
Private, Fair, and Verifiable Aggregate Statistics for
Mobile Crowdsensing in Blockchain Era

Miao He†, Jianbing Ni†, Dongxiao Liu‡, Haomiao Yang\∗, and Xuemin (Sherman) Shen‡
†Department of Electrical & Computer Engineering, Queen’s University, Kingston, Canada K7L 3N6
‡ Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Canada N2L 3G1

\ University of Electronic Science and Technology of China, Chengdu, China 611731
Email: {19mh48, jn72}@queensu.ca, {dongxiao.liu, sshen}@uwaterloo.ca, haomyang@uestc.edu.cn

Abstract—In this paper, we propose FairCrowd, a private,
fair, and veriable framework for aggregate statistics in mobile
crowdsensing based on the public blockchain. In specific, mobile
users are incentivized to collect and share private data values
(e.g., current locations) to fulll a commonly interested task
released by a customer, and the crowdsensing server computes
aggregate statistics over the values of mobile users (e.g., the most
popular location) for the customer. By utilizing the ElGamal
encryption, the server learns nearly nothing about the private
data or the statistical result. The correctness of aggregate statis-
tics can be publicly veried by using a new efcient and veriable
computation approach. Moreover, the fairness of incentive is
guaranteed based on the public blockchain in the presence
of greedy service provider, customers, and mobile users, who
may launch payment-escaping, payment-reduction, free-riding,
double-reporting, and Sybil attacks to corrupt reward distribu-
tion. Finally, FairCrowd is proved to achieve veriable aggregate
statistics with privacy preservation for mobile users. Extensive
experiments are conducted to demonstrate the high efciency of
FairCrowd for aggregate statistics in mobile crowdsensing.

I. INTRODUCTION

Mobile crowdsensing enables a group of individuals to col-
lect and share telemetry data and other sensor readings using
modern mobile devices, such as smart phones, vehicles, and
wearable devices [1]. With these data in hand, the crowdsens-
ing server computes aggregate statistics to fulfill data-intensive
tasks released by its customers [2]. By utilizing the intelligence
of a crowd, mobile crowdsensing can significantly improve the
quality of the collected data and the credibility of the statistical
results, thereby enabling a broad range of applications [3]. For
example, Google traffic collects real-time location information
from mobile phones to identify traffic congestion and generate
real-time traffic maps, which help drivers route along the
uncrowded areas. Fitness tracking collects data on mobile
phones to show their users’ physical activities, so as to enable
users to acquire and compare energy costs with average values.
Walmart collects customers’ purchases to learn the preferences
for product recommendation and optimize products’ exhibition
on shelves to ease customers and increase sales.

The mobile crowdsensing service is interested in collecting
the raw data from mobile users, and generates aggregate
statistics for its customers’ convenience, such a service often
ends up with the privacy violation of mobile users [4], [5].
The data values collected from the surrounding environments
of mobile users pose a series of security and privacy risks:

malicious attackers may expose the collected data; the service
provider may abuse or sell the raw data for profit; and
intelligent agencies may appreciate the data for knowledge
discovery and massive surveillance. To migrate the risks on
security corruption and privacy violation, mobile users may
refuse to share their collected data in mobile crowdsensing. To
encourage their participation, monetary incentives are usually
offered to assign rewards to the mobile users who make real
efforts [6], [7]. Unfortunately, the service provider may fail to
keep fair towards all the participants or resolve disputes. First
of all, the customers may request data collection, but escape
to pay the rewards they claimed (payment escaping), and the
service is designed to bias on customers, such as Amazon
M-Turk. Secondly, the service provider may also hide and
possess part of rewards (payment-reduction), which is hard to
detect in a fully distributed fashion [8]. Thirdly, due to the
reward temptation, mobile users may reap rewards without
making contributions (free-riding), report duplicate data for
repeated rewarding (double-reporting), or forge false identities
for data sharing (Sybil). As the result, the fairness of reward
distribution is corrupted.

To facilitate fair incentives, a straightforward solution is to
employ an external trusted third party (TTP) to replace the
service provider for reward host [9]. However, finding a fully
trusted entity in reality is difficult. Facebook’s troubles and
Snowden’s revelations [10] have decreased human’s trust on
a single institution or government. It is desirable to reduce
the reliance on a TTP in practice. The public blockchain [11]
is an open, distributed and transparent public ledger used to
maintain a continuously growing list of transactions in cryp-
tocurrency, e.g., Bitcoin and Ethereum. It is a chain of blocks
and managed by multiple nodes in a peer-to-peer network. The
blockchain offers decentralized transaction management and
reliable transaction delivery in untrusted Internet [12], [13].
Therefore, the blockchain is a potential solution to manage
the rewards in a decentralized way. More importantly, the
transactions in each block can be programmed to be executable
codes, smart contract [14]. The consensus protocol enforces
automated execution of smart contracts, such that neither
a single party nor a smart group of entities can interfere
with the execution of a contract. In addition, blockchain
naturally embodies a discrete notion of time [15], i.e., a clock,
which increments whenever a new block is produced. The

ar
X

iv
:2

00
7.

09
69

8v
1

 [
cs

.C
R

]
 1

9
Ju

l 2
02

0

smart contracts and the trusted clock are crucial for attaining
financial fairness in transactions and protocols, indicating that
malicious contractual entities cannot prematurely abort from
a protocol to refuse financial payment [16].

In this paper, we propose FairCrowd, a blockchain-based
framework for aggregate statistics in mobile crowdsensing
that resolves the tension between privacy and fairness. A
mobile user encrypts the data value before uploading it to
the crowdsensing server, and the server performs aggregate
statistics over the ciphertexts for the customer. The fairness is
maintained in the presence of greedy mobile users, customers,
and the service provider. Specifically, the contributions can be
summarized in two folds.
• We propose privacy-preserving and verifiable aggregate

statistics, a type of secure computation on data val-
ues shared by different mobile users with correctness
verification of statistical result by a designated verifier.
The distinguished feature is that the statistical result
verification and data authentication are achieved based on
the homomorphic signature, simultaneously. The crowd-
sensing server learns nearly nothing about the data val-
ues or the statistical result, unless the mobile users or
the customer discloses them. Moreover, to ensure the
correctness of aggregate statistics in the presence of the
untrusted crowdsensing server, the privately verifiable ho-
momorphic signatures are generated by the mobile users
and broadcasted to the network nodes on the blockchain.
Thus, the customer is delegated to the capability of
verifying the correctness of the statistical result without
re-computing the result from the raw data by herself.

• We utilize smart contracts to maintain the fairness in the
presence of greedy customers, mobile users, and service
provider in mobile crowdsensing. Due to the permis-
sionless access of blockchain and the automated execu-
tion of smart contract, the potential attacks can be pre-
vented, including payment-escaping, payment-reduction,
free-riding, double-reporting, and Sybil attacks.

The remainder of this paper is organized as follows. We
present system and security models in section II. We propose
FairCrowd in section III, and demonstrate its security features
in section IV, followed by performance evaluation in section
V. Finally, we conclude our paper in section VI.

II. SYSTEM AND SECURITY MODELS

We present the system model and the security model of
FairCrowd, and identify our design goals.

A. Blockchain-based Mobile Crowdsensing

Blockchain-based mobile crowdsensing consists of four
entities, namely, a service provider, customers, mobile users
and a public blockchain, as depicted in Fig. 1.

Service Provider: The service provider provides its cus-
tomers with the mobile crowdsensing service. It is responsible
for releasing crowdsensing tasks for customers, recruiting
mobile users for data collection based on their interests,
aggregating sensing data values of mobile users, and finally

Customers Mobile UsersService Provider

Crowdsensing
Tasks

Correctness
Verification

Verifiable
Homomorphic Tags

Crowdsensing
Tasks

Sensing Data Sensing Data

Fig. 1. System Model.

distributing rewards to mobile users based on a pre-defined
reward policy.

Customers: The customers can be individuals, corporations,
or organizations. They have some crowdsensing tasks to ac-
complish, such as real-time traffic monitoring, indoor floor
plan reconstruction, and social recommendation, but they do
not have sufficient capability to fulfill by themselves. The
customers release their tasks on the crowdsensing server, pro-
vide incentives to reward mobile users for their contributions
on data collection, and obtain the statistical results from the
service provider.

Mobile Users: Each mobile user has devices to perform
crowdsensing tasks, e.g., smart phones, tablets, vehicles, lap-
tops, and other items with sensors, computing units and storage
spaces. The mobile users can participate in crowdsensing tasks
by collecting data from environment, analyze data, and upload
the sensing data values to the crowdsensing server.

Blockchain: The blockchain is a public and decentralized
ledger managed by the network nodes, i.e., miners [17]. The
network nodes verify all the validity of transactions and
add the valid transactions into the block. The blockchain
offers decentralized reward management for both customers
and mobile users, and smart contracts are used to enforce
automated payment of rewards.

B. Security Model

The service provider may attempt to steal rewards, hide
rewards, manipulate reward assignment, or lie to the cus-
tomers. The service provider is interested in the sensing data
values and the statistical results. The customers concern their
privacy leakage, and prefer to encrypt the crowdsensing tasks
before releasing [18]. They are greedy that they would not
honestly assign the rewards to mobile users based on the
reward policy, instead, they may find various excuses to refuse
to pay or deduce the rewards, such as prematurely aborts.
Mobile users concern their privacy leakage and are greedy
to the rewards. They may leverage a variety of attacks to
reap rewards, such as free-riding, double-reporting, and Sybil
attacks. In free-riding attacks, mobile users may reap rewards
without making real efforts, such as replaying the sensing data
generated by other mobile users; in double-reporting attacks,
mobile users may submit the sensing data more than once to
claim repeated rewards; and mobile users can fake identities to
submit multiple copies of sensing data to obtain more rewards
in Sybil attacks.

C. Design Goals

We attempt to realize privacy, fairness, and verifiability
in FairCrowd on top of the existing architecture of public
blockchain.
• Privacy. The aggregate statistics in mobile crowdsensing

shall be protected in case the inputs or the outputs are
leaked to the unauthorized entities. The inputs, i.e., the
sensing data values of mobile users, will be only shared
with the customer. The output, i.e., the statistical result,
computed by the crowdsensing server will be only known
by the customer that pays the rewards to the participating
mobile users.

• Fairness. The mobile crowdsensing service is fair, if (i)
the customers cannot prematurely abort the protocols to
escape from payment; (ii) the service provider cannot
claim or leave the rewards to itself; (iii) the mobile users
are unable to use free-riding, double-reporting or Sybil
attacks to acquire more rewards than the amount they
deserve to have.

• Verifiability. The aggregate statistics are verifiable if the
customers are able to verify the correctness of statistical
results, while ensuring that the sensing data are authenti-
cated by mobile users. The verifiability of rewards refers
to that the reward assignment is publicly verifiable.

III. FAIRCROWD

In this section, we propose our FairCrowd, which consists
of a private and verifiable aggregate statistical scheme and a
smart contract.

A. Linearly Aggregate Statistics with Verifiable Computation

We first achieve linearly aggregate statistics with verifiable
computation for a group of mobile users. This primitive is
built atop the blockchain that acts as a bulletin board to
maintain homomorphic signatures of mobile users. The homo-
morphic encryption scheme is leveraged to achieve privacy-
preserving linear aggregation over individual private data
mi = (mi1,mi2, · · · ,mil), and mij is an independent data
value of a dimension, for j = 1 to l. We utilize the ElGamal
encryption scheme as an example for data encryption, and the
Σ-protocol to prove that the messages in the ciphertexts and
signatures are identical. Formally, our private and verifiable
aggregate statistical scheme (PVAS) is presented as follows.
• PVAS.ParGen. Let p be a large prime with λ bits and

(G1,G2,GT) be three cyclic groups of the order p.
ê : G1 × G2 → GT is the type-III bilinear pairing.
g, g1, · · · , gl are generators of G1, and h, h1, · · · , hl are
generators of G2. H : {0, 1}∗ → G1 is a collision-
resistant hash function.

• PVAS.KeyGen. The customer randomly selects a ∈ Zp
as the secret key, and generates the corresponding public
key A = ha. Each mobile user randomly chooses ui ∈ Zp
as the secret key, and computes the corresponding public
key Ui = hui . The crowdsensing server randomly selects
v ∈ Zp as the secret key, and computes the corresponding
public key Λ = hv .

Smart Contract CS-FairCrowd
Init: Set state:=INIT, Task:= {}, AU:= {}, RU:= {},

RUP:= {}, Param:=PVAS.ParGen(1λ).
Create: Upon receiving (“Create”, N , task, A, Reward,

T1, T2, T3, T4) from a customer C:
Assert state=INT.
Assert current time T ≤ T1.
Assert ledger| C |≥ $Reward.
ledger | C |:=ledger| C |–$Reward.
Set state:=CREATED.
Set Accept:=0.
Task:=Task∪{C, N ,A,Reward,Accept,Tj=1−4}.

Accept: Upon receiving (“Accept”, Ui, N,Ri) from a
mobile user Ui:

Assert state=CREATED.
Assert T1 ≤ T ≤ T2.
Assert $Ri >0.
Assert ledger| Ui |≥ $Ri.
ledger | Ui |:=ledger| Ui |–$Ri.
Set Accept:=Accept+1.
Set statei:=ACCEPTED.
AUN :=AUN ∪ {Ui}.

Claim: Current time T = T2:
Assert statei=ACCEPTED.
Assert the fulfillment of the task N .
Set state:=CLAIMED.

Upload: Upon receiving (“Report”, Ui, N, ci, di, σi, ei, rki,
PKi) from Ui:

Assert state=CLAIMED.
Assert T2 ≤ T ≤ T3.
Assert Ui ∈AUN .
Assert PKi = 1.
Set statei:=UPLOADED.
Set ledger | Ui |:=ledger| Ui |+$Ri.
RUN :=RUN ∪ {Ui}.
RUPN :=RUPN ∪ {(Ui, N, σi, ei, rki)}.

Reward: T3 ≤ T ≤ T4 and AUN=RUN :
Set state:=FULFILLED.
Set ledger | Ui |:=ledger| Ui |+$Rewardi.
Assert $Reward=

∑n
i=1$Rewardi.

Set state:=FINISHED.
Penalty: T3 ≤ T ≤ T4 and AUN ⊃RUN :

Set state:=UNFULFILLED.
ledger| Ui |:=ledger| Ui |+$R∗i , for Ui ∈RUN .
Assert

∑
i∈{AUN−RUN}

$Ri =
∑

i∈{RUN}
$R∗i .

Set state:=ABORTED.
Timer: If state=ABORTED and T > T4;

Set ledger | C |:=ledger| C |+$Reward.
Set state:=ABORTED.

Alg. 1. Smart Contract CS-FairCrowd
• PVAS.SigEnc. Each mobile user first encrypts

the private data mi = (mi1,mi2, · · · ,mil)
by randomly picking ri1, ri2, · · · , ril ∈ Zp
to compute ci = (ci1, ci2, · · · , cil) =
(hmi1

1 Ari1 , hmi2
2 Ari2 , · · · , hmil

l Aril), and

di = (di1, di2, · · · , dil) = (hri1 , hri2 , · · · , hril).
The user then chooses a random value τi ∈ Zp to
compute σi = (H(N ||A)τi

∏l
j=1 g

mij

j)ui , ei = hτi ,
and rki = Au

−1
i , where N is a random value as

the task identifier in mobile crowdsensing. After
that, the user generates the following zero-knowledge
proof PKi : {(ui, ri, τi,mi1,mi2, · · · ,mil) : ci1 =
hmi1

1 Ari ∧ · · · ∧ cil = hmil

l Ari ∧ di1 = hri1 ∧ · · · ∧ dil =

hril ∧ σi = (H(N ||A)τi
∏l
j=1 g

mij

j)ui ∧ ei = hτi}.
Finally, the user sends (ci, di, rki) to the crowdsensing
server, and broadcasts (ci, di, rki, σi, ei,PKi) to the
blockchain network. The nodes on the blockchain verify
the validity of PKi and insert (σi, ei) into the new block
as a transaction.

• PVAS.Agg. Assume the linear function f is parsed
as {ωi}1≤i≤n. After receiving n individual ciphertexts
((c1, d1), (c2, d2), · · · , (cn, dn)), the crowdsensing server
aggregates all the received ciphertexts as cj =

∏n
i=1 c

ωi
ij ,

and dj =
∏n
i=1 d

ωi
ij , for 1 ≤ j ≤ l. The crowdsens-

ing server also aggregates the individual signatures as
σ =

∏n
i=1 ê(σi, rki)

vωi and e =
∏n
i=1 e

vωi
i .

• PVAS.Dec. For each 1 ≤ j ≤ l, the customer uses a to
decrypt h

∑n
i=1mijωi

j = cjd
−a
j and leverages the Pollard’s

lambda method to recover m∗j =
∑n
i=1mijωi.

• PVAS.Verify. The customer checks whether σ =

ê(H(N ||A), e)aê(
∏l
j=1 g

m∗
j

j ,Λ)a. If the equation holds,
all m∗j are valid; otherwise, the customer rejects m∗j for
1 ≤ j ≤ l.

B. Smart Contract CS-FairCrowd

We describe the proposed smart contract CS-FairCrowd to
prevent the misbehavior of greedy customers, mobile users and
service provider. CS-FairCrowd is given in Alg. 1.

C. FairCrowd

FairCrowd consists of four phases, namely, Service Initial-
ization, Task Releasing, Data Uploading, and User Rewarding.

Service Initialization. The service provider bootstraps the
whole mobile crowdsensing service by calling PVAS.ParGen.
H1 : {0, 1}∗ → Zp is the collision-resistant hash function. The
customer C, a mobile user Ui, and the crowdsensing server
generate their secret-public key pairs using PVAS.KeyGen,
separately. C’s secret-public key pair is (a,A), and Ui’s secret-
public key pair is (ui, Ui). The crowdsensing server’s secret-
public key pair is (v,Λ).

Task Releasing. When C has a task task to be crowd-
sourced to mobile users, C defines the reward policy and
generates the task request T =(“Create”, N , task, A, Reward,
T1, T2, T3, T4). N is the task identifier. task defines the de-
tailed task goals, which include the sensing areas, time period,
content, quantity, and other demands required to demonstrate.
Reward denotes the reward policy and the number of rewards,
$Reward, to attract mobile users. T1, T2, T3, T4 are timeouts
declared based on time property of the blockchain. AU stores
the list of mobile users who have accepted the task. RU

stores the list of mobile users who have reported the collected
data, and RUP keeps the list of detailed information about
the sensing data. Finally, C sends T to the crowdsensing
server and broadcasts it to the blockchain network. The
crowdsensing server maintains T , and the network nodes
perform CS-FairCrowd.Init and CS-FairCrowd.Create to create
the releasing task.

Data Uploading. If a mobile user Ui is interested in the task
N , Ui deposits the amount of coins Ri as margins, indicating
that Ui commits to make the uploading honestly. The amount
can be determined by the mobile user or the crowdsensing
server. Ui forwards an acceptance message C=(“Accept”,
Ui, N,Ri) to the crowdsensing server and the blockchain
network. The network nodes perform CS-FairCrowd.Accept
and CS-FairCrowd.Claim. The methods to estimate the task
fulfillment are various, for example, the number of collected
reports should reach a threshold, or there should be at least
one mobile user in each sensing subarea. Here we consider
a simple case that if all the accepted mobile users honestly
upload their data, the crowdsensing task is fulfilled. The
number of accepted mobile users is n.

If the task state is CLAIMED, Ui collects the data from
the environment based on the demand in task and gen-
erates the sensing data mi. Before uploading mi, Ui uses
PVAS.SigEnc to compute the ciphertext (ci, di) of mi, the
re-sign key rki, the privately verifiable homomorphic signa-
ture (σi, ei), and the zero-knowledge proof PKi. Then, Ui
forwards Pi=(“Report”, Ui, N, ci, di, σi, ei, rki,PKi) to the
crowdsensing server and the blockchain network. The network
nodes call CS-FairCrowd.Upload and the crowdsensing server
calls PVAS.Agg to generate P = (cj , dj , σ, e). Finally, the
customer C executes PVAS.Dec to obtain m∗j =

∏n
i=1 e

ωi
i , for

1 ≤ j ≤ l. Also, the correctness of statistical result m∗j , for
1 ≤ j ≤ l, can be verified by using PVAS.Verify.

IV. SECURITY ANALYSIS

In this section, we discuss the desirable properties of
FairCrowd, i.e., privacy, fairness, and verifiability.

Privacy. The ElGamal encryption is leveraged to encrypt
the private data before uploading. Semantic security can be
reached as long as the decisional Diffie-Hellman (DDH)
assumption holds [19]. Also, the statistical result is still
encrypted by the ElGamal encryption. Therefore, if the DDH
assumption holds, the collected data and the statistical result
do disclose nothing about the privacy of mobile users.

In addition, the private data in the homomorphic signature
(σi, ei) and the statistical result in the aggregated signature
(σ, e) are protected against the off-line guessing attacks.
Specifically, τi is randomly picked to randomize σi, it is
impossible for an adversary A to test the verification equation
of (σi, ei) without τi. Also, the verification of (σ, e) needs
the knowledge of a, the secret key of C. Thereby, only C can
verify the correctness of the statistical result.

Fairness. The misbehavior of fairness corruption in reward
distribution, including payment escaping, payment-reduction,

free-riding, double-reporting, and Sybil attacks, is prevented
by CS-FairCrowd. The reasons are illustrated as follows:

• Payment escaping. C commits payment and deposits
rewards on the blockchain using CS-FairCrowd. The
deposited rewards will be automatically transferred to the
mobile users. C cannot interrupt the transactions once the
rewards are deposited.

• Payment-reduction. The reward distribution is hosted by
CS-FairCrowd, which distributes the committed rewards
to the proper entities based on the policy. The service
provider cannot illegally possess the rewards.

• Free-riding. The contributions of mobile users are
recorded on the blockchain. If the mobile users refuse to
upload their data, they will lose the deposited coins. Thus,
if Ui does not make any contribution on data collection,
no reward will be assigned to Ui.

• Double-reporting. The double-reporting can be detected
by both C and the service provider, since all the signatures
are maintained on the blockchain. If a mobile user Ui
uploads more than one report, the server can identify
more than one signature of Ui on the blockchain.

• Sybil. The mobile users may adaptively update public
keys to share the collected data. To prevent Sybil attacks,
the operations of mobile users are separated into two
steps, CS-FairCrowd.Accept and CS-FairCrowd.Upload.
The public key that Ui uses in CS-FairCrowd.Upload
should be identical to that in CS-FairCrowd.Accept. Ui
cannot upload multiple data copes using different public
keys, since the old public key cannot be recovered once
it is updated to a new one. Thus, a mobile user can only
use the same public key to accept the task and upload the
private data. In doing so, the Sybil attack can be avoided.
Also, to prevent Ui from maliciously accepting the task
without sharing data, Ui needs to deposit the coins in
CS-FairCrowd.Accept.

Verifiability. The correctness of both aggregate statistics and
reward distribution are verifiable. The verification of reward
distribution is guaranteed based on the blockchain, as all
the transactions are transparent and publicly verifiable. The
correctness verification of aggregate statistics is realized based
on the extended homomorphic signatures that should satisfy
the notion of unforgeability. The extended homomorphic sig-
nature extends the homomorphic signature that enables the
homomorphic operations on the signatures with the proxy
re-signing technique. In PVAS, due to the proxy re-signing,
the unforgeability should be guaranteed in two levels, i.e.,
the unforgeability of homomorphic signatures (σi, ei) and the
unforgeability of aggregated signature (σ, e). Firstly, (σi, ei)
is calculated by leveraging the BLS signature, whose unforge-
ability is reduced to the Computational Diffie-Hellman (CDH)
problem in a Gap Diffie-Hellman (GDH) group [20]. Secondly,
the unforgeability of (σ, e) depends on the CDH problem in
GT [21], i.e., given g ∈ G1, h, h

a, hv ∈ G2, where a, v ∈ Z∗p,
to compute ê(g, h)av ∈ GT . If a probabilistic polynomial-time
adversary A can break the unforgeability of (σ, e) with a non-

negligible advantage, there is an algorithm B to solve the CDH
problem in GT .

Given g ∈ G1, h, h
a, hv ∈ G2, where a, v ∈ Z∗p, the goal is

to compute ê(g, g)av ∈ GT . B can access the signing oracle
SO which outputs the homomorphic signatures of mobile
users, and interact with A as follows.
• B randomly chooses ui ∈ Z∗p to set the public key Ui to
hui and the re-sign key rki to haui . Then, B picks random
γj ∈ Z∗p to set the parameter gj to gγj , for 1 ≤ j ≤ l.
Finally, B sends (hi, rki, g1, · · · , gl) to A.

• A queries the hash oracle to the hash of (N,A). B
randomly picks γ ∈ Z∗p and returns gγ to A.

• A queries B the homomorphic signatures under any
public key hui . B issues a signing query to SO, randomly
chooses τi ∈ Z∗p, and returns (σi, ei) to A.

• Finally, A produces a valid aggregated signature (σ̄, ē)
on m̄∗j that satisfies

σ̄ = ê(H(N ||A), ē)aê(
∏l
j=1 g

m̄∗
j

j ,Λ)a.

The expected signature obtained from the honest signers
is (σ, e) on m∗j . (σ, e) also satisfies

σ = ê(H(N ||A), e)aê(
∏l
j=1 g

m∗
j

j ,Λ)a.

– If m̄∗j 6= m∗j for 1 ≤ j ≤ l. We define that ∆m∗j =
m̄∗j −m∗j for 1 ≤ j ≤ l, it is the case that at least
one of ∆m∗j is nonzero. We divide the verification
equation for σ̄ by the equation for σ and obtain

σ̄/σ = ê(H(N ||A), ē/e)aê(
∏l
j=1 g

m̄∗
j−m

∗
j

j ,Λ)a.

Since H(N ||A) = gγ , e = hvτiωi and gj = gγj for
1 ≤ j ≤ l, we have

σ̄/σ =
ê(gγ , hvωi(τ̄i−τi))aê(

∏l
j=1 g

γj(m̄∗
j−m

∗
j), hv)a.

Rearranging the equation yields
ê(g, h)av = (σ/σ̄)γωi(τ̄i−τi)+

∑l
j=1 γj(m̄∗

j−m
∗
j),

which is the solution of the CDH problem.
– Otherwise, σ̄/σ = ê(H(N ||A), ē/e)a and that

ê(g, h)av = (σ/σ̄)γωi(τ̄i−τi),

So we can solve the CDH problem.

V. PERFORMANCE EVALUATION

We evaluate the computational overhead of the crowdsens-
ing server, mobile users, and customers, and the storage cost
of the network nodes in FairCrowd.

We run microbenchmark on a HUAWEI MT2-L01 smart-
phone with Kirin 910 CPU and 1250M memory. The operation
system is Android 4.2.2 and the toolset is Android NDK
r8d. The smartphone is used to simulate the operations of
mobile users and customers. A Thinkpad X1 Yoga laptop is
setup to be the crowdsensing server with Intel Core i5-8265U
CPU@1.8GHz and 16GB RAM, running the 64-bit Windows
10. The GNU Multiprecision Library and the Pairing-Based
Cryptography Library are utilized to implement the crypto-
graphic primitives. We build the polynomial ring Fp[x] with
a 256-bit prime p and use the Type III bilinear pairing and
Barreto–Naehrig curve. SHA256 is utilized for hash function.

TABLE I
COMPUTATIONAL OVERHEAD OF FAIRCROWD (UNIT: MILLISECONDS)

FairCrowd Service Task Data User
Initialization Releasing Uploading Rewarding

Mobile User 8 – 198 53
Server 1230 25 1641 –

Customer 6 84 147 58

10 20 30 40 50 60 70 80 90 100
Number of Mobile Users

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
C

os
t (

U
ni

t:
S

ec
on

ds
)

Crowdsensing Server

Customer

Fig. 2. Scalability of FairCrowd.

We release the task to collect air pollutant concentrations
(i.e., PM2.5) of the cities in Ontario, Canada, and find 40
volunteers to upload the data based on the posted information
(http://www.airqualityontario.com/history/summary.php) using
their mobile phones. The average reading of PM2.5 in Ontario
is calculated for the customer. We collect the computation time
of the corresponding entities processing these 40 data reports
in FairCrowd, including the customer, the crowdsensing server,
and the mobile users, as shown in Table I. The time cost of
the mobile user in Table I is the time usage to perform data
uploading on the HUAWEI smartphone, while the time cost
of the crowdsensing server is the time usage to deal with 40
reports from mobile users. In addition, with the increasing
number of mobile users, the time cost of the server increases,
while the time cost of the customer is constant. The scalability
of FairCrowd is examined in Fig. 2.

Also, we evaluate the storage overhead of the blockchain
nodes and the crowdsensing server, which consists of on-
chain storage and off-chain storage. In CS-FairCrowd, each
blockchain node is required to maintain the task, the identities
of mobile users, and state information about the task, once
the smart contract is created. In CS-FairCrowd.Create, the
blockchain node keeps about 128-byte task information. The
data in CS-FairCrowd.Upload possesses nearly 390n bytes
space on each blockchain node for each task, where n is
the number of mobile users who accept the task. The off-
chain storage is maintained on the crowdsensing server, which
significantly reduces the on-chain storage overhead, and the
zero-knowledge proof is utilized to keep the consistency of
the data on the crowdsensing server and the blockchain nodes.
The server needs to keep the encrypted private data of mobile
users and the zero-knowledge proof PKi, the binary length of
which is 288ln+192n bytes, where l is data dimensions.

VI. CONCLUSION

In this paper, we have proposed a private, fair, and veriable
framework for aggregate statistics in mobile crowdsensing

based on the blockchain. Aggregate statistics over the private
data are enabled with efcient correctness verication of the
statistical results. The fairness of mobile users are guaranteed
to encourage them to participate in crowdsensing tasks, the
success of which depends on the participation of honest mobile
users. A new smart contract is designed to enforce fair reward
distribution. We have demonstrated that FairCrowd achieves
the properties of privacy, fairness, and veriability, and is highly
efcient for aggregate statistics in mobile crowdsensing. For our
future work, we will design an efcient and fair data trading
framework for a group of customers in mobile crowdsensing.

REFERENCES

[1] A. Capponi, C. Fiandrino, et al., “A survey on mobile crowdsensing
systems: Challenges, solutions, and opportunities,” IEEE Commun. Surv.
Tutor., vol. 21, no. 3, pp. 2419–2465, 2019.

[2] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” Proc. of NSDI, 2017, pp. 259–282.

[3] Y. Hui, Z. Su, and S. Guo, “Utility based data computing scheme to
provide sensing service in internet of things,” IEEE Transactions on
Emerging Topics in Computing, vol. 7, no. 2, pp. 337–348, 2019.

[4] K. Yang, K. Zhang, J. Ren, and X. Shen, “Security and privacy in mobile
crowdsourcing networks: Challenges and opportunities,” IEEE Commun.
Mag., vol. 53, no. 8, pp. 75–81, 2015.

[5] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. Shen, “Providing task allocation
and secure deduplication for mobile crowdsensing via fog computing,”
IEEE Trans. Depend. Secure Comput., vol. 17, no. 3, pp. 581–594, 2020.

[6] H. Wu, L. Wang, G. Xue, J. Tang, and D. Yang, “Enabling data
trustworthiness and user privacy in mobile crowdsensing,” IEEE ACM
Trans. Netw., vol. 27, no. 6, pp. 2294–2307, 2019.

[7] Y. Liu, et al., “Data-oriented mobile crowdsensing: A comprehensive
survey,” IEEE Commun. Surv. Tutor., vol. 21, no. 3, pp. 2849–2885,
2019.

[8] Y. Zheng, H. Duan, X. Yuan, and C. Wang, “Privacy-aware and efficient
mobile crowdsensing with truth discovery,” IEEE Trans. Dependable
Secur. Comput., vol. 17, no. 1, pp. 121–133, 2020.

[9] Z. Zhang, et al., “REAP: An efficient incentive mechanism for reconcil-
ing aggregation accuracy and individual privacy in crowdsensing,” IEEE
Trans. Inf. Forensic Secur., vol. 13, no. 12, pp. 2995–3007, 2018.

[10] K. Wahl-Jorgensen, A. Hintz, L. Dencik, and L. Bennett, “Introduction:
Journalism, citizenship and surveillance”, Taylor & Francis, 2017.

[11] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Commun. Surv. Tutor.,
vol. 18, no. 3, pp. 2084–2123, 2016.

[12] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “OHIE: Blockchain scaling
made simple,” Proc. of IEEE S&P, 2020.

[13] Z. Su, Y. Wang, Q. Xu, and N. Zhang, “LVBS: Lightweight vehicular
blockchain for secure data sharing in disaster rescue,” IEEE Transactions
on Dependable and Secure Computing, to appear.

[14] S. Steffen, B. Bichsel, M. Gersbach, et al., “Zkay: Specifying and
enforcing data privacy in smart contracts, Proc. of ACM CCS, 2019,
pp. 1759–1776.

[15] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” Proc. of IEEE S&P, 2016, pp. 839–858.

[16] Y. Lu, Q. Tang, and G. Wang, “ZebraLancer: Private and anonymous
crowdsourcing system atop open blockchain,” Proc. of ICDCS, 2018.

[17] M. Li, J. Weng, A. Yang, et al., “CrowdBC: A blockchain-based decen-
tralized framework for crowdsourcing,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 6, pp. 1251-1266, 2019.

[18] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. Shen, “Providing task allocation
and secure deduplication for mobile crowdsensing via fog computing,”
IEEE. Trans. Mob. Comput., vol. 19, no. 6, pp. 1317–1331, 2020.

[19] Y. Tsiounis and M. Yung, “On the security of elgamal based encryption,”
Proc. of PKC, 1998, pp. 117–134.

[20] D. Boneh, B. Lynn, and H, Shacham, “Short signatures from the weil
pairing,” Proc. of ASIACRYPT, 2001, pp. 514–532.

[21] F. Bao, R. H. Deng, and H. Zhu, “Variations of Diffie-Hellman problem,”
Proc. of ICICS, 2003, pp. 301–312.

	I Introduction
	II System and Security Models
	II-A Blockchain-based Mobile Crowdsensing
	II-B Security Model
	II-C Design Goals

	III FairCrowd
	III-A Linearly Aggregate Statistics with Verifiable Computation
	III-B Smart Contract CS-FairCrowd
	III-C FairCrowd

	IV Security Analysis
	V Performance Evaluation
	VI Conclusion
	References

