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Abstract 
 
By investigating the failure of Software IC in object-oriented 
technology and studying the characteristics of component-based 
or COTS-based software technologies, this paper revises Software 
IC and develops a software-slot-oriented strategy for the design of 
component-based software systems. This new strategy introduces 
requirements directly into the design of component-based systems, 
and allows architects to focus on system frameworks without too 
much concern about components. This work provides a 
mechanism to deal with the increasingly complex interface logics 
of COTS systems, and suggests a possible guidance for 
component standardization. Effectiveness and availability of the 
proposed approach are illustrated with a case study that applies 
the software-slot-oriented design on a practical component-based 
software system. 

1 Introduction 
 
Component-based software technology (CBST) is a new software 
paradigm that has attracted huge attention from both the academic 
and industrial communities. By producing application systems 
with pre-constructed software pieces, CBST promises the benefits 
of accelerated software development, reduced costs, higher 
reusability, and greater flexibility [1].  In responding to the great 
potentials of CBST, several commercial off-the-shelf (COTS) 
products for the construction of component-based software 
systems have been introduced to the market [2]. These products 
include Enterprise JavaBeans (EJB) by Sun Microsystems Inc. 
and Common Object Request Broker Architecture (CORBA) by 
the Object Management Group. At the mean time, Microsoft 
Corporation put forward its products of Component Object Model 
(COM), Distributed Component Object Model (DCOM) 
and .NET.  
However, many fundamental issues of CBST remain unsolved, 
from both the theoretical and practical points of view. In addition 
to the unjustified borrowing of ideas from the existing object-
oriented (OO) technology in the practice of component-based 
software development, there has been no consensus even 
regarding the definition of components [3]. Different component 
infrastructures, as introduced with EJB, COM/DCOM/.NET, 
CORBA, and Web Services by different companies or groups, add 
further confusion to CBST. Although there are interoperations 
among these infrastructures, there is no sign of a united 
component infrastructure, at least in the near future. Despite the 
limited success of extensions to the United Model Language 
(UML) for components modeling, visually modeling of 
component-based software systems with different component 

infrastructure is one of the most difficult and challenging subjects 
in Component-based Software Engineering. 
In principle, a component infrastructure consists of three models: 
a component model, a connection model, and a deployment model 
[3]. Among the three models, the component model defines 
characters of a standalone component, the connection model 
defines the ways how components are integrated, and the 
deployment model describes the methods how an existing 
component-based system works in a practical working 
environment. In comparison with the other two models, the 
connection model is more important as components are pre-
developed in COTS systems. In addition, a specific working 
environment is beyond the scope of model design. The focus of 
this paper is therefore on the connection model for COTS 
software systems.  
Existing component models treat components as either abstract 
entities, such as class, or concrete entities, such as objects. For 
EJB and .NET, components evolve directly from OO technology. 
They are more like special classes that have abstract descriptions 
and can be instantiated later. In other models such as Web 
Services and TinyOS, components work as concrete objects and 
subsystems without instantiation [4] [5]. It becomes more 
adequate for connection models to model components as concrete 
entities when different instances of the same abstract entities may 
communicate and interacts. These instances differ in their internal 
statuses and external configurations. As a result, connection 
models need also to have the mechanism to represent these 
components and their interactions.  
COTS components are usually developed by third party vendors 
and released in binary codes. They work as black boxes. However, 
inheritance is referred as the white boxes adaptation [6]. 
Inheritance is not suitable for COTS-based system modeling 
because it requires system designers to understand the internal 
implementations of inherited components. To complement the 
loss of reusability without inheritance, COTS systems support 
wrapping interfaces and more flexible configuration [6]. In such a 
sense, reusability in component-based software systems is at a 
higher and coarser level than in OO systems. CBST helps to 
greatly reduce the complexity and flexibility of software systems 
with the sacrifice of certain level of reusability. 
In light of the difficulty of providing visualization tools to support 
different models of component-based software development and 
based upon the observations of CBST, especially COTS, 
characteristics, this paper investigates the application of Software 
IC in CBST. The remaining of the paper is structured in such a 
way that, after a brief survey of prior works in Section 2, Section 
3 first discusses the introduction of three new notations to revise 
Software IC for component-based technology. It then proposes a 
new strategy of component-based software design with software 
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slots, and describes the steps involved in the designing process. 
Afterwards, Section 4 thoroughly studies the proposed notations 
with a practical component-based system. Conclusions and future 
works are presented at the end of the paper. 
 

2 Related Works 
 
This section highlights current work on component-based 
software visualization model and prior work on Software IC as 
they motivate and shape up the work of this paper. 
 

2.1 Component-based Software Visualization 
In general, there are two types of modeling methods for the 
representation of a software system, i.e., visualization models and 
symbolic models. A visualization model consists of self-
explanatory graphical notations, which are easy for human beings 
to understand but difficulty for computers to process. In 
comparison, symbolic models have well-defined properties for 
computerized processing, and therefore are ready to be integrated 
into the process of components discovery and selection. Symbolic 
languages, however, are difficult for human beings to understand. 
As a result, software designers tend to choose a visualization 
model in the design phase, and use a symbolic model as an 
auxiliary tool in practice.  
Due to the current practice in software industry, most of the work 
on component-based software visualization has been focused on 
extending UML for the use with component models. Savino-
Vazquez and R. Ruigjaner presented a domain extension, termed 
DExOM/UML, as a formalism of HOOMA to represent both the 
architecture and interaction aspects of a component-based system 
[7]. Lee worked on the effectiveness of component modeling, and 
extended UML component diagrams with added message flows 
and classes [8]. J. Grundy and R. Patel extended UML to facilitate 
aspect-oriented component design, and used EJB to implement 
these designs [9]. To keep up with demands while maintaining the 
uniformities of UML, the latest version UML 2.0 officially 
proposed a component model as a specialized class model that has 
an external specification in the form of one or more provided and 
required interfaces [10].  
The revised specification of UML and its extensions provide 
features to model some aspects of components and frameworks.  
However, they suffer from the problems of vague semantics in the 
construction of components, and overlapped semantics in 
classifiers, such as components, classes, and subsystems. The 
distinction between classes and objects are well known in OO 
technology, but it is not clear yet in CBST. It is unclear, for 
instance, components should be instantiated or not. UML 2.0 
obviously treats components as classes. It works very well for 
components evolved from classes, but it is not suitable for such 
components as subsystems that may not be instantiated and do not 
support inheritance. This dilemma was observed by Cheesman 
and Daniels [11]. When they were creating a diagram of 
component object architecture to specify the relationship and 
interactions among instances of class-like components or 
subsystems-like components, the UML diagram behaved more 
like the variations of class diagram. Moreover, abstract class 
components must not appear in the diagrams of component object 
architecture, but this point was omitted regrettably. The diagram 

they created was finally rejected by UML 2.0 as an invalid 
diagram. 
There are also a few efforts to work on component-based software 
visualization models outside the UML campus. CORBA 
Component Model (CCM), for example, proposed four types of 
ports: “facets”, “receptacles”, “event source”, and “event sinks” 
[12]. It uses facets and receptacles to describe provided and 
required interfaces, and uses event sources and event sinks to 
handle asynchronous communications between two components. 
Other types of connections are also possible, including the 
connections from a “facet” to a “receptacle” and from an “event 
source” to an “event sink”. Port connections work well in CCM 
for the modeling of component communication. 
Nevertheless, UML, current UML extensions, and the other 
software visualization models, including CCM, fail to model the 
basic characteristics of component-based systems, especially in 
the construction of COTS-based systems. These models work 
only on the architecture of component-based system with class-
like diagrams. Although components follow objects’ principle of 
integrating functions and related data, they are actually different 
from objects. The most important difference is that components 
are exchangeable when laid out in component-based systems. 
Component-based systems should make managing changes as the 
first concern [11]. Difference in reusability is also important, but 
it is not as important as exchangeability because component-based 
systems are built with pre-manufactured components. The 
designers of component-based systems care about the use of 
components, instead of the development of actual components. 
This is especially true for COTS-based systems.  
When dealing with the abstraction of exchangeability, the concept 
of software contracts stands out as a good candidate for 
exchangeability representation. Software contracts define the rules 
and functionalities that all components in a system need to obey 
and provide. In other words, any component can be replaced in 
the system if its replacement obeys the same rules and 
functionalities. The concept of software contracts has been 
applied to the component world by Catalysis [13] in 1999 and 
further developed in the book by Cheesman and Daniels [11]. 
Their work demonstrated the great impact that software contracts 
have on component-based software systems, but none of them 
came close to the application of software contracts in the 
modeling of component-based software system design. Without 
new notations, the modeling of general components with software 
contracts remains at the conceptual level. Proper legends have to 
be created as part of the visualization model for component-based 
software systems, which leads to the investigation into Software 
IC. 
 

2.2 Software IC 
The term of Software IC stands for software integrated circuit. It 
was originally proposed as a design model to build reusable 
software components for OO software systems [14]. In its original 
introduction, a software IC is composed of a set of reusable 
objects in format of black boxes that are interweaved according to 
the specific connection standards. The fact that objects 
communicate by message passing plays a key role in Software IC. 
Motivated by the success of reusability concept in hardware 
integrated circuits, Software IC tries to minimize the cost of 
software development by promoting the reusability of objects in 
object-oriented design.  
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After the conceptual introduction of Software IC, several software 
researchers investigated details of its application in OO software 
development. Fagerstrom developed a control unit to build a 
software IC structural model to describe the logical relationships 
between components in a distributed system [15]. Chen and 
Sobkiw extended the concept of Software IC by suggesting object 
binding to support system reusability [16]. Lin even defined 
software pins and a specification language to describe relationship 
in the design of Software IC [17]. Software IC library and TLMP 
are also developed as implementation of this model [18].  
Further investigation soon uncovered a fatal problem of Software 
IC in OO software development, i.e., the so-called fragile base 
class problem [19]. This problem limits the correctness of 
Software IC to only those cases when software interfaces can be 
defined as crisply as hardware interfaces [20]. The main reason 
behind this problem is that the fundamental encapsulation of 
circuit chips breaks down in OO software due to inheritance. An 
integrated circuit board is flat with all chips at the same level on 
the board, thus any changes of internal implementation of one 
chip will not promulgate to other chips. However, inheritance in 
OO places software objects at multiple levels, and changes of 
internal implementation at higher levels (super classes) may be 
transferred downstream to the lower levels (subclasses). It is a 
paradox that inheritance, as originally designed to introduce 
reusability, becomes the main reason that put an end to the 
development of a model that promotes reusability -- Software IC. 
After the discovery of the fragile base class problem, the term of 
Software IC disappeared almost completely from the literature. 
One other important reason for the failure of Software IC in OO 
technology is the confusion between classes and objects [21]. 
Similar to hardware chips and integrated circuits, software ICs 
should not be meta-products but final products. It means that the 
basic pieces in a software IC model are concrete entities, more 
like the instances of classes. Although the relationships between 
classes are easier to represent than objects as the number of 
objects is much greater and their relationships are more complex, 
the confusion of classes and objects in Software IC fails to capture 
the characteristics of both hardware and software. Besides, there 
is also another important reason, i.e., the complexity and 
flexibility of OO systems. As an OO system normally consists of 
hundreds of objects and thousands of interactions, the varieties of 
objects and relationships among them are beyond the 
representative capability of integrated circuit.  
 

3 Component-Based Software Design with 
Revised Software IC 

 
This section revises Software IC with three new graphic notations, 
and develops a software-slot-oriented strategy to help software 
architects designing the architecture of component-based software 
systems by matching components with user requirements.  

3.1 Revision of Software IC 
Encapsulation is fundamental in Software IC. As a software IC 
specifies a border around an arbitrary set of processes, objects, or 
routines, it is referred to by the border and name associated with it. 
The effluences of processes, objects, and routines are limited 
within the scope of a particular software IC, which is similar to 
the mechanism of name space in OO technology. To apply the 

concept of Software IC, this paper considers a software IC as a 
static, language-independent software entity with no instantiation 
or inheritance. A software IC consists of a set of independent 
processes, objects, or routines encapsulated in a black box. To 
revise Software IC and allow component-based software 
architects and developers to create illustrative diagrams, the 
following discussions introduce three new graphic notations.  

These three new notations are software ICs, software pins, and 
software slots. In analogue to pins of an electronic chip, a 
software IC uses software pins for input and output operations. A 
software pin models the interface prototypes of a software IC. 
Correspondingly, a typical software pin has three characteristics. 
The first characteristic is Pin ID that gives the name or 
identification of a pin, and the second is Data Stream that models 
data conveyed across software pins between two software ICs. 
The data stream could be simple data, such as integer and 
characters, or complex data, such as structured records or 
multimedia data. Figure 1 illustrates a typical software IC with 
different types of software pins.  

The last one, which is also the most important, is Pin type. A Pin 
type classifies a pin to be either an attribute pin or an interface pin. 
Attribute pins model public properties of software ICs, and are 
divided into two sub-types as In-attribute and Out-attribute. The 
former is for configuration, and the latter is for query of internal 
status. In comparison, Interface pins model the external behaviors 
of software ICs, and define their operations as well. According to 
operation direction and the way to coordinate two software ICs, 
Interfaces pins are further divided into four sub-types that 
describe different communications. They are In-Sync, Out-Sync, 
In-Async, and Out-Async. The functionalities of software pins are 
listed in Table 1.  

3.2 Software Slots 
A software IC is in effect only when it interacts with other 
software ICs through software slots in the system. A software slot 
is a special entity responsible for linking and un-linking software 
ICs, and it abstracts and models system framework in the format 
of software pins. A software slot connects software ICs by their 
interface pins. Similar to software interface pins, software slots 
also have four sub-types: In-SyncSlot, Out-SyncSlot, In-
AsyncSlot, and Out-AsyncSlot. The functionality of slots and the 
relationships of slots and pins are listed in Table 2. Figure 2 
illustrates a diagram of software slots linking two software ICs. 

The multiplicity of association relationship of In-SyncSlot (In-
AsyncSlot) and Out-SyncSlot (Out-AsyncSlot) is one to many or 
many to one. In this revised Software IC, if one pin inserts into an 
In-SyncSlot (In-AsyncSlot), at least another pin must insert into 
its corresponding Out-SyncSlots (Out-AsyncSlots). This 
restriction corresponds to the fact that if one interface is used, this 
interface must be implemented at least once or vice versa in a 
practical system. Furthermore, the pins inserted into the 
corresponding slots of one slot could be from different software 
ICs. This mechanism provides a way to achieve polymorphism of 
software ICs in component-based software technology. In other 
words, although an Out-Sync (Out-Aysnc) software pin of a 
software IC can only be inserted into one slot, it may have 
multiple corresponding slots, thus have multiple corresponding In-
Sync (In-Aysnc) pins on the other side. It means that an interface 
used by a component could be implemented by two or more 
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components based on different data streams or configuration of 
software ICs. 

 Table 1: Functionalities of software pins 
Type Sub-type Functionality 

In Configures public parameters of 
software ICs to adjust their 
behaviors and performance. 

Attribute 

Out Outputs the internal status of 
software ICs to monitor their 
behaviors and performance. 

In-Sync Methods implemented by 
software IC and they return the 
value only after they complete.  

Out-Sync Methods used by software ICs 
and they receive the return value 
only after their In-Sync 
counterparts complete. 

In-Asyn Events implemented by software 
ICs without return value. 

 
Interface 

Out-
Async 

Events used by software ICs 
without return value. 

 
Table 2:  software slots and software pins 

type   Slot Pin Functionality 

1 In-SyncSlot In-Sync Model providing methods  

2 Out-
SyncSlot 

Out-
Sync 

Model using commands 

3 In-
AsyncSlot 

In-Async Model providing events 

4 Out-
AsyncSlot 

Out-
Async 

Model using events 

 

3.3 Multi-level Software IC 
The encapsulation characteristic of software slots allows the 
design of multi-level software ICs, in which two or more software 
ICs can be grouped together though software slots or one software 
IC is wrapped with additional codes. A multi-level software IC 
works as a new software IC from an external view. This 
mechanism empowers the revised Software IC with higher level 
of reusability, and provides flexible usability of software ICs. The 
diagram of a multi-levels software IC is illustrated in Figure 3. 
Multi-level software IC does not break the encapsulation because 
all software ICs in one diagram only interact with each other at 
the same level. The internal software ICs, slots and additional 
codes are transparent to the external software ICs and slots. 
Actually, the use of multi-level software ICs increases the 
usability of software ICs, which is further discussed in Section 3.5. 

 
 

 

3.4 The Process of Software Slot Oriented Design 
Supported by notations of the revised Software IC, software 
design based on software slots takes the following five steps. 
(1) Select appropriate component-based technologies. If the 

chosen technology cannot avoid inheritance, architects 
should resort to another choice.  

(2) At the architecture level, design or select software slots 
from the software slots library, with the support of 
multiplicity relationships for In-SyncSlot and Out-SyncSlot, 
or In-AsyncSlot and Out-AsyncSlot.  

(3) At the development level, select software IC (components) 
from software IC (components) libraries based on the 
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selected software slots in the previous step if they are 
available, and develop them otherwise.  

(4) Design multi-level software ICs, if possible, to use a group 
of components as a whole or add extra functionalities for a 
component. It is noted that all class-like components, no 
matter if they are selected or designed, must be instantiated 
before use.  

(5) Link software ICs with software slots to accomplish 
anticipated interactions among software ICs in the system. 

In the designing process, the design of software slots in the second 
step is the key in an interface-oriented design, which gives the 
name of this process as software-slot-oriented design. The 
framework of a system can be established only after the design of 
software slots. Software slots could be designed by software 
architects or selected from standard slot libraries. At the beginning 
stage of a component-based technology, most of software slots are 
designed by architects according to the functionalities of 
requirements. When the development of component-based 
technology reaches more advanced stages and when 
standardization of slots is mature, more software slots will come 
from standard libraries. 

 

3.5 Discussions 
The new notations introduced with the revised Software IC are 
simple in illustration, yet they capture well the characteristics of 
component-based development in all the aspects as listed below. 

• Procurement-centric. It is a big shift from development 
centric in object-oriented development to procurement-
centric in component-based development. This shift makes 
the selection/integration of components or COTS a 
distinguished phase of component-based development. The 
class diagrams and component architecture diagrams of 
UML 2.0 cannot cover this activity of component-based 
development. Nevertheless, the revised Software IC provides 
software slots to model system framework in analysis, and 

software ICs and software pins to model components and 
their interfaces in implementation. The selection/integration 
of components or COTS becomes a unique phase of the 
software-slot-oriented design process that uses the 
plugging/unplugging of software pins into/out from software 
slots to model the matching of components and requirements. 
A qualified software IC must have at least one software pin 
for it be plugged into a software slot, and the linked software 
ICs must have at least one software pin matching with the 
software pin of this software IC. 

• Exchangeability. Exchangeability is the most important in 
component-based or COTS-based systems. In the revised 
Software IC, a software IC can be replaced by any other 
software IC(s) as long as the replacing software IC(s) has 
(have) software pins to cover all the useful software pins of 
the replaced software IC. A useful software pin refers to a 
software pin being inserted into a software slot in the system, 
and a software pin is replaceable when it has the same 
functionalities as another software pin. This exchangeability 
is partly expressed in UML component diagrams with its 
ports, connectors, and interfaces, but this expression ability is 
greatly enhanced with the help of software slots.  

• Standardization. The use of software slots makes it possible 
to standardize component interfaces with software pins. In a 
component-based system, most of the functionalities are 
either shared within the infrastructure of a component 
technology family or common with other component 
technologies. Those are the candidates that should be 
standardized at the family or universal level. The revised 
Software IC provides the tool for standardization as 
standardized software slots can be used to models 
standardized functionalities. Software pins can also be 
standardized accordingly based on their corresponding 
software slots.  

• Configuration. Configuration presents a special meaning in 
component-based or COTS-based systems when components 
work as black boxes that cannot be optimized in the code 
level or internal mechanism [22]. In addition, the variations 
of component-based system are made by means of different 
configurations [13]. While UML 2.0 ignores the 
configuration issue of components, the revised Software IC 
provides a mechanism to deal with this issue with attribute 
software pins. 

• Reusability and usability. As discussed in Section 1, in 
comparison to objects, components lose some reusability for 
the coarser and higher granularity. It is also worthwhile to 
point out that components actually have higher usability than 
objects for the same reason. Reusability and usability form a 
contradictory pair, and there is currently no optimal 
granularity degree that balances both the reusability and 
usability for a given system. It is the high complexity of 
software systems that makes it extremely difficult for any 
attempt to quantitatively calculate such a degree. In the 
revised Software IC, however, it becomes feasible to provide 
a method for component-based software designers to 
qualitatively achieve such a degree by manually balancing 
the reusability and usability for one or a group of 
components in a system. The mechanism of multi-level 
software ICs permits software ICs and slots to form a greater 
software IC when a group of components needs to increase 
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its usability. The usability of a component can also be 
increased by wrapping with additional codes. Increased 
reusability is achieved when software pins of a software IC 
are used separately.  

There is a fundamental difference between the current UML 2.0 
and the revised Software IC. While the former focuses on the 
relationships among components, the latter focuses on the 
relationships between requirements and components. The revised 
Software IC has no intension to either redesign the comprehensive 
modeling ability of UML or replace UML in component-based 
system design. Instead, it uses software slots to separate the work 
of software design into the work on framework and components, 
thus transferring the task of architects from designing a whole 
system to designing software slots. It also allows component-
based software developers to concentrate working on software 
development by selecting appropriate software ICs and software 
IC pins for implementation. 

4 Case Study 
 
This section presents a case study, which goes through in detail 
the process of software-slot-oriented design with a component-
based software system, called Surge.  

4.1 System Overview and Requirements 
Surge is a network application whose local hosts collect data, such 
as light strength and temperature, from wireless sensor nodes 
located at different locations. At the same time, the system 
receives commands from local hosts, and broadcasts them within 
the entire wireless sensor networks. Surge is developed under the 
infrastructure of tinyOS [5], and tinyOS is a component-based 
embedded and real-time operating system developed by 
University of California at Berkeley. In tinyOS, components work 
as subsystems and cannot be instantiated and inherited. Listed in 
Table 3 is a set of ten requirements of the Surge system, in which 
the first eight are functional and the last two are non-functional 
requirements. 

Table 3:   Requirements List 

R1 Each wireless node samples data from its sensor 
periodically according to the pre-defined interval. 

R2 Raw data is conveyed to a based node that connects to a 
local host with wired lines. 

R3 Each wireless node, except the central node, works as 
switch node to transfer data from one of its neighbors to 
another neighbor who is responsible for re-transfer the 
data to the base node. 

R4 Each wireless node maintains a routing table to switch 
data and update this table in case of topology changes. 
Through the routing table, all nodes in the Surge system 
form a routing tree rooted in the based node. 

R5 Each wireless node receives the commands from the 
local host to broadcasts to its neighbors. 

 

 

 

Table 3: Table 3:   Requirements List (Cont’) 

R6 Each wireless node updates its parameters according to 
the commands at run time. 

R7 Each wireless node initializes and starts its task by itself 
when it is powered on. 

R8 The running status is displayed by Led light. 

R9 Since wireless nodes are powered by batteries, a 
reasonable sampling rate and transmitting rate need to be 
carefully selected to reduce energy consumption and 
maintain satisfying accuracy. 

R10 Because resources, memory, and CPU ability in each 
node are highly limited, the routing table in each node 
needs to be small enough while providing an efficient 
route to the base. 

 

4.2 Software Slots 
As the Surge system does not involve inheritance, the proposed 
software-slot-oriented process is applicable to its design. 
Corresponding to the ten requirements given in Table 3, software 
slots are defined at the architecture level, and listed in Table 4.  In 
the table, there is no difference between in-slots and out-slots 
because any slot has in and out features at the same time for the 
Surge system. The last column of Table 4 matches the designed 
software slots with the original requirement(s). 

Table 4: Software Slots of Surge 

Group Slot type Functionality R 

Get-
Data 

Sync-
Slot 

Retrieve light data 
from sensor 

R1 ADC 

Data-
Ready 

Async
-Slot 

Indicate light data are 
ready 

R1 

Get-
Parent 

Sync-
Slot 

Get the node's parent 
address 

R4 

Get-
Depth 

Sync-
Slot 

Get the node's depth 
in the routing tree 

R4 

Get-
Sender 

Sync-
Slot 

Get the previous hop 
sender 

R4 

 

Set- 

Update- 

Interval 

Sync-
Slot 

Get the update period 
of a routing table 

R4 

 

Route 

Control 

Manual-
Update 

Sync-
Slot 

Update the routing 
table when necessary 

R4,      
10 

Send Sync-
Slot 

Transmit data to the 
node’s neighbor 

R2,3 Send 

Send-
Done 

Async
-Slot 

Indicate sending 
completeness  

R2,3 
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Table 4: Software Slots of Surge (Cont’) 

isActive Sync-
Slot 

Indicate a valid route R4 

Select-
Route 

Sync-
Slot 

Select a route and fill 
such info. to a packet 

R4 

Route 

Select 

Init-
Fields 

Sync-
Slot 

Initialize a entry of 
the routing table 

R4 

Group Slot type Functionality R 

Receive Receive Async
-Slot 

Indicate the address 
of received data 
buffer 

R2,3
,5,6 

Start Sync-
Slot 

Start timer R1,9 

Stop Sync-
Slot 

Stop timer R1,9 

Timer 

Fired Async
-Slot 

Indicate if the timer 
triggers an event. 

R1,9 

Init Sync-
Slot 

Initialize Led R8 

Ledon Sync-
Slot 

Power on Led R8 

Ledoff Sync-
Slot 

Power off Led R8 

Led 

Led-
toggle 

Sync-
Slot 

Toggle Led R8 

Init Sync-
Slot 

Initialize component R7 

Start Sync-
Slot 

Start component R7 

Std- 

Control 

Stop Sync-
Slot 

Stop component R7 

 

4.3 Software IC 
At the development level, five software ICs are selected from the 
tinyOS components library to fulfill the functionalities defined in 
the software slots. They are Photo, Bcast, Ledc, TimerC, and 
MultiHopRouter. A new software IC, namely SurgeM, is then 
developed to build a new system with the five selected software 
ICs. SurgeM works as the central software IC in the system. Each 
of its interface in-pins (out-pins) has at least one out-pin (or in-pin) 
belonging to the five software ICs in the component library. In 
addition, it defines two In-Attribute pins, samlpingRate and 
transmisionRate, to fine tune system performance.  
Details of the selected and designed software ICs are listed in 
Table 5. It is noted that every software IC has StdControl software 
Pins, which has three In-SynPins, i.e., init, start, and stop. 
StdControl takes similar format as the other software ICs, and 
therefore is not listed in the table to reduce table length for 
concise illustration. 
 

Table 5:  Software ICs in Surge System 
Name Pins Type Group 

getData In-SyncPin Photo 
dataReady Out-AsyncPin 

ADC 
 

Bcast receive Out-AyncPin Receive 
ledon In-SyncPin 
Ledoff In-SyncPin 

 
Ledc 

ledtoggle In-SyncPin 

 
Led 

start In-SyncPin 
stop In-SyncPin 

 
TimerC 

fire Out-AsyncPin 

 
Timer 

Send In-SyncPin Send 
Receive Out-AsyncPin Receive 

getParent In-SyncPin 

getDepth In-SyncPin 

getSender In-SyncPin 

setUpdateInteval In-SyncPin 

 
 
Multi 
Hop 
Router 

manualUpdate In-SyncPin 

 
 
Router 
Control 

getData Out-SyncPin 
dataReady In-AsyncPin 

ADC 

receive In -AyncPin Receive 
ledon Out -SyncPin 
Ledoff Out -SyncPin 
ledtoggle Out -SyncPin 

 
Led 

start Out -SyncPin 
stop Out -SyncPin 
fire In -AsyncPin 

 
Timer 

Send Out -SyncPin Send 
Receive In -AsyncPin Receive 

getParent Out -SyncPin 

getDepth Out -SyncPin 

getSender Out -SyncPin 

setUpdateInteval Out -SyncPin 

manualUpdate Out -SyncPin 

 
 
Router 
Control 
 

samlpingRate In-Attribute 

 
 
 
 
 
 
 
 
SurgeM 
 
 
 
 
 
 

transmisionRate In-Attribute 

 

 

4.4 Multi-level Software IC 
 
Among the six software ICs, MultiHopRouter manages the 
routing table, which is the essential data structure of the Surge 
system. Due to the complexity of routing protocol and the fact that 
the tinyOS Component library does not have existing components 
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to use, MultiHopRouter is designed as multi-level software IC. It 
consists of five smaller components that comes directly from 
tinyOS component library and connects through pre-defined 
software slots. The internal structure of multi-level software IC is 
illustrated in Figure 5. 
 

 

4.5 System Establishment 
After the selection and design of software slots and software ICs 
in the previous steps, the software ICs can then be connected with 
software slots to fulfill the functionality of the system. A design 
diagram is illustrated in the Figure 6. 
Similar to the practice of Printed Circuit Board (PCB), the design 
diagram of Surge clearly describes the components. In addition, 
the construction of software ICs and software slots matches with 
system requirements. Further adjustment to the behavior and 
performance of Surge can be made by configuring two In-
Attribute software pins: samplingRate and transmissionRate. As 
illustrated in Figure 6 and described in Table 5, TimerC and LedC 
are two reusable components that can be used in any wireless 
sensor networks application that needs a timer and shows the 
internal status with a Led light. Meanwhile, if another timer 
component is developed, it can replace TimerC as long as they 
have the same software pins. Therefore, the revised Software IC 
explicitly indicates the reusability and exchangeability of the 
software system under construction.   

 
 

 

5 Conclusions and Future Works 
This paper introduces Software IC to the design of component-
based software systems. By revising Software IC with three new 
visualization notations, it develops a new approach of designing 
component-based software systems with software slots. In 
comparison to UML 2.0, the proposed software-slot-oriented 
design strategy captures the characteristics of component-based or 
COTS-based technologies. The use of software slots introduces 
requirements directly into the design of component-based system, 
and allows architects to focus on the system frameworks without 
too much concern about components themselves. The efficiency 
and applicability of the proposed design strategy are illustrated 
with a case study of a practical component-based system.  

Instantiation and inheritance imposes limits to Software IC.  As 
component-based technologies allow the initiation of components 
before being introduced to software design, it does not really limit 
the applicability of Software IC in component-based software 
development. Inheritance, however, breaks down encapsulation, 
which is fundamental to the revised Software IC. There is no 
problem to use the revised Software IC for the development of 
software based on the popular service-oriented architecture (SOA) 
as SOA does not support inheritance between services. When 
applying the revised Software IC in the design of component-
based software systems, inheritance will have to be limited within 
the scope of components.  

Although the revised Software IC does not support inheritance 
and instantiation, it can be extended with more notations to 
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describe component-based software design with more accuracy. 
Software IC, however, cannot describe all features involved in the 
design of component-based systems, such as state machine, time 
sequences, etc. As UML is being upgraded to support the practice 
of component-based technologies, the revised Software IC 
provides a complimentary set of notations to the new UML. A 
combination with the multiple notations of UML will help to 
overcome the deficiency of the revised Software IC.  
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