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Abstract—This paper studies the user scheduling problem in
a multiuser multiple-input multi-output (MIMO) status update
system, in which multiple single-antenna devices aim to send
their latest statuses to a multiple-antenna information-fusion
access point (AP) via a shared wireless channel. The information
freshness in the considered system is quantified by a recently
proposed metric, termed age of information (AoI). Thanks to the
extra spatial degrees-of-freedom brought about by the multiple
antennas at the AP, multiple devices can be granted to transmit
simultaneously in each time slot. We aim to seek the optimal
scheduling policy that can minimize the network-wide AoI by
optimally deciding which device or group of devices to be
scheduled for transmission in each slot given the instantaneous
AoI values of all devices at the beginning of the slot. To that
end, we formulate the multiuser scheduling problem as a Markov
decision process (MDP). We attain the optimal policy by resolving
the formulated MDP problem and develop a low-complexity sub-
optimal policy. Simulation results show that the proposed optimal
and sub-optimal policies significantly outperform the state-of-the-
art benchmark schemes.

I. INTRODUCTION

The concept of age of information (AoI) has recently
attracted tremendous attention thanks to its capability of
quantifying the information freshness in various applications
involving status updates [1]–[10]. The AoI is defined as the
time elapsed since the generation time of the last successfully
received status update packet at the destination. Different from
the conventional packet-based performance metrics such as
delay and throughput, AoI is a new metric that can constantly
capture the information staleness from the perspective of the
destination.

Early work on AoI resorted to the queueing theory for ana-
lyzing the average AoI performance of point-to-point systems
with different status update generation models (e.g., generate-
at-will and stochastic arrival) and queueing disciplines (e.g.,
first-come first-serve and last-come first-serve), see [3] for a
comprehensive survey. Recent efforts on AoI have been shifted
to minimize the network-wide AoI of the more practical multi-
source networks. Along this research line, those studies that
focused on the link scheduling problem are relevant to this
work [11]–[22]. In these work, the number of users that can
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be scheduled to transmit in each time slot is strictly limited by
the number of physical orthogonal channels available in the
system. For example, if all users share a common channel,
at most one of them can be scheduled to transmit in each
time slot to avoid any collision.

In wireless communications, deploying multiple antennas
at the transmitter and/or receiver, which is generally referred
to as the multiple-input multiple-output (MIMO) technology,
has been widely adopted in practical systems like LTE and
Wi-Fi to boost the number of users that can be served on
each physical frequency channel. This can be realized by
leveraging the extra spatial degrees-of-freedom brought about
by the multiple antennas. In principle, the maximum number
of single-antenna users that can be scheduled to transmit
over each physical channel are allowed to be equal to the
number of antennas equipped at the receiver side, where
various advanced signal processing algorithms can be applied
to separate the information sent by multiple users concurrently
[23]. However, an inherent tradeoff exists in multiuser MIMO
systems: scheduling more users to transmit in the same time
slot will lead to a higher transmission error probability for each
scheduled user. The rationale is that each degree-of-freedom
associated with the multiple antennas can only be used to
either support one more user or boost transmission reliability
of those users that have been scheduled to transmit. To our
best knowledge, the MIMO technology has not been used to
reduce the AoI in multiuser networks.

To fill the gap, in this paper we investigate a multiuser
MIMO status update system, in which multiple single-antenna
devices want to send their latest statuses to a multiple-antenna
access point (AP) via a common wireless uplink channel.
Thanks to the multiple antennas equipped at the AP, multiple
devices can be scheduled to transmit in each time slot. A
fundamental question that arises here is “what is the optimal
scheduling policy for minimizing the long-term network-wide
AoI of the considered system?”. To answer this question, we
formulate the multiuser scheduling in the considered system
as a Markov decision process (MDP) problem. We obtain the
optimal scheduling policy by resolving the formulated MDP.
An action elimination procedure is executed to reduce the
computational complexity. Furthermore, a sub-optimal policy
with much lower complexity is also devised. Simulation re-
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Fig. 1. The considered multiuser MIMO status update system with one AP
and N end-devices.

sults are provided to demonstrate the performance superiority
of the developed optimal and sub-optimal policies over the
benchmarking schemes that always schedule a fixed number
of devices. To our best knowledge, this paper serves as the first
attempt to apply the multi-antenna technology for reducing the
AoI of multiuser networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiuser MIMO status update system consisting
of an information-fusion AP equipped with N antennas and
K end-devices, as depicted in Fig. 1. Denote by D1, · · · , DK

the K devices, which aim to report their latest statuses to the
AP as timely as possible via a shared channel in the uplink.
All devices are assumed to be equipped with a single antenna.
In this paper, we enforce N ≥ K to ensure that the AP can
schedule all the devices to access the channel simultaneously
if needed. The overloaded case with N < K has been left as a
future work. Time is divided into slots of equal durations and
the transmission of each status update packet takes exactly one
time slot. The timeliness and freshness of the status updates
from various devices at the AP is quantified by the recently
proposed AoI metric, first coined in [1].

As in [12], [19]–[21], we consider that the devices are
scheduled in a centralized manner and the AP serves as the
system coordinator. Specifically, at the beginning of each time
slot, the AP will need to decide which device or group of
devices will be scheduled to report their latest status(es) in
the current time slot. If device Di is scheduled to transmit
in one time slot, it first samples the fresh information and
generates a status update packet at the beginning of the time
slot, which is known as the “generate-at-will” model in the
literature. Node Di then sends the generated status update to
the AP. Otherwise, Di will stay idle during the time slot. The
principle of the proposed multiuser scheduling algorithm will
be elaborated later in this section. Note that in the “generate-
at-will” model, the old status will be replaced by the newly
generated one at the beginning of each time slot. As such,
in principle each node only needs to maintain a one-packet
buffer.

We define1 hi ∼ CN (0N ,ΩiIN ) with i = 1, · · · ,K to
represent the N × 1 channel vector from the device Di to
the AP. We model Ωi = d−τi with di and τ denoting the
distance from the device Di to the AP and the path loss
factor, respectively. Furthermore, we assume quasi-static fad-
ing channels for which the fading coefficients remain constant
during each transmission slot and change independently from
one to another. We assume that all devices are pre-assigned
with a unique channel training pilot such that the AP can
still estimate the accurate channel states of multiple devices
even when they transmit at the same time. As such, the AP
can apply various signal processing algorithms to recover the
status update packet(s) from the received composite signal.
In this paper, we consider that the AP implements the zero-
forcing algorithm [24] to separate the signals sent by multiple
devices, thanks to its implementation simplicity.

To elaborate the signal processing at the AP, we now
consider the special case that all devices are scheduled to
transmit in a certain time slot. Denote by xi the information
sent by device Di and by Pi the transmit power of device
Di. Let n ∼ CN×1 denote the additive white Gaussian noise
with the covariance matrix E

[
nnH

]
= σ2IN , where E[·] is

the expectation operation and (·)H is the transpose conjugate.
We then can write the received signal at the AP as

y =

K∑
i=1

√
Pihixi + n = Hx + n, (1)

where H =
[√
P1h1, . . . ,

√
PKhK

]
, x = [x1, . . . , xK ]

T with
[·]T denoting the transpose.

According to the principle of linear zero-forcing receiver
[24], the information transmitted by multiple nodes will be
recovered via

x̂ = H†y = x + H†n, (2)

where H† =
(
HHH

)−1
HH is the pseudo-inverse of H. For

simplicity, in this paper we concentrate on the symmetric
network topology, i.e., P1Ω1 = · · · = PKΩK . In this case,
the error probability for each data stream will only depend
on the number of devices scheduled to transmit at the same
time. With reference to [24], when the AP schedules k out
of K devices to transmit simultaneously in the uplink, the
achievable error (outage) probability for each scheduled device
can be expressed as

Pe (k) = 1−
N−k∑
i=0

(
σ2

PΩγth

)i
i!

exp

(
− σ2

PΩ
γth

)
, (3)

where γth is the required SNR threshold for correct decoding,
which is assumed to be identical among all devices. We can
see from (3) that the more the devices to be scheduled in each
batch, the higher the error probability for each data stream.
The rationale is that more degrees-of-freedom associated with

1It is worth pointing out that the multiuser scheduling framework developed
in this paper is also applicable for other channel models. We here consider
the Rayleigh fading for the sake of the error probability calculation later.



the multiple antennas at the AP is used for cancelling the
mutual interference among more data streams.

In the following two subsections, we first formally define
the expected AoI of the system, and then mathematically
formulate the multiuser scheduling problem.

A. System Expected AoI

Denote by t = 1, 2, 3, · · · the index of time slots and denote
by δi (t), i ∈ {1, · · · , N}, the instantaneous AoI of the i-
th device at the beginning time slot t. We define the age
vector δ (t) = {δ1 (t) , . . . , δK (t)} for notation simplicity.
We use Ii (t) to denote the indicator of whether or not the
device Di is scheduled to transmit in time slot t. Particularly,
Ii (t) = 1 means that Di will transmit during time slot t, and
Ii (t) = 0 otherwise. Based on the definition of the AoI, the
instantaneous AoI of Di drops to one when Di successfully
delivers a status update to the AP. Otherwise, the instantaneous
AoI of Di increases by one for each time slot. Mathematically,
the evolution of the instantaneous AoI for the device Di can
be expressed as

δi (t+ 1) =

{
1, if Ii (t) = 1, and Ji (t) = 1,

δi (t) + 1, otherwise,
. (4)

where Ji is the indicator of whether the transmission of Di

is correct or not when it is scheduled to transmit. Ji = 1 if
the transmission is correct and Ji = 0 otherwise. According
to (3), we have

Pr (δi(t+ 1) = 1|δi(t)) = Ii(t)× Pr (Ji(t) = 1)

= Ii(t)

[
1− Pe

(
K∑
i=1

Ii(t)

)]
,

(5)

Pr (δi(t+ 1) = δi(t) + 1|δi(t)) = 1− Ii(t)× Pr(Ji(t) = 1)

= 1− Ii(t)

[
1− Pe

(
K∑
i=1

Ii(t)

)]
.

(6)
Based on the AoI evolution, the expected AoI of the system

can be formally defined as

δ̄s = lim
T→∞

1

TK

T∑
t=1

K∑
i=1

δi (t). (7)

B. Problem Formulation

We now describe the concerned age-aware multiuser
scheduling problem for considered uplink MIMO system.
Specifically, one fundamental question that we want to answer
is for a given age vector δ (t), which device or group of
devices should be scheduled to transmit in time slot t to
minimize the system expected AoI in the long term? This is
actually a non-trivial question since the devices will update
more frequently when more of them are scheduled in each
batch, which, however, will lead to a higher transmission error
probability according to (3). We thus aim to find the optimal
scheduling policy π to minimize the system expected AoI
given in (7). Mathematically, we have the following problem

Problem 1.
min
π

δ̄s(π). (8)

III. OPTIMAL AND SUBOPTIMAL POLICIES

To find the optimal multiuser scheduling policy, in this
section we recast Problem 1 into an MDP problem, described
by a 4-tuple {S,A, Pa, r}, where
• State space S ∈ RK : the state in time slot t is com-

posed by the instantaneous AoI of all clients, st
∆
=

(δ1(t), ..., δK(t)).
• Action space A ∈ RK : the action in time slot t is a binary

vector at = (I1(t), ..., IK(t)), where Ii(t) is defined in
Sec. II.

• Transition probability Pa (s, s′) =
Pr (st+1 = s′|st = s,at = a) is the transition probability
from state s to state s′ when taking action a in the time
slot t. The detailed transition probability is given in (5)
and (6).

• r (s,a) : S ×A → R is the one-stage reward received in
time slot t, defined as r (s,a) = 1

K

∑K
i=1 s(i), which

is considered to be independent of the action a in
our design. Note that the action a will determine the
subsequent state s′ as well as the corresponding one-stage
reward.

Given any initial state s0, the infinite-horizon average re-
ward of any feasible policy π ∈ Π can be expressed as

C(π, s0) = lim
T→∞

sup
1

T

T∑
t=0

E[rπs0 (st,at)]. (9)

Based on the above formulations, we can affirm that the
Problem 1 can be transformed to the following MDP problem

Problem 2.
min
π
C(π, s0). (10)

To proceed, we first investigate the existence of optimal
stationary and deterministic policy of Problem 2. In this
regards, we have the following theorem.

Theorem 1. There exist a constant J∗, a bounded function
h(s) : S → R and a stationary and deterministic policy π∗,
satisfies the average reward optimality equation,

J∗ + h(s) = min
a∈A
{r(s,a)+E[h(s′)]} , (11)

∀s ∈ S , where π∗ is the optimal policy, J∗ is the optimal
average reward, and s′ is the next state after s by executing
the action a.

Proof. See Appendix A.

Theorem 1 shows that the optimal policy of the formulated
MDP is stationary (i.e., does not vary in time) and determin-
istic (i.e., is not randomized in action selection). According
to [25, Chapter 8], relative value iteration (RVI) can be used
for calculating the optimal policy with a finite state space to
approximate that of the countable but infinite state space.



A. Action Elimination

The action space for the formulated MDP can be huge,
especially when the number of devices in the considered
system is large. This is because for a given number of devices
K, the AP can have 2K possible different actions to take
for each state. In addition, the computational complexity of
the RVI algorithm is directly related to the sizes of state
space and action space. As the state space is composed of the
instantaneous AoI of all clients, it cannot be further reduced.
In this subsection, we conduct action elimination to reduce the
action space for a lower computation complexity, by carefully
analyzing the structure of the MDP.

Recall the definition of the one-stage reward function in our
MDP formulation, which is the average value of the instanta-
neous ages of all devices. Hence, to minimize the one-stage
reward of the next time slot, the AP should always schedule
the devices with larger instantaneous ages. Specifically, if the
AP decides to schedule k nodes, it should ask the devices with
the maximum k ages to transmit in the current time slot. By
doing this, we can reduce the number of possible actions from
2K to K + 1, which will significantly lower the computation
complexity for finding the optimal policy.

B. A Sub-optimal Policy

In this subsection, we propose a low-complexity suboptimal
policy, which is inspired by the max-weight policy developed
in [19]–[21]. Specifically, the AP chooses the action that min-
imizes the expected reward of the next state, termed one-step
expected next step reward. Given state s = (δ1, δ2, ..., δK),
we sort it in descending order and obtain a new state vector
s′′ = (δ′′1 , δ

′′
2 , ..., δ

′′
K). According to the action elimination

section, the number of possible actions is reduced to K + 1,
denoting how many nodes should be selected for transmission.
If the action is to select k nodes for transmission, then the first
k nodes in s′′ will be selected and one-step expected next step
reward E[r(s′|s,a(k))] is

E[r(s′|s,a(k))] =
1

K

(
K∑
i=1

δ′′i +K − (1− Pe(k))

k∑
i=1

δ′′i

)
.

(12)
Specifically, the term (1−Pe(k))

∑k
i=1 δ

′′
i −k is the expected

AoI reduction for the k nodes selected for transmission. For
the rest K − k nodes, their AoI will all increase by 1. As
such, we have the above one-step expected next step reward
E[r(s′|s,a(k))]. The optimal action for the state s under the
suboptimal policy π′ is

π′(s) = arga(k), k∈{0,1,...,K}minE[r(s′|s,a(k)]). (13)

Compared with the MDP-based optimal policy, the suboptimal
policy given in (13) is simple to calculate and easy to imple-
ment. In addition, as shown in the numerical results presented
in Section IV, the suboptimal policy can achieve a near-optimal
performance.
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IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical simulations are provided to com-
pare the performance of the proposed optimal and sub-optimal
policies with that of conventional scheduling policies in the
considered MIMO status update system over different setups.
We set the path loss factor τ = 2 and the successful decoding
threshold γth = 1 in all simulations. Due to the curse of
dimension issue of the RVI algorithm, we consider the scenario
with three devices, i.e., K = 3. In calculating the MDP-based
optimal policy, we apply a state truncation (δi(t) ≤ 50, ∀i, t)
to approximate the countable state space according to [25].

We plot the system expected AoI curves of various policies
versus the transmit SNR (i.e., P/σ2) in Fig. 2, in which the
number of antennas equipped at the AP is set to 3. Two groups
of curves are plotted corresponding to the cases with d = 3
and d = 5, respectively. In each group, the performances of
the MDP-based optimal policy, the proposed suboptimal policy
given in (13), as well as the stationary policies of scheduling
a fixed number of devices (k = 1, 2, 3) are illustrated and
compared. We can first see from the figure that for each
policy, the system expected AoI is lower when d is smaller.
This is understandable since a smaller d indicates a lower
error probability for the status update transmissions. However,
the performance gap vanishes as the transmit SNR increases.
The rationale is that when the SNR is high enough (i.e., the
transmission error probability becomes very small), it is the
scheduling policy that determines the system performance.
We can also observe from Fig. 2 that the proposed subop-
timal policy can approach the MDP-based optimal policy in
all simulated cases. Furthermore, both of them significantly
outperform the stationary policies, which always schedule a
fixed number of devices.

We show the performance of all policies considered in Fig.
2 versus the number of antennas at the AP (i.e., N ) for
two cases with different transmit SNRs in Fig. 3. Similar
phenomenons as in Fig. 2 can be observed from Fig. 3. More
specifically, the performance of the suboptimal policy in (13)
almost coincide with that of the optimal policy attained by
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resolving the formulated MDP. The optimal and sub-optimal
adaptive policies developed in this paper are always superior
to the stationary policies that schedule a constant number
of nodes to transmit in each time slot. The performance
of all schemes simulated in Fig. 3 tends to be saturated
when the value of N is large enough. This is because the
transmission error probability decreases as N increases. When
N is sufficiently large, scheduling the maximum number of
devices (i.e., k = K) will lead to the best system performance.

V. CONCLUSIONS

In this paper, we have resolved the problem of minimizing
the age of information in multiuser MIMO status update
systems. Specifically, we investigated the multiuser schedul-
ing issue and formulated it into a Markov decision process
(MDP) problem. We proved that the formulated MDP always
admits a stationary and deterministic policy. To reduce the
computation complexity of the optimal policy, we executed
the action elimination by leveraging a key characteristics of
the MDP problem. We further developed a sub-optimal policy
that only considers the optimization of the next-step expected
reward. Simulation results were provided to demonstrate the
superiority of the proposed policies over the benchmarking
policies that consistently schedule a fixed number of devices
to transmit in each time slot.

APPENDIX A
PROOF OF THEOREM 1

We prove this theorem by verifying the Assumptions 3.1,
3.2 and 3.3 in [26] hold. As the action space for each state is
finite, assumption 3.2 holds, and we only need to verify the
following two conditions.

1) There exist positive constants β < 1, G and m, and a
measurable function ω(s) ≥ 1 on S, s = (δ1, δ2, ..., δK)
such that the reward function of MDP problem r(s,a) =
1
K

∑K
i=1 δi, |r(s,a)| ≤ Gω(s) for all state-action pairs

(s,a) and∑
s′∈S

ω(s′)P (s′|s,a) ≤ βω(s) +m, for all (s,a). (14)

2) There exist two value functions v1, v2 ∈ Bω(S), and
some state s0 ∈ S, such that

v1(s) ≤ hα(s) ≤ v2(s), for all s ∈ S, and α ∈ (0, 1), (15)

where hα(s) = Vα(s)− Vα(s0) and Bω(S) := {u : ‖u‖ω <
∞} denotes Banach space, ‖u‖ω := sups∈S ω(s)

−1|u(s)|
denotes the weighted supremum norm.

To prove condition 1, we first sort the elements of state
s = (δ1, δ2, ..., δK) in descending order and obtain a new age
vector s′′ = (δ′′1 , δ

′′
2 , ..., δ

′′
K), where δ′′1 is the largest element

in s, δ′′2 is the second large element, etc. When the action a
is to schedule k devices to transmit simultaneously, the first
k devices in s′′ should be scheduled. In this context, defin-
ing ω(s) = 1

K

∑K
i=1 δi, we have

∑
s′∈S ω(s′)P (s′|s,a) =

1
K

(
K +

∑K
i=1 δ

′′
i − (1− Pe(k))

∑k
i=1 δ

′′
i

)
and G ≥ 1.

Thus, when ω(s) = 1
K

∑K
i=1 δi and m > 1, there exist

maxk{
K+

∑K
i=1 δ

′′
i −(1−Pe(k))

∑k
i=1 δ

′′
i −mK∑K

i=1 δi
} ≤ β < 1 to meet

condition 1.
To prove that condition 2 holds in our problem, we show

that when ω(s) = 1
K

∑K
i=1 δi, there exists

∑K
i=1 δi+K∑K

i=1 δi
≤ κ <

∞ that
∑

s′∈S ω(s′)P (s′|s,a) ≤ κω(s) for all (s,a), and
∀a ∈ DMD (Markovian and deterministic (MD) decision
rule set),

∑
s′∈S ω(s′)P (s′|s,a) ≤ ω(s) + 1 ≤ (1 + 1)ω(s),

so that αM
∑

s′∈S ω(s′)PMπ (s′|s,a) ≤ αM (ω(s) + M) <
αM (1 + M)ω(s), π = (a1, ...,aM ). Hence, for each α,
0 ≤ α < 1, there exists a η, 0 ≤ η < 1 and an integer
M such that

αM
∑
s′∈S

ω(s′)PMπ (s′|s,a) ≤ ηω(s) (16)

for π = (a1, ...,aM ), where am ∈ DMD, 1 ≤ m ≤M . Then,
according to [27, Proposition 6.10.1], for each π ∈ ΠMD (MD
policy) and s ∈ S

|Vα(s)| ≤
1

1− η [1 + ακ+ ...+ (ακ)(M−1)]ω(s). (17)

We thus can further prove the condition 2. This completes
the proof.
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