
Software IC Revised: A New Approach of Component-
Based Software Design with Software Slots

Shangwei Duan and Xiaobu Yuan
School of Computer Science, University of Windsor, Canada

 swduan@cs.uwindsor.ca, xyuan@uwindsor.ca

Abstract

By investigating the failure of Software IC in object-oriented
technology and studying the characteristics of component-based
or COTS-based software technologies, this paper revises Software
IC and develops a software-slot-oriented strategy for the design of
component-based software systems. This new strategy introduces
requirements directly into the design of component-based systems,
and allows architects to focus on system frameworks without too
much concern about components. This work provides a
mechanism to deal with the increasingly complex interface logics
of COTS systems, and suggests a possible guidance for
component standardization. Effectiveness and availability of the
proposed approach are illustrated with a case study that applies
the software-slot-oriented design on a practical component-based
software system.

1 Introduction

Component-based software technology (CBST) is a new software
paradigm that has attracted huge attention from both the academic
and industrial communities. By producing application systems
with pre-constructed software pieces, CBST promises the benefits
of accelerated software development, reduced costs, higher
reusability, and greater flexibility [1]. In responding to the great
potentials of CBST, several commercial off-the-shelf (COTS)
products for the construction of component-based software
systems have been introduced to the market [2]. These products
include Enterprise JavaBeans (EJB) by Sun Microsystems Inc.
and Common Object Request Broker Architecture (CORBA) by
the Object Management Group. At the mean time, Microsoft
Corporation put forward its products of Component Object Model
(COM), Distributed Component Object Model (DCOM)
and .NET.
However, many fundamental issues of CBST remain unsolved,
from both the theoretical and practical points of view. In addition
to the unjustified borrowing of ideas from the existing object-
oriented (OO) technology in the practice of component-based
software development, there has been no consensus even
regarding the definition of components [3]. Different component
infrastructures, as introduced with EJB, COM/DCOM/.NET,
CORBA, and Web Services by different companies or groups, add
further confusion to CBST. Although there are interoperations
among these infrastructures, there is no sign of a united
component infrastructure, at least in the near future. Despite the
limited success of extensions to the United Model Language
(UML) for components modeling, visually modeling of
component-based software systems with different component

infrastructure is one of the most difficult and challenging subjects
in Component-based Software Engineering.
In principle, a component infrastructure consists of three models:
a component model, a connection model, and a deployment model
[3]. Among the three models, the component model defines
characters of a standalone component, the connection model
defines the ways how components are integrated, and the
deployment model describes the methods how an existing
component-based system works in a practical working
environment. In comparison with the other two models, the
connection model is more important as components are pre-
developed in COTS systems. In addition, a specific working
environment is beyond the scope of model design. The focus of
this paper is therefore on the connection model for COTS
software systems.
Existing component models treat components as either abstract
entities, such as class, or concrete entities, such as objects. For
EJB and .NET, components evolve directly from OO technology.
They are more like special classes that have abstract descriptions
and can be instantiated later. In other models such as Web
Services and TinyOS, components work as concrete objects and
subsystems without instantiation [4] [5]. It becomes more
adequate for connection models to model components as concrete
entities when different instances of the same abstract entities may
communicate and interacts. These instances differ in their internal
statuses and external configurations. As a result, connection
models need also to have the mechanism to represent these
components and their interactions.
COTS components are usually developed by third party vendors
and released in binary codes. They work as black boxes. However,
inheritance is referred as the white boxes adaptation [6].
Inheritance is not suitable for COTS-based system modeling
because it requires system designers to understand the internal
implementations of inherited components. To complement the
loss of reusability without inheritance, COTS systems support
wrapping interfaces and more flexible configuration [6]. In such a
sense, reusability in component-based software systems is at a
higher and coarser level than in OO systems. CBST helps to
greatly reduce the complexity and flexibility of software systems
with the sacrifice of certain level of reusability.
In light of the difficulty of providing visualization tools to support
different models of component-based software development and
based upon the observations of CBST, especially COTS,
characteristics, this paper investigates the application of Software
IC in CBST. The remaining of the paper is structured in such a
way that, after a brief survey of prior works in Section 2, Section
3 first discusses the introduction of three new notations to revise
Software IC for component-based technology. It then proposes a
new strategy of component-based software design with software

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

slots, and describes the steps involved in the designing process.
Afterwards, Section 4 thoroughly studies the proposed notations
with a practical component-based system. Conclusions and future
works are presented at the end of the paper.

2 Related Works

This section highlights current work on component-based
software visualization model and prior work on Software IC as
they motivate and shape up the work of this paper.

2.1 Component-based Software Visualization
In general, there are two types of modeling methods for the
representation of a software system, i.e., visualization models and
symbolic models. A visualization model consists of self-
explanatory graphical notations, which are easy for human beings
to understand but difficulty for computers to process. In
comparison, symbolic models have well-defined properties for
computerized processing, and therefore are ready to be integrated
into the process of components discovery and selection. Symbolic
languages, however, are difficult for human beings to understand.
As a result, software designers tend to choose a visualization
model in the design phase, and use a symbolic model as an
auxiliary tool in practice.
Due to the current practice in software industry, most of the work
on component-based software visualization has been focused on
extending UML for the use with component models. Savino-
Vazquez and R. Ruigjaner presented a domain extension, termed
DExOM/UML, as a formalism of HOOMA to represent both the
architecture and interaction aspects of a component-based system
[7]. Lee worked on the effectiveness of component modeling, and
extended UML component diagrams with added message flows
and classes [8]. J. Grundy and R. Patel extended UML to facilitate
aspect-oriented component design, and used EJB to implement
these designs [9]. To keep up with demands while maintaining the
uniformities of UML, the latest version UML 2.0 officially
proposed a component model as a specialized class model that has
an external specification in the form of one or more provided and
required interfaces [10].
The revised specification of UML and its extensions provide
features to model some aspects of components and frameworks.
However, they suffer from the problems of vague semantics in the
construction of components, and overlapped semantics in
classifiers, such as components, classes, and subsystems. The
distinction between classes and objects are well known in OO
technology, but it is not clear yet in CBST. It is unclear, for
instance, components should be instantiated or not. UML 2.0
obviously treats components as classes. It works very well for
components evolved from classes, but it is not suitable for such
components as subsystems that may not be instantiated and do not
support inheritance. This dilemma was observed by Cheesman
and Daniels [11]. When they were creating a diagram of
component object architecture to specify the relationship and
interactions among instances of class-like components or
subsystems-like components, the UML diagram behaved more
like the variations of class diagram. Moreover, abstract class
components must not appear in the diagrams of component object
architecture, but this point was omitted regrettably. The diagram

they created was finally rejected by UML 2.0 as an invalid
diagram.
There are also a few efforts to work on component-based software
visualization models outside the UML campus. CORBA
Component Model (CCM), for example, proposed four types of
ports: “facets”, “receptacles”, “event source”, and “event sinks”
[12]. It uses facets and receptacles to describe provided and
required interfaces, and uses event sources and event sinks to
handle asynchronous communications between two components.
Other types of connections are also possible, including the
connections from a “facet” to a “receptacle” and from an “event
source” to an “event sink”. Port connections work well in CCM
for the modeling of component communication.
Nevertheless, UML, current UML extensions, and the other
software visualization models, including CCM, fail to model the
basic characteristics of component-based systems, especially in
the construction of COTS-based systems. These models work
only on the architecture of component-based system with class-
like diagrams. Although components follow objects’ principle of
integrating functions and related data, they are actually different
from objects. The most important difference is that components
are exchangeable when laid out in component-based systems.
Component-based systems should make managing changes as the
first concern [11]. Difference in reusability is also important, but
it is not as important as exchangeability because component-based
systems are built with pre-manufactured components. The
designers of component-based systems care about the use of
components, instead of the development of actual components.
This is especially true for COTS-based systems.
When dealing with the abstraction of exchangeability, the concept
of software contracts stands out as a good candidate for
exchangeability representation. Software contracts define the rules
and functionalities that all components in a system need to obey
and provide. In other words, any component can be replaced in
the system if its replacement obeys the same rules and
functionalities. The concept of software contracts has been
applied to the component world by Catalysis [13] in 1999 and
further developed in the book by Cheesman and Daniels [11].
Their work demonstrated the great impact that software contracts
have on component-based software systems, but none of them
came close to the application of software contracts in the
modeling of component-based software system design. Without
new notations, the modeling of general components with software
contracts remains at the conceptual level. Proper legends have to
be created as part of the visualization model for component-based
software systems, which leads to the investigation into Software
IC.

2.2 Software IC
The term of Software IC stands for software integrated circuit. It
was originally proposed as a design model to build reusable
software components for OO software systems [14]. In its original
introduction, a software IC is composed of a set of reusable
objects in format of black boxes that are interweaved according to
the specific connection standards. The fact that objects
communicate by message passing plays a key role in Software IC.
Motivated by the success of reusability concept in hardware
integrated circuits, Software IC tries to minimize the cost of
software development by promoting the reusability of objects in
object-oriented design.

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

After the conceptual introduction of Software IC, several software
researchers investigated details of its application in OO software
development. Fagerstrom developed a control unit to build a
software IC structural model to describe the logical relationships
between components in a distributed system [15]. Chen and
Sobkiw extended the concept of Software IC by suggesting object
binding to support system reusability [16]. Lin even defined
software pins and a specification language to describe relationship
in the design of Software IC [17]. Software IC library and TLMP
are also developed as implementation of this model [18].
Further investigation soon uncovered a fatal problem of Software
IC in OO software development, i.e., the so-called fragile base
class problem [19]. This problem limits the correctness of
Software IC to only those cases when software interfaces can be
defined as crisply as hardware interfaces [20]. The main reason
behind this problem is that the fundamental encapsulation of
circuit chips breaks down in OO software due to inheritance. An
integrated circuit board is flat with all chips at the same level on
the board, thus any changes of internal implementation of one
chip will not promulgate to other chips. However, inheritance in
OO places software objects at multiple levels, and changes of
internal implementation at higher levels (super classes) may be
transferred downstream to the lower levels (subclasses). It is a
paradox that inheritance, as originally designed to introduce
reusability, becomes the main reason that put an end to the
development of a model that promotes reusability -- Software IC.
After the discovery of the fragile base class problem, the term of
Software IC disappeared almost completely from the literature.
One other important reason for the failure of Software IC in OO
technology is the confusion between classes and objects [21].
Similar to hardware chips and integrated circuits, software ICs
should not be meta-products but final products. It means that the
basic pieces in a software IC model are concrete entities, more
like the instances of classes. Although the relationships between
classes are easier to represent than objects as the number of
objects is much greater and their relationships are more complex,
the confusion of classes and objects in Software IC fails to capture
the characteristics of both hardware and software. Besides, there
is also another important reason, i.e., the complexity and
flexibility of OO systems. As an OO system normally consists of
hundreds of objects and thousands of interactions, the varieties of
objects and relationships among them are beyond the
representative capability of integrated circuit.

3 Component-Based Software Design with
Revised Software IC

This section revises Software IC with three new graphic notations,
and develops a software-slot-oriented strategy to help software
architects designing the architecture of component-based software
systems by matching components with user requirements.

3.1 Revision of Software IC
Encapsulation is fundamental in Software IC. As a software IC
specifies a border around an arbitrary set of processes, objects, or
routines, it is referred to by the border and name associated with it.
The effluences of processes, objects, and routines are limited
within the scope of a particular software IC, which is similar to
the mechanism of name space in OO technology. To apply the

concept of Software IC, this paper considers a software IC as a
static, language-independent software entity with no instantiation
or inheritance. A software IC consists of a set of independent
processes, objects, or routines encapsulated in a black box. To
revise Software IC and allow component-based software
architects and developers to create illustrative diagrams, the
following discussions introduce three new graphic notations.

These three new notations are software ICs, software pins, and
software slots. In analogue to pins of an electronic chip, a
software IC uses software pins for input and output operations. A
software pin models the interface prototypes of a software IC.
Correspondingly, a typical software pin has three characteristics.
The first characteristic is Pin ID that gives the name or
identification of a pin, and the second is Data Stream that models
data conveyed across software pins between two software ICs.
The data stream could be simple data, such as integer and
characters, or complex data, such as structured records or
multimedia data. Figure 1 illustrates a typical software IC with
different types of software pins.

The last one, which is also the most important, is Pin type. A Pin
type classifies a pin to be either an attribute pin or an interface pin.
Attribute pins model public properties of software ICs, and are
divided into two sub-types as In-attribute and Out-attribute. The
former is for configuration, and the latter is for query of internal
status. In comparison, Interface pins model the external behaviors
of software ICs, and define their operations as well. According to
operation direction and the way to coordinate two software ICs,
Interfaces pins are further divided into four sub-types that
describe different communications. They are In-Sync, Out-Sync,
In-Async, and Out-Async. The functionalities of software pins are
listed in Table 1.

3.2 Software Slots
A software IC is in effect only when it interacts with other
software ICs through software slots in the system. A software slot
is a special entity responsible for linking and un-linking software
ICs, and it abstracts and models system framework in the format
of software pins. A software slot connects software ICs by their
interface pins. Similar to software interface pins, software slots
also have four sub-types: In-SyncSlot, Out-SyncSlot, In-
AsyncSlot, and Out-AsyncSlot. The functionality of slots and the
relationships of slots and pins are listed in Table 2. Figure 2
illustrates a diagram of software slots linking two software ICs.

The multiplicity of association relationship of In-SyncSlot (In-
AsyncSlot) and Out-SyncSlot (Out-AsyncSlot) is one to many or
many to one. In this revised Software IC, if one pin inserts into an
In-SyncSlot (In-AsyncSlot), at least another pin must insert into
its corresponding Out-SyncSlots (Out-AsyncSlots). This
restriction corresponds to the fact that if one interface is used, this
interface must be implemented at least once or vice versa in a
practical system. Furthermore, the pins inserted into the
corresponding slots of one slot could be from different software
ICs. This mechanism provides a way to achieve polymorphism of
software ICs in component-based software technology. In other
words, although an Out-Sync (Out-Aysnc) software pin of a
software IC can only be inserted into one slot, it may have
multiple corresponding slots, thus have multiple corresponding In-
Sync (In-Aysnc) pins on the other side. It means that an interface
used by a component could be implemented by two or more

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

components based on different data streams or configuration of
software ICs.

 Table 1: Functionalities of software pins
Type Sub-type Functionality

In Configures public parameters of
software ICs to adjust their
behaviors and performance.

Attribute

Out Outputs the internal status of
software ICs to monitor their
behaviors and performance.

In-Sync Methods implemented by
software IC and they return the
value only after they complete.

Out-Sync Methods used by software ICs
and they receive the return value
only after their In-Sync
counterparts complete.

In-Asyn Events implemented by software
ICs without return value.

Interface

Out-
Async

Events used by software ICs
without return value.

Table 2: software slots and software pins

type Slot Pin Functionality

1 In-SyncSlot In-Sync Model providing methods

2 Out-
SyncSlot

Out-
Sync

Model using commands

3 In-
AsyncSlot

In-Async Model providing events

4 Out-
AsyncSlot

Out-
Async

Model using events

3.3 Multi-level Software IC
The encapsulation characteristic of software slots allows the
design of multi-level software ICs, in which two or more software
ICs can be grouped together though software slots or one software
IC is wrapped with additional codes. A multi-level software IC
works as a new software IC from an external view. This
mechanism empowers the revised Software IC with higher level
of reusability, and provides flexible usability of software ICs. The
diagram of a multi-levels software IC is illustrated in Figure 3.
Multi-level software IC does not break the encapsulation because
all software ICs in one diagram only interact with each other at
the same level. The internal software ICs, slots and additional
codes are transparent to the external software ICs and slots.
Actually, the use of multi-level software ICs increases the
usability of software ICs, which is further discussed in Section 3.5.

3.4 The Process of Software Slot Oriented Design
Supported by notations of the revised Software IC, software
design based on software slots takes the following five steps.
(1) Select appropriate component-based technologies. If the

chosen technology cannot avoid inheritance, architects
should resort to another choice.

(2) At the architecture level, design or select software slots
from the software slots library, with the support of
multiplicity relationships for In-SyncSlot and Out-SyncSlot,
or In-AsyncSlot and Out-AsyncSlot.

(3) At the development level, select software IC (components)
from software IC (components) libraries based on the

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

selected software slots in the previous step if they are
available, and develop them otherwise.

(4) Design multi-level software ICs, if possible, to use a group
of components as a whole or add extra functionalities for a
component. It is noted that all class-like components, no
matter if they are selected or designed, must be instantiated
before use.

(5) Link software ICs with software slots to accomplish
anticipated interactions among software ICs in the system.

In the designing process, the design of software slots in the second
step is the key in an interface-oriented design, which gives the
name of this process as software-slot-oriented design. The
framework of a system can be established only after the design of
software slots. Software slots could be designed by software
architects or selected from standard slot libraries. At the beginning
stage of a component-based technology, most of software slots are
designed by architects according to the functionalities of
requirements. When the development of component-based
technology reaches more advanced stages and when
standardization of slots is mature, more software slots will come
from standard libraries.

3.5 Discussions
The new notations introduced with the revised Software IC are
simple in illustration, yet they capture well the characteristics of
component-based development in all the aspects as listed below.

• Procurement-centric. It is a big shift from development
centric in object-oriented development to procurement-
centric in component-based development. This shift makes
the selection/integration of components or COTS a
distinguished phase of component-based development. The
class diagrams and component architecture diagrams of
UML 2.0 cannot cover this activity of component-based
development. Nevertheless, the revised Software IC provides
software slots to model system framework in analysis, and

software ICs and software pins to model components and
their interfaces in implementation. The selection/integration
of components or COTS becomes a unique phase of the
software-slot-oriented design process that uses the
plugging/unplugging of software pins into/out from software
slots to model the matching of components and requirements.
A qualified software IC must have at least one software pin
for it be plugged into a software slot, and the linked software
ICs must have at least one software pin matching with the
software pin of this software IC.

• Exchangeability. Exchangeability is the most important in
component-based or COTS-based systems. In the revised
Software IC, a software IC can be replaced by any other
software IC(s) as long as the replacing software IC(s) has
(have) software pins to cover all the useful software pins of
the replaced software IC. A useful software pin refers to a
software pin being inserted into a software slot in the system,
and a software pin is replaceable when it has the same
functionalities as another software pin. This exchangeability
is partly expressed in UML component diagrams with its
ports, connectors, and interfaces, but this expression ability is
greatly enhanced with the help of software slots.

• Standardization. The use of software slots makes it possible
to standardize component interfaces with software pins. In a
component-based system, most of the functionalities are
either shared within the infrastructure of a component
technology family or common with other component
technologies. Those are the candidates that should be
standardized at the family or universal level. The revised
Software IC provides the tool for standardization as
standardized software slots can be used to models
standardized functionalities. Software pins can also be
standardized accordingly based on their corresponding
software slots.

• Configuration. Configuration presents a special meaning in
component-based or COTS-based systems when components
work as black boxes that cannot be optimized in the code
level or internal mechanism [22]. In addition, the variations
of component-based system are made by means of different
configurations [13]. While UML 2.0 ignores the
configuration issue of components, the revised Software IC
provides a mechanism to deal with this issue with attribute
software pins.

• Reusability and usability. As discussed in Section 1, in
comparison to objects, components lose some reusability for
the coarser and higher granularity. It is also worthwhile to
point out that components actually have higher usability than
objects for the same reason. Reusability and usability form a
contradictory pair, and there is currently no optimal
granularity degree that balances both the reusability and
usability for a given system. It is the high complexity of
software systems that makes it extremely difficult for any
attempt to quantitatively calculate such a degree. In the
revised Software IC, however, it becomes feasible to provide
a method for component-based software designers to
qualitatively achieve such a degree by manually balancing
the reusability and usability for one or a group of
components in a system. The mechanism of multi-level
software ICs permits software ICs and slots to form a greater
software IC when a group of components needs to increase

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

its usability. The usability of a component can also be
increased by wrapping with additional codes. Increased
reusability is achieved when software pins of a software IC
are used separately.

There is a fundamental difference between the current UML 2.0
and the revised Software IC. While the former focuses on the
relationships among components, the latter focuses on the
relationships between requirements and components. The revised
Software IC has no intension to either redesign the comprehensive
modeling ability of UML or replace UML in component-based
system design. Instead, it uses software slots to separate the work
of software design into the work on framework and components,
thus transferring the task of architects from designing a whole
system to designing software slots. It also allows component-
based software developers to concentrate working on software
development by selecting appropriate software ICs and software
IC pins for implementation.

4 Case Study

This section presents a case study, which goes through in detail
the process of software-slot-oriented design with a component-
based software system, called Surge.

4.1 System Overview and Requirements
Surge is a network application whose local hosts collect data, such
as light strength and temperature, from wireless sensor nodes
located at different locations. At the same time, the system
receives commands from local hosts, and broadcasts them within
the entire wireless sensor networks. Surge is developed under the
infrastructure of tinyOS [5], and tinyOS is a component-based
embedded and real-time operating system developed by
University of California at Berkeley. In tinyOS, components work
as subsystems and cannot be instantiated and inherited. Listed in
Table 3 is a set of ten requirements of the Surge system, in which
the first eight are functional and the last two are non-functional
requirements.

Table 3: Requirements List

R1 Each wireless node samples data from its sensor
periodically according to the pre-defined interval.

R2 Raw data is conveyed to a based node that connects to a
local host with wired lines.

R3 Each wireless node, except the central node, works as
switch node to transfer data from one of its neighbors to
another neighbor who is responsible for re-transfer the
data to the base node.

R4 Each wireless node maintains a routing table to switch
data and update this table in case of topology changes.
Through the routing table, all nodes in the Surge system
form a routing tree rooted in the based node.

R5 Each wireless node receives the commands from the
local host to broadcasts to its neighbors.

Table 3: Table 3: Requirements List (Cont’)

R6 Each wireless node updates its parameters according to
the commands at run time.

R7 Each wireless node initializes and starts its task by itself
when it is powered on.

R8 The running status is displayed by Led light.

R9 Since wireless nodes are powered by batteries, a
reasonable sampling rate and transmitting rate need to be
carefully selected to reduce energy consumption and
maintain satisfying accuracy.

R10 Because resources, memory, and CPU ability in each
node are highly limited, the routing table in each node
needs to be small enough while providing an efficient
route to the base.

4.2 Software Slots
As the Surge system does not involve inheritance, the proposed
software-slot-oriented process is applicable to its design.
Corresponding to the ten requirements given in Table 3, software
slots are defined at the architecture level, and listed in Table 4. In
the table, there is no difference between in-slots and out-slots
because any slot has in and out features at the same time for the
Surge system. The last column of Table 4 matches the designed
software slots with the original requirement(s).

Table 4: Software Slots of Surge

Group Slot type Functionality R

Get-
Data

Sync-
Slot

Retrieve light data
from sensor

R1 ADC

Data-
Ready

Async
-Slot

Indicate light data are
ready

R1

Get-
Parent

Sync-
Slot

Get the node's parent
address

R4

Get-
Depth

Sync-
Slot

Get the node's depth
in the routing tree

R4

Get-
Sender

Sync-
Slot

Get the previous hop
sender

R4

Set-

Update-

Interval

Sync-
Slot

Get the update period
of a routing table

R4

Route

Control

Manual-
Update

Sync-
Slot

Update the routing
table when necessary

R4,
10

Send Sync-
Slot

Transmit data to the
node’s neighbor

R2,3 Send

Send-
Done

Async
-Slot

Indicate sending
completeness

R2,3

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

Table 4: Software Slots of Surge (Cont’)

isActive Sync-
Slot

Indicate a valid route R4

Select-
Route

Sync-
Slot

Select a route and fill
such info. to a packet

R4

Route

Select

Init-
Fields

Sync-
Slot

Initialize a entry of
the routing table

R4

Group Slot type Functionality R

Receive Receive Async
-Slot

Indicate the address
of received data
buffer

R2,3
,5,6

Start Sync-
Slot

Start timer R1,9

Stop Sync-
Slot

Stop timer R1,9

Timer

Fired Async
-Slot

Indicate if the timer
triggers an event.

R1,9

Init Sync-
Slot

Initialize Led R8

Ledon Sync-
Slot

Power on Led R8

Ledoff Sync-
Slot

Power off Led R8

Led

Led-
toggle

Sync-
Slot

Toggle Led R8

Init Sync-
Slot

Initialize component R7

Start Sync-
Slot

Start component R7

Std-

Control

Stop Sync-
Slot

Stop component R7

4.3 Software IC
At the development level, five software ICs are selected from the
tinyOS components library to fulfill the functionalities defined in
the software slots. They are Photo, Bcast, Ledc, TimerC, and
MultiHopRouter. A new software IC, namely SurgeM, is then
developed to build a new system with the five selected software
ICs. SurgeM works as the central software IC in the system. Each
of its interface in-pins (out-pins) has at least one out-pin (or in-pin)
belonging to the five software ICs in the component library. In
addition, it defines two In-Attribute pins, samlpingRate and
transmisionRate, to fine tune system performance.
Details of the selected and designed software ICs are listed in
Table 5. It is noted that every software IC has StdControl software
Pins, which has three In-SynPins, i.e., init, start, and stop.
StdControl takes similar format as the other software ICs, and
therefore is not listed in the table to reduce table length for
concise illustration.

Table 5: Software ICs in Surge System
Name Pins Type Group

getData In-SyncPin Photo
dataReady Out-AsyncPin

ADC

Bcast receive Out-AyncPin Receive
ledon In-SyncPin
Ledoff In-SyncPin

Ledc

ledtoggle In-SyncPin

Led

start In-SyncPin
stop In-SyncPin

TimerC

fire Out-AsyncPin

Timer

Send In-SyncPin Send
Receive Out-AsyncPin Receive

getParent In-SyncPin

getDepth In-SyncPin

getSender In-SyncPin

setUpdateInteval In-SyncPin

Multi
Hop
Router

manualUpdate In-SyncPin

Router
Control

getData Out-SyncPin
dataReady In-AsyncPin

ADC

receive In -AyncPin Receive
ledon Out -SyncPin
Ledoff Out -SyncPin
ledtoggle Out -SyncPin

Led

start Out -SyncPin
stop Out -SyncPin
fire In -AsyncPin

Timer

Send Out -SyncPin Send
Receive In -AsyncPin Receive

getParent Out -SyncPin

getDepth Out -SyncPin

getSender Out -SyncPin

setUpdateInteval Out -SyncPin

manualUpdate Out -SyncPin

Router
Control

samlpingRate In-Attribute

SurgeM

transmisionRate In-Attribute

4.4 Multi-level Software IC

Among the six software ICs, MultiHopRouter manages the
routing table, which is the essential data structure of the Surge
system. Due to the complexity of routing protocol and the fact that
the tinyOS Component library does not have existing components

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

to use, MultiHopRouter is designed as multi-level software IC. It
consists of five smaller components that comes directly from
tinyOS component library and connects through pre-defined
software slots. The internal structure of multi-level software IC is
illustrated in Figure 5.

4.5 System Establishment
After the selection and design of software slots and software ICs
in the previous steps, the software ICs can then be connected with
software slots to fulfill the functionality of the system. A design
diagram is illustrated in the Figure 6.
Similar to the practice of Printed Circuit Board (PCB), the design
diagram of Surge clearly describes the components. In addition,
the construction of software ICs and software slots matches with
system requirements. Further adjustment to the behavior and
performance of Surge can be made by configuring two In-
Attribute software pins: samplingRate and transmissionRate. As
illustrated in Figure 6 and described in Table 5, TimerC and LedC
are two reusable components that can be used in any wireless
sensor networks application that needs a timer and shows the
internal status with a Led light. Meanwhile, if another timer
component is developed, it can replace TimerC as long as they
have the same software pins. Therefore, the revised Software IC
explicitly indicates the reusability and exchangeability of the
software system under construction.

5 Conclusions and Future Works
This paper introduces Software IC to the design of component-
based software systems. By revising Software IC with three new
visualization notations, it develops a new approach of designing
component-based software systems with software slots. In
comparison to UML 2.0, the proposed software-slot-oriented
design strategy captures the characteristics of component-based or
COTS-based technologies. The use of software slots introduces
requirements directly into the design of component-based system,
and allows architects to focus on the system frameworks without
too much concern about components themselves. The efficiency
and applicability of the proposed design strategy are illustrated
with a case study of a practical component-based system.

Instantiation and inheritance imposes limits to Software IC. As
component-based technologies allow the initiation of components
before being introduced to software design, it does not really limit
the applicability of Software IC in component-based software
development. Inheritance, however, breaks down encapsulation,
which is fundamental to the revised Software IC. There is no
problem to use the revised Software IC for the development of
software based on the popular service-oriented architecture (SOA)
as SOA does not support inheritance between services. When
applying the revised Software IC in the design of component-
based software systems, inheritance will have to be limited within
the scope of components.

Although the revised Software IC does not support inheritance
and instantiation, it can be extended with more notations to

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

describe component-based software design with more accuracy.
Software IC, however, cannot describe all features involved in the
design of component-based systems, such as state machine, time
sequences, etc. As UML is being upgraded to support the practice
of component-based technologies, the revised Software IC
provides a complimentary set of notations to the new UML. A
combination with the multiple notations of UML will help to
overcome the deficiency of the revised Software IC.

6 Acknowledgments
This work was supported by Natural Sciences and Engineering
Research Council (NSERC) of Canada.

References
[1] C. Szyperski, Component software: Beyond Object-Oriented
Programming, 2nd ed. Addison-Wesley, 2002.
[2] Heineman, George T., Councill, William T., Component-
Based Software Engineering: Putting the Pieces Together,
Addison-Wesley，2001.
[3] A. Wang, K. Qian, Component-Oriented Programming, 1st ed.,
Wiley-Interscience, 2005.
[4] S. Chatterjee, J. Webber, Developing Enterprise Web Services:
An Architect's Guide, Prentice-Hall, 1st Edition, 2003.
[5] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler,
TinyOS: An Operating System for Sensor Networks, in Ambient
Intelligence, Page(s): 115–148, 2005.
[6] J. Mykkänen, M. Sormunen, K. Karvinen, T. Tikkanen, S.
Päiväniemi, Component and Service Technology Families,
Studies and Reports of the PLUGIT project 1, Kuopio, 2004.
[7] N.-N. Savino-Vazquez, R. Ruigjaner, A UML-based method
to specify the structural component of simulation-based queuing
network performance models, In Thirty-Second Annual
Simulation Symposium, 1999, Page(s): 71-78.
[8] S. Lee, Y. Yang, F. Cho, S. Kim, S. Rhew, COMO: a UML-
based component development methodology, In Proceedings of
Sixth Software Engineering Conference (APSEC '99), 1999,
Page(s): 54 – 61.
[9] J. Grundy and R. Patel, Developing Software Components
with the UML, Enterprise Java Beans and Aspects, 13th
Australian Software Engineering Conference (ASWEC'01),
Australian,27-28 Aug. 2001 Page(s):127 - 136.
[10] OMG, Unified Modeling Language: Superstructure,
http://www.omg.org/technology/documents/formal/uml.htm, 2004.
[11] J. Cheesman, J. Daniels, UML Components, A simple
process for specifying component-based software, Addison-
Wesley, 2001.
[12] R. Marvie, P. Merle, CORBA Component Model: Discussion
and Use with OpenCCM, Technical report, Laboratoire
d'Informatique Fondamentale de Lille (LIFL), 2001.
[13] D.F. D’Souza and A.C. Wills, Objects, Components, and
Framework with UML: The Catalysis Approach, Addison-Wesley,
1999.

[14] L. Ledbetter, B. Cox, Software-ICs: A Plan for Building
Reusable Software Components, Byte, 10(6): 307-316, 1985.
[15] J. Fagerstrom, Design and test of distributed applications,
Proceedings of the 10th international conference on Software
engineering, April 11-15, 1988, Singapore, Page(s): 88-92.
[16] T. L. Chen, W. Sobkiw, Binding as a Mechanism to Support
Resuability in a Distributed Ada Communications System, In
Proceedings of the sixth Washington Ada symposium on Ada
table of contents, ACM Press, 1989, Page(s): 155-162.
[17] J. Lin, Cross-platform software reuse by functional
integration approach, in Proceedings of COMPSAC '97, 1997,
Page(s): 402-408.
[18] Solu Corp., TLMP: The software IC concept, Available at
http://www.solucorp.qc.ca/tlmp/components.hc?webstep=5.
[19] J. Gosling, Java Intermediate Bytecodes, ACM SIGPLAN,
Workshop on Intermediate Representations (IR '95), 1995,
Page(s): 111-118.
[20] W. Tracz, Software Reuse Myths Revisited, International
Conference on Software Engineering, In Proceedings of the 16th
international conference on Software engineering (ICSE'94), 1994,
Page(s): 272-273.
[21] C. Szyperski, Component software: Beyond Object-Oriented
Programming, 2nd ed. Addison-Wesley, 2002.
[22] Xiaobu Yuan, Shangwei Duan, Zhiyong Liu, Explore robust
component-based system, International Conference on Software
Engineering, Proceedings of the 2006 ACM international
workshop on Software quality, May 2006,Shanghai, Pages: 75-80.

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: UNIVERSITY OF WINDSOR. Downloaded on October 28, 2008 at 22:24 from IEEE Xplore. Restrictions apply.

