been applied successfully in radar tracking [13], [14]. We
incorporate the targets’ motion information into the state space
as well as the detection information in the form of rectangular
boxes. Further, we propose a region of interest based birth
process model for handling the initialization of new target
trajectories as well as re-detecting missing targets.

A novel merging procedure is also proposed and imple-
mented to avoid one target being represented by multiple
blobs. In order to handle long term occlusion events, we intro-
duce a novel track management algorithm which is henceforth

referred to as “label recovery procedure”. In formulating the
label recovery procedure, various aspects are considered such
as the number of time steps between the disappearance and
re-detection of the target, the features of the disappeared and
re-detected targets and the spatial distance between them.

The rest of the paper is organized as follows. Section II
briefly reviews the foundations of RFS theory and the notation
used, followed by a problem statement. Then section III
explains Vo-Vo filter as the tracking algorithm used in our
proposed method. We then present our solution for occlusion
recovery in section IV. Section V evaluates the proposed
method on publicly available datasets with comparative results,
followed by concluding remarks presented in section VI.

II. BACKGROUND AND PROBLEM STATEMENT

In order to formally state the problem of occlusion in
visual tracking, we first introduce notation and background
in stochastic multi-target filtering and the Bayesian recursion
that is used in implementation of such filters.

A. Notation and background

The ensemble of multiple targets and their labels is denoted
by X = {(x, `)} where x ∈ X is a target state and X is
the state space and ` ∈ L is the label associated with target
state x and L is the label space. In visual tracking literature, a
common choice for target state is formulated based on treating
targets as rectangular blobs. In that case, the state includes the
location and dimensions of the target blob, and perhaps their
time-derivatives. For example, in our experiments, each target
state is a 6-tuple in the form of

x =
[
px py ṗx ṗy w h

]>
,

where px and py denote the image coordinates of the center
of the blob (target location), ṗx and ṗy are the velocities in
x and y image coordinate directions and w and h denote the
width and height of the blob, respectively.

In the random set multi-target tracking literature, the label
is usually defined as a pair ` = (kb, ib) where kb is the time
step k at which the target is born (enters the scene) and ib is
an index to distinguish different targets born at the same time
step.

A labeled RFS is a labeled finite set that admits random
variations both in its number of elements (its cardinality),
values of the elements and labels. In stochastic filtering, those



random variations are modeled by a statistical density denoted
by π(X) whose parameters are recursively determined in a
Bayesian recursion scheme using measurements (detections)
and stochastic models for targets’ motions and their birth and
death.

As for the Bayesian recursion, the procedure can be split
into two steps: prediction and update. Stochastic models for
target’s state evolution, birth and death are implemented in the
prediction step. Detections which are acquired from sensor(s)
are then used in the update step. Let the set of observations
(detections) at time k be denoted by Zk, and all the obser-
vations acquired up to time k be denoted by Z1:k. Bayesian
recursion transforms a prior multi-target density πk(X|Z1:k)
to a posterior multi-target density πk+1(X|Z1:k+1) from
which the number and states (including labels) of existing
targets can be inferred. Indeed, the labeled multi-target den-
sity is recursively predicted (based on Chapman-Kolmogorov
equation) and updated (using Bayes’ rule) using [13]:

πk+1|k(X|Z1:k) =

∫
fk+1|k(X|Xk)πk(Xk|Z1:k)δXk (1)

πk+1(X|Z1:k+1) =
gk+1(Zk+1|X)πk+1|k(X)∫

gk+1(Zk+1|Xk)πk+1|k(Xk)δXk
(2)

where fk+1|k(·|·) is the multi-target transition density from
time k to k + 1, gk+1(Zk+1|X) is the multi-target likelihood
of the measurement set Zk+1 conditioned on labeled multi-
target state X , and the integrals are set integrals defined as:∫

f(X)δX =
∑∞
i=0

∑
(`1,`2,...,`i)∈Li∫

Xi f((x1, `1), ..., (xi, `i))d(x1, ..., xi).

B. Problem statement

The multi-target posterior density πk+1(·|·) captures all in-
formation on the number of targets and their individual states.
The multi-target likelihood function gk+1(·|·) encapsulates
information about target models and false alarm models. The
multi-target transition density fk+1|k(·|·) describes the motion,
birth and death of targets.

At any time k, the multi-target posterior density π(X) can
be directly used to estimate the number of targets n̂k and their
labels and states

X̂k = {(x̂i,k, ˆ̀
i,k)}n̂ki=1. (3)

Consider a target born at time kb with index ib, so its label
is ` = (kb, ib). At a later time step k > kb, assume that the
tracking algorithm performs well enough to include this label
within its labeled set estimate X̂k. Suppose that at time k, this
target is occluded by another, and for a period of time, To, the
target disappears from the measurement sets Z(k+1):(k+To).
As a result of this, the target label will disappear from the
estimates returned by the multi-target filter with a delay (the
delay in disappearance depends on filter parameters). Thus, if
the occlusion period To is not too short, after occlusion (when
the target with label ` reappears among the detections) it will
be treated as a new target with a different label `′ = (k′b, i

′
b)

where k′b = k + To + 1. The problem is to distinguish such
an occluded then reappearing target from a newly born target,
and recover its label.

k=110:113

k=114

(90,1) (90,1)

(100,2) (114,1)

Occlusion 

k=109

Fig. 1. An example demonstrating label ambiguity after an occlusion, and
the need for label recovery.

To further clarify the problem, an example is shown in
Figure 1. The pedestrians with labels (90,1) and (100,2) are
correctly tracked until time step 110, at which point one
target occludes the other. Depending on the frame rate of
the imaging device, the occlusion period may take several
time steps or frames (in this example, until time step 113)
during which, the target detection module may return only
one measurement for both pedestrians. After the occlusion,
both pedestrians reappear at time k = 114, and the Bayesian
multi-target filtering algorithm starts tracking the previously
occluded pedestrian by assigning a new label (114,1). This
is not acceptable in many visual tracking applications such
as security and surveillance as the occluded target should be
re-identified and not treated as a new person.

Remark 1. The target birth model that is incorporated in the
multi-target transition density, is usually designed based on the
prior knowledge that we have about the regions of entry for
new targets. In the explanation given above for label recovery
problem as part of an occlusion handling solution, we assume
that birth region is expanded to include the whole surveillance
region. Only with this expansion we make sure that re-detected
targets after an occlusion appear among the estimates with the
label of a newly born target. If the birth region is kept limited
(e.g. only around the edges of the camera field of view), then
a target that is occluded in the middle of the field of view, can
forever disappear from the estimates returned by the Bayes
filter even if it appears among the detections after occlusion.

Remark 2. Expansion of the birth region can cause measure-
ments that are associated with existing targets to strengthen
wrong birth hypotheses in the vicinity of those targets. Hence,
the resulting estimate may include non-existing target esti-
mates around existing targets. A complete occlusion handling
solution must include a remedy for detection and removal of
such false positives (false alarms).

III. LABELED RANDOM SET FILTERING

The Vo-Vo filter is formulated based on propagating a Vo-
Vo density through Bayesian recursion. A Vo-Vo density on



X× L is defined as [15]:

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

w(I,ξ)δI(L(X))[p(ξ)]X (4)

where I denotes a set of track labels and ξ denotes a realization
of a discrete space Ξ which represents the history of track
labels to measurement associations. This distribution can be
interpreted as a weighted mixture of exponentials of multi-
target densities. The function ∆(X) , δ|X|(|L(X)|) returns
1 only if different targets in X are assigned different labels,
otherwise it returns zero. The weights w(I,ξ) and the spatial
distributions p(ξ) satisfy the normalization conditions∑

(I,ξ)∈F(L)×Ξ

w(I,ξ) = 1,

∫
p(ξ)(x, `)dx = 1. (5)

With the standard multi-target model, the Vo-Vo density is
closed under the Chapman-Kolmogorov equation and also a
conjugate prior with standard multi-target likelihood (i.e. both
predicted and updated densities are Vo-Vo densities in the form
of (4)) [13], [15].

Indeed, the prediction step leads to the following Vo-Vo
density: [13]

π(X) = ∆(X)
∑

(I,ξ)∈F(L+)×Ξ

w
(I,ξ)
+ δI(L(X))[p

(ξ)
+ ]X (6)

where:

w
(I,ξ)
+ = w

(ξ)
S (I ∩ L) wB(I ∩ B)

p
(ξ)
+ (x, `) = 1L(`)p

(ξ)
S (x, `) + 1B(`)pB(x, `)

w
(ε)
S (L) = [η

(ξ)
S ]L

∑
I⊇L

[1− η(ξ)
S ]I−Lw(I,ξ)

η
(ξ)
S (`) =

〈
pS(·, `), p(ξ)(·, `)

〉
p

(ξ)
S (x, `) =

〈
pS(·, `)f(x|·, `), p(ξ)(·, `)

〉
η

(ξ)
S (`)

and pS(x, `) denotes the probability of survival for a labeled
target with state x = (x, `), f(x|·, `) denotes the single-
target state transition density, and wB(I) and pB(x, `) are
the parameters of the following labeled birth density defined
as a special case of Vo-Vo density on the birth space B as
follows: [13]

πB(X) = ∆(X)wB(X)[pB ]X. (7)

The label space is also extended to include the newly born
targets, L+ = L ∪ B.

The updated Vo-Vo density is also of the mathematical form
given in (4), denoted by:

π(X|Z) = ∆(X)
∑
I∈F(L+)

∑
ξ∈Ξ

∑
θ∈Θ(I)

w(I,ξ,θ)(Z)δI(L(X))
[
p(ξ,θ)(·|Z)

]X (8)

where Θ(I) is the subset of current association maps from
the label set I to the measurement set Z in the sense that
the target labeled ` ∈ I is associated with measurement zθ(`).
By convention, for the missed targets, θ(`) = 0. According

to [13] the weights and densities of the updated components
of the Vo-Vo density are given by:

w(I,ξ,θ)(Z) ∝ w
(I,ξ)
+ [η

(ξ,θ)
Z ]I

p(ξ,θ)(·|Z) = p
(ξ)
+ (x, `) ψZ(x, `; θ)/η

(ξ,θ)
Z (`)

where:

η
(ξ,θ)
Z (`) =

〈
p

(ξ)
+ (·, `), ψZ(·, `; θ)

〉
ψZ(x, `; θ) =

{
1− pD(x, `) if θ(`) = 0
pD(x, `)g(zθ(`)|x, `)/κ(zθ(`)) otherwise

where g(z|x, `), pD(x, `) and κ(z) are the single-target like-
lihood, detection probability and clutter intensity function,
respectively.

Remark 3. To avoid exponential explosion of the number of
hypotheses, those with very small weights (less than 10−5

in this work) are pruned, and the weights of the remain-
ing hypotheses are renormalized. Furthermore, the maximum
number of allowed hypotheses is 700. In a sequential Monte
Carlo (SMC) implementation, the particles representing the
single target densities p(ξ,θ) are also need to be resampled. A
combination of ranked assignment and shortest-path strategies
is also suggested in [13] for computationally efficient imple-
mentation of the prediction and update steps.

Remark 4. Given a posterior Vo-Vo density in the form of (8),
the discrete distribution of number of targets (cardinality) is
given by:

ρ(n) =
∑

I ∈ F(L+)
|I| = n

∑
ξ∈Ξ

∑
θ∈Θ(I)

w(I,ξ,θ)(Z) (9)

and a maximum a posteriori (MAP) estimate for the number
of targets is:

n̂ = arg max
n

ρ(n). (10)

Defining:

(I∗, ξ∗, θ∗) = arg max
I ∈ F(L+), |I| = n̂

ξ ∈ Ξ, θ ∈ Θ(I)

w(I,ξ,θ)(Z), (11)

the estimated set of labeled target states is:

X̂ = {(x̂(`), `)}`∈I∗ (12)

with x̂(`) =
∫
x p(ξ∗,θ∗)(x, `|Z) dx.

IV. PROPOSED METHOD

To handle occlusions in multi-target visual tracking, we
suggest a combination of false alarm detection and removal
as well as label recovery process that operates on the labeled
set estimate returned by the Vo-Vo filter. Our proposed method
only needs to compute a limited number of mutual distances
and memorize a few color histograms, because it only operates
on estimates and not the entire ensemble of labeled multi-
target hypotheses in the Vo-Vo posterior. In the following sec-
tions we separately address two problems: A. the false alarm
detection and removal B. label recovery methods. We note that
in principle, the mentioned operations would be formulated for



implementation within the update step of the filter. However,
such implementations would involve computation of a large
number of mutual distances and storing a substantial number
of color histograms, thus being computationally expensive for
an online visual tracking system.

A. False alarm removal and detection

Consider the multi-target estimate X̂ returned by the Vo-
Vo filter. The algorithm compares each target with all the
other targets in the labeled set for false alarms. For a labeled
target y′ = (x(`′), `′) ∈ X̂ to be detected as false alarm and
removed from the estimate, it should satisfy the following
three conditions in terms of its similarities with another
detected target y = (x(`), `) ∈ X̂:

1) The two targets must have substantial overlap.
2) y must be older than y′.
3) The two targets must be of similar size.

The rationale behind the first two conditions is that we are
looking for false alarms that are caused by birth targets that
match measurements, that are already covered by existing tar-
gets. Hence, false alarms are expected to significantly overlap
existing targets. Furthermore, being the result of birth process,
the false alarms are expected to have been born after the real
targets with which they have substantial overlap.

The algorithm searches for all pairs of targets in the estimate
X̂ that substantially overlap, and removes the label with new
time stamp as a false alarm. There might be two real targets,
one far from and the other close to the camera, and the closer
target (larger in the image) may cover a substantial portion
of the farther one. In this case, both targets are real, and no
false alarm should be detected and removed. This is the main
rationale behind the third condition.

Having the time of birth recorded as part of the target’s
label, makes it straightforward to distinguish which of two
targets is older. If L(y) = (kb, ib) and L(y′) = (k′b, i

′
b), then

we have:

OLDER(y,y′) =

{
y if kb < k′b
y′. otherwise

(13)

Upon finding each false alarm, we remove it from the track
table of the filter so that it does not propagate into the next
time step.

B. Label recovery

As it was mentioned earlier, in many visual tracking ap-
plications, either due to the shortcomings of the employed
detector or occlusion, targets may not be tracked and they
can temporarily disappear from the trajectories returned by
the filter. When a target is re-detected (e.g. after occlusion),
the filter can include the target in its estimate but as a new
trajectory (with a new label). In some tracking applications
such as surveillance, it is of paramount importance that the
targets have consistent labels before and after such temporary
disappearances. Inspired by the decay functions in distance
dependent Chinese restaurant processes [16], we propose a

novel label recovery module to consistently maintain the labels
of the targets in occlusion and miss-detection events.

Our proposed label recovery solution is based on construct-
ing a recent disappearance lookup table that holds all the
targets that have disappeared during the past kmax time steps
and have not reappeared yet. The parameter kmax is practically
the maximum duration of occlusion that is expected to be
handled by our method. The lookup table is constructed as
follows.

Let us denote the multi-target estimate returned by the filter
at time k by X̂k. For every single-target state x ∈ X̂k−1, it
is considered as disappeared at time k if its label does not
appear in the set of estimated labels at time k, i.e. if L(x) /∈
L(X̂k). In that case, the time of disappearance, k, the label of
the target L(x) = (kb, ib), its location (px, py) and the color
histogram of the contents of the target in the image, denoted
by H , are all stored in the lookup table. This means appending
a new row at the bottom of the lookup table, with contents[
k kb ib px py H

]
. To constrain its size, at any time

k, all the recorded rows with birth time labels kb < k− kmax

are removed.
For label recovery, we first find the set of all the newly born

targets at time k among the estimates returned in X̂k,

X̂B,k =
{
x ∈ X̂k | ∃ib ∈ N;L(x) = (k, ib)

}
. (14)

For each newly born target estimate x, we then evaluate
its similarity to each of the previously disappeared targets
recorded in the lookup table. Let us assume that (px, py) is the
location of x, and H is its color content histogram. Consider
a previously disappeared target that is recorded in the j-th
row of the lookup table as

[
kj kj,b ij,b pxj pyj Hj

]
.

We are interested in an intuitive and effective technique to
quantify the likelihood of x representing the reappearance
of the above mentioned j-th recorded target. Hereafter, we
denote this likelihood by lj(x) and is formulated based on the
following intuitions.

In visual tracking applications, one would intuitively expect
a disappearing target to maintain its visual appearance (hence
its color content histogram) when reappearing. The similarity
in visual appearance can be quantified in terms of the distance
between the two color histograms. A common choice for
formulating such a distance is the Bhattacharyya distance [2],
[17].

In addition to similarities in color contents, depending on
the period of disappearance, there would be a constrained area
in which the target can possibly reappear. Considering the
most general model, the random walk, such an area is a disk
around (pxj , pyj ), with a diameter that is proportional to the
hypothesized period of disappearance, k − kj .

Based on the above constraints, we suggest to quantify the
likelihood of x representing the j-th recorded disappearance
in the lookup table, as follows:

li(x) ∝ β exp

(
−
√

(px−pxj )2+(py−pyj )2

2[(k−kj)σv ]2

)
+ (1− β) exp

(
−d(H,Hj)

2

2σ2
H

) (15)



where d(H,H ′) denotes the Bhattacharyya distance between
the two histograms, β ∈ [0, 1] is the weight given to spatial
component of the likelihood function, σv is the scale of noise
in random walk motion model in pixels, and σH is the standard
deviation of possible random changes in a target’s appearance
(its color content histogram) from one frame to another. Note
that the weighted sum in the right hand side of equation (15)
is normalized.

The optimal choice of β parameter depends on the applica-
tion. For example, if there is no appearance information or all
targets of interest have similar appearances, lower emphasis on
the appearance component and more on the spatial component
(larger β) is suitable. In cases where the targets can be easily
distinguished from their color features, one can assign a larger
weight for the appearance component (smaller β).

For each element x in the newly born estimates, its likeli-
hood to be a reappearance of all the previously disappeared
targets is computed, and the best candidate (with the maximum
likelihood) is chosen. If its likelihood is larger than a user-
defined threshold lth, it is accepted as a reappearance, and its
label is recovered. Noting that the likelihood values in (15)
are all normalized to fall within [0, 1], the same is correct for
the threshold lth, which was set to 0.7 in our experiments.

V. EXPERIMENTAL RESULTS

In extensive experiments using publicly available datasets,
we examined the performance of our visual tracking solution
and compared it with the following state-of-the-art methods in
the computer vision literature: RMOT [18], StruckMOT [19],
GeodesicTracker [11], PRIMPT [20] and Non-linear mo-
tion [8].

Due to the perspective effect, the target sizes vary when
they move towards or away from the camera. Thus the width
and the height of the target states are set to have variable,
but constrained values. The targets are set to have a constant
survival probability of pSk(·) = 0.99 and are assumed to
follow the nearly constant velocity model. In all case studies,
the birth processes are labeled multi-Bernoulli with constant
probabilities of existence of 0.03. In order to strike the
right balance between accuracy of particle approximation and
computation, the number of particles per target is constrained
between Lmin = 100 and Lmax = 500.

In order to permit a fair comparison we use the same set
of metrics proposed by Li et al. [21], as those have been
widely used in the visual tracking literature [8], [9], [18],
[20], [22]. Note that most of the methods used in comparison
have used the same detection results and ground truth available
in the website1 of one of the authors of [8], [9], along with
the evaluation software. We selected three publicly available
datasets which are widely used in the literature [1], [8], [9],
[18]–[20], [22], [23] to benchmark the performance of visual
tracking algorithms.

1http://iris.usc.edu/people/yangbo/downloads.html

1) PETS2009 S2L1 View1: From the comparative results
presented in table I, it can be seen that our online method
returns generally better values for precision, MT, ML, Frag
and IDS metrics when compared to online methods. It should
be noted that, although StructMOT reports better results for
REC and Frag metrics, it should be trained offline and is not
directly comparable online methods such as ours.

2) TUD-Stadtmitte: In this sequence most of the pedestri-
ans have almost similar color features resulting in similar color
histograms. Thus motion information is more important than
color information in tracking. We assigned a large value for the
weight of motion information, β parameter, in our occlusion
label recovery algorithm. It also shows that there has been no
ID switches which demonstrate excellent label management
performance. In addition, this sequence comprised of multiple
detections for the same target. The ability to handle clutter in
Vo-Vo filter mitigates the effects of these multiple detections.

3) ETH BAHNHOF and SUNNYDAY: The metric values
for these sequences are lower compared to that of the other
two sequences as there is a large number of occluded targets
and number of miss-detections (specially in the SUNNYDAY
sequence). In both sequences, when a reflection of a pedestrian
appear on the glass, it is detected by the detector and thus
tracked by our method, resulting in lower metric values.
Furthermore, frequent miss-detections make the fragmentation
metric higher.

Due to the space constraints snapshots of frames with
tracking results are included as supplemental material.

A. Computation Speed

The algorithm is implemented in MATLAB R2015a in a
core i7 laptop with 8GB of memory and the implementation is
not optimized. With the particle count mentioned in section V
and LMB birth processes mentioned in sections for each
dataset, the algorithm is capable of achieving a speed of 4
frames per second for each of the sequences permitting it to
be used in real time applications.

VI. CONCLUSION

In this paper, we presented a novel online visual tracking
algorithm with false alarm removal and occlusion handling
modules based on RFS theory. The algorithm was imple-
mented using SMC techniques and it was evaluated on a
number of standard datasets. A comparison with some state-
of-the-art algorithms showed that our method outperformed or
comparable to the methods in comparison.
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TABLE I
COMPARATIVE RESULTS FOR PETS2009-S2L1V1, TUD-STADTMITTE AND ETH BAHNHOF AND SUNNYDAY

represents the online methods

Dataset Method REC PRE FAF GT MT PT ML Frag IDS

PETS09-S2L1

GLMB (Ours) 93.3% 96.9% 0.17 19 94.7% 5.3% 0.0% 20 0
RMOT [18] 95.6% 95.4% 0.05 19 94.7% 5.3% 0.0% 23 1
StruckMOT [19] (o.t.) 97.2% 93.7% 0.38 19 94.7% 5.3% 0.0% 19 4

PRIMPT [20] (o.t.) 89.5% 99.6% 0.02 19 78.9% 21.1% 0.0% 23 1
Non-linear motion [8] (s.c.) 91.8% 99.0% 0.05 19 89.5% 10.5% 0.0% 9 0

TUD - Stadtmitte
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