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Abstract—In this paper, a new concept called low/zero am-
biguity zone (LAZ and ZAZ) for joint radar-communication
signal design is introduced. The signals or code sequences having
LAZ/ZAZ characteristics are desirable in modern communica-
tion and radar systems operating in high mobility environments
especially in high frequency bands. Bounds on periodic LAZ/ZAZ
of unimodular Doppler-resilient sequences (DRS) are derived,
which include the existing bounds on periodic global ambiguity
function as special cases. These bounds may be used as theoretical
guidelines to measure the optimality of code sequence design.
In addition, two classes of optimal constructions of DRSs with
respect to the derived lower bounds on the ambiguity function
are also presented.

Index Terms—Ambiguity function, zero ambiguity zone (ZAZ),
low ambiguity zone (LAZ), lower bounds, Doppler resilient
sequences.

I. INTRODUCTION

For wireless information transmission, automotive radar,

air traffic control, remote sensing, and earth geophysical

monitoring, there is an increasingly high demand on the

amounts of bandwidth, both for high-quality and high-rate

wireless communications services, as well as reliable sens-

ing capabilities. Particularly, in auto-driving vehicles, each

vehicle should be equipped with wireless communications

transceivers as well as multiple sensors, including automotive

radars. Thus, the joint radar-communication systems capable

of simultaneously performing radar and communication tasks

while sharing hardware, power, and bandwidth resources have

attracted substantial attention in recent years [1]. These joint

radar-communication systems, also called dual-function radar-

communication systems as they integrate the two functions on

one platform, support applications where communication data,

whether as target and waveform parameter information or as

information independent of the radar operation, are efficient-

ly transmitted using the same radar aperture and frequency

bandwidth.

There are four types of joint radar-communications schemes

[1], [2], i.e. coexistence schemes, which utilize independent
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waveforms for each functionality; communications waveform-

based approaches, where conventional communications signals

such as OFDM and OTFS are used for radar probing; radar

waveform-based schemes, which embed the digital message

into standard radar technologies; and joint waveform de-

sign approaches, which achieve the joint radar-communication

system by deriving dedicated dual-function waveforms. This

paper is mainly concerned with the radar waveform-based

scheme which can be achieved by embedding communication

signals into radar pulses. To embed the information into radar

pulses, beam pattern amplitude/phase modulation and radar

waveform modulation can be employed [2].

As illustrated in Figure 1, wherein radar and communica-

tion systems are combined in the same hardware platform,

with the same waveform and the same transmitter, which

should be designed so as to guarantee the performance of

both systems. Consider a joint radar-communication platform

equipped with a number of transmit antennas arranged as a

uniform linear array. The radar receiver employs an array of

receive antennas with an arbitrary linear configuration, while

the communication receivers are assumed to be located in the

direction known to the transmitter. To create a unified aperture

and bandwidth system in an RF-restricted environment, it

is desirable to embed such information into radar pulses.

The information data rate is determined by the radar pulse

repetition frequency (PRF), whether the system uses a phased-

array or MIMO configuration, and the permissible incremental

changes in radar waveform structure and bandwidth. The infor-

mation is transmitted from the transmitter toward one or more

communication users. The essence of such communications

is to embed messages into the radar emissions, preferably

without disturbing the radar operation.

By generating appropriate waveforms, one can change radar

waveforms from pulse to pulse, and employ the waveform it-

self as a means of embedding communication symbols [2], [3],

i.e. code shift-keying (CSK) where each waveform correspond-

s to a code representing a particular symbol. Implementing

such a CSK scheme in the context of radar demands careful

waveform design to ensure that the radar operation is not

compromised. For the employed waveforms, it is required that
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Fig. 1: A diagram of a joint radar-communication system.

their autocorrelation across pulses remains constant despite

the change in waveform. From the communications operation

perspective, the cross correlation between different pairs of

waveforms should be as small as possible, such as Gold and

Kasami codes. The Gold and Kasami codes, which can be

PSK-modulated to increase the bit rate, were evaluated in

terms of their symbol error rate and found to be comparable to

the codes for M-ary frequency-shift keying [4]. It is shown in

[4] that the BPSK-modulated Kasami code exhibits relatively

low sidelobes on the zero delay cut and zero Doppler cut of

the periodic ambiguity function. These approaches operate on

a pulse basis and their achievable bit rates are limited to the

order of the radar pulse repetition frequency. To overcome

this limitation, information embedding in fast time is needed

where the radar waveform is modulated from pulse to pulse,

at the expense of reduced radar performance [5]. Obviously, in

order to further improve communications bit throughput while

achieving both satisfactory BER and radar performance, it is

important to design other code sequences with the preferred

characteristics.

In this paper, a new concept called low/zero ambiguity zone

(LAZ and ZAZ) is introduced, as shown in Section II. Based

on the new concept, theoretical lower bounds on periodic

ambiguity function of unimodular DRS having LAZ/ZAZ

characteristics are derived in Section III, which are tight in

the sense that they can be achieved with equality by some

optimal DRSs as presented in Section IV, followed by some

examples provided in Section V. It should be noted that all the

proofs on the obtained results in this paper will be omitted due

to the limited space.

II. AMBIGUITY FUNCTION AND LOW AMBIGUITY ZONE

In general, ambiguity function (AF), defined as a two-

dimensional delay-Doppler correlation function of the trans-

mitting signals, is the basis of waveform design and per-

formance evaluation. AF represents the time response of a

filter matched to a given finite energy signal when the signal

is received with a delay and a Doppler shift relative to the

nominal values (zeros) expected by the filter [6]. For the

periodic continuous wave (CW) radar signal and a coherent

train of identical pulses, signals are transmitted periodically

and continuously. In this case, periodic AF [7] should be used,

which is the focus of this paper.

In particular, the existing works on joint radar-

communication signal design focus mainly on optimizing zero

Doppler cuts of the ambiguity function. For the fast-moving

targets and communication receivers, the non-zero Doppler

cuts of the ambiguity function shall play a big role, thus

designing such codes having good thumbtack-like auto

ambiguity function, even in small near-origin zone (non-

zero Doppler cuts and non-zero delay cuts), becomes very

important. Furthermore, in the case of multi-static radar, in

order to distinguish multiple moving targets, such as moving

vehicles and pedestrians, one also need to design distinct

codes having very low cross ambiguity function. In this case,

it is of interest to design a set of DRS code sequences with

low discrete aperiodic cross ambiguity function which is

defined as,

ÃF a,b(τ, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−1−τ∑
t=0

a(t)b∗(t+ τ)ej2πvt/N ,

0 ≤ τ ≤ N − 1;
N−1∑
t=−τ

a(t)b∗(t+ τ)ej2πvt/N ,

1−N ≤ τ < 0;

0, |τ | ≥ N.

Specially, the aperiodic cross AF shall become periodic cross

AF when the summation variable t = 0 to N−1 (modulo N ),

that is,

AFa,b(τ, v) =
N−1∑
t=0

a(t)b∗(t+ τ)ej2πvt/N , (1)

where τ, v are called delay- and Doppler- shifts, respectively,

|τ |, |v| ∈ ZN and j =
√−1. If a = b, we call it auto-

ambiguity function denoted by AFa(τ, v). The maximum

ambiguity magnitude of DRS family S is defined as

θmax = max{θA, θC},
where the maximal auto-ambiguity sidelobe magnitude

θA = max
{
|AFa(τ, v)| : a ∈ S, (0, 0) �= (|τ |, |v|) ∈ ZN × ZN

}
,

and the maximal cross-ambiguity magnitude

θC = max
{
|AFa,b(τ, v)| : a �= b ∈ S, 0 ≤ |τ | < N, 0 ≤ |v| < N

}
.

The ambiguity magnitude of DRS family S of size M over region
Π ⊆ (−N,N)× (−N,N) can be defined as

FΠ(S) = max
{
|AFa,b(τ, v)| :a,b ∈ S and (τ, v) ∈ Π,

(0, 0) �= (τ, v) ∈ Π if a = b
}
.

Such a DRS set with maximum ambiguity magnitude θmax =
FΠ(S) over region Π is denoted by (N,M, θmax, |Π|)-S , where |Π|
is the area of Π. In particular, we sometimes drop off Π and denote
the DRS set by (N,M, θmax)-S if we consider global ambiguity
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(a) Illustration of a ZAAZ of one sequence. (b) Illustration of a ZCAZ between two sequences.

Fig. 2: Illustration of a ZAZ between two sequences.

function with Π = (−N,N)×(−N,N). It is noted that conventional
correlation function is a special case of the ambiguity function
when v = 0 (zero Doppler cut of ambiguity function). In wireless
communications and radar sensing, low ambiguity is expected at any
given delay and Doppler shift in order to detect and identify targets
and achieve information transmission between devices. However,
designing such codes with low ambiguity function for delay over
whole signal duration and Doppler shift over whole signal bandwidth
is an extremely difficult task.

In practice, fortunately, the Doppler frequency range can be
much smaller than the bandwidth of the transmitted signal, and it
may not be necessary to consider the whole signal duration. This
paper proposes a new concept called low ambiguity zone (LAZ),
corresponding to a small area of interest defined by the maximum
Doppler frequency and the maximum delay (instrumented range).
Obviously finding DRSs with LAZ characteristics is a relatively
feasible task. In fact, one can even design DRSs having periodic
zero ambiguity zone (ZAZ), as will be shown in this paper.

Definition 1: Let S be a set consisting of M distinct sequences of
period N , for a small nonnegative real number θ, define

Πθ(S) =
{
Π : FΠ(S) ≤ θ

}
.

Then the periodic low ambiguity zone (LAZ) with maximum ambi-
guity magnitude θ for sequence set S is defined as

Πmax =
{
Π ∈ Πθ(S) : |Π| = max{|A| : A ∈ Πθ(S)}

}
.

Such a sequence set is denoted by (N,M, θ,Πmax) DRS set.
Specially, if θ = 0, Πmax is called periodic zero ambiguity zone
(ZAZ).

An ideal ambiguity function may be represented by a spike that
peaks at the origin and takes zero everywhere. Such an ambiguity
function provides perfect resolution between neighboring targets
regardless of how close they are to each other. However, an ideal
ambiguity function does not exist due to the theoretical bounds of
AF. Yet, similar to the existing sequences with zero correlation zone
(ZCZ) [8], it is possible to construct a set of sequences which possess
zero auto-ambiguity zone (ZAAZ) and zero cross-ambiguity zone
(ZCAZ), as illustrated in Figs. 2.

In 2013, Ding et al. generalized the Welch bound for DRS sets
[9]. Formally, for any (N,M, θmax) DRS set S, one has

θmax ≥ N

√
NM − 1

N2M − 1
. (2)

And Ding et al. proposed a class of sequences which asymptotically
meets the Welch bound for DRSs in [9]. The study of DRSs has
been attracting increasing research attention in recent years. With the
aid of additive character and multiplicative character over finite field,
Wang and Gong constructed several families of polyphase sequences

having low ambiguity amplitudes [10], [11]. Schmidt provided a
direct proof for the Wang-Gong construction by the Weil bound of
hybrid character sums [12]. Using the theory of finite-unit norm tight
frames, Benedetto and Donatelli computed the ambiguity amplitudes
of the Frank-Zadoff-Chu sequences in [13].

III. BOUNDS ON AMBIGUITY FUNCTION OF UNIMODULAR

SEQUENCES WITH LAZ/ZAZ CHARACTERISTICS

Unimodular DRSs, in which each sequence is polyphase consisting
of complex-valued elements with absolute value of one, are highly
desirable in many communication systems for maximum power
transmission efficiency. Now we present our main theorem, the
derivation is proposed by forming a “fat” matrix which consists of
all the possible time- and Doppler- shifted versions of sequences.

Theorem 1: (Main Theorem) For any (N,M, θmax, |Π|) unimod-
ular DRS set S, where Π = (−Zx, Zx)× (−Zy, Zy), then we have

θmax ≥ N√
Zy

√
MZxZy/N − 1

MZx − 1
. (3)

Specially, if θmax = 0, it reduces to

MZxZy ≤ N. (4)

Therefore, the area of ZAZ subjects to

|Πmax| ≤ 4N

M
.

As a special case, some known bounds can be derived from
Theorem 1, we give the following corollary to illustrate.

Corollary 1: With the same notations as before.

• When Zx = Zy = N , a lower bound of global ambiguity is
given as

θmax ≥
√
N. (5)

In addition, we can get the Sarwate bound of DRS set as follow

(N − 1)θ2A
(MN − 1)N

+
(M − 1)θ2C
MN − 1

≥ 1.

• When Zy = 1, (3) reduces to the Tang-Fan-Matsufuji bound
for ZCZ sequences in [14].

Remark 1: The global ambiguity function lower bound in (2) is
also a special case of Theorem 1, which can be derived by the similar
way without using the of the property unimodular DRS. That is,

|AFu(0, v)| = 0, for v �= 0,

where u is a unimodular DRS with period N . However, (5) in
Corollary 1 is strictly tighter than the lower bound in (2). Such a lower
bound has not been reported before, to the best of our knowledge.
We will show that this lower bound is tight in the sense that one can
construct some sequences meeting the equality of (5).
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IV. OPTIMAL CLASSES OF SEQUENCES WITH LOW/ZERO

AMBIGUITY ZONE CHARACTERISTICS

A. Characters and Exponent Sums over Finite Fields
In this subsection, we present a brief introduction to the characters

sum and Weil bound which are important tools for the constructions
of the proposed DRSs. Throughout this work, we assume that p is
a prime and n is a positive integer. Let q = pn and Fq denote the
finite field with q elements. Let Tr(·) be the absolute trace function
from Fq to Fp which is defined by

Tr(x) = x+ xp + · · ·+ xpn−1

, x ∈ Fq.

An additive character of Fq is a nonzero function χ from Fq to the
set of complex numbers with absolute value of 1 such that χ(x+y) =
χ(x)χ(y) for any pair (x, y) ∈ F

2
q . For each a ∈ Fq , the function

χa(x) = ωTr(ax)
p , x ∈ Fq,

defines an additive character of Fq , where ωp is a primitive p-th
complex root of unity. When a = 0, χ0(x) = 1, for all x ∈ Fq ,
and is called the trivial additive character of Fq . Let us recall the
following:

Lemma 1: [15] Let χ be a nontrivial additive character of Fq and
f(x) ∈ Fq[x] with deg(f) = d � 1 and gcd(d, q) = 1. Then∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ � (d− 1)
√
q.

B. Optimal Unimodular Sequences with LAZ/ZAZ Character-
istics

In this subsection, we will consider the ambiguity for polynomial
phase sequence family. Formally, for positive integers d,N , a poly-
nomial sequence family U is defined as follows:

Construction 1:

U = {uf : f ∈ ZN [x] with 3 ≤ deg(f) ≤ d},
where

uf (t) = ω
f(t)
N , t = 0, 1, 2, · · · , N − 1. (6)

We will show that each polynomial sequence possesses low ambiguity
function, if d is a small natural number and N an odd prime number
greater than 4. With the aid of Lemma 1, we obtain an upper bound
of maximum ambiguity magnitude of polynomial phase sequences as
follow.

Theorem 2: Let N = p, an odd prime, define

D =

{
f =

d∑
i=0

Aix
i : Ai ∈ Zp with Adeg(f)−1 = 0

}
.

Then the maximum ambiguity magnitude of polynomial phase se-
quence family U ′ = U ⋂{uf : f ∈ D} should satisfy

θmax ≤ (d− 1)
√
p.

Theorem 2 indicates that a polynomial with lower degree may
lead to lower ambiguity. Now, we consider certain quadratic phase
CAZAC sequences which have found many applications in radar,
communications, coding theory, and signal processing. Specifically,
for any integer N , a quadratic phase sequence u : ZN → C is defined
by

u(t) = ωat2+bt
N , 0 ≤ t ≤ N − 1.

When N is odd, gcd(a,N) = 1 leads to the general Wiener
waveform, which is a famous CAZAC sequence. For any positive
integer N , the auto-ambiguity function having ZAZ of N -periodic
quadratic phase sequence are proposed subsequently.

Theorem 3: The auto-ambiguity function of sequence u with

u(t) = ωat2+bt
N is given as follow,

|AFu(τ, v)| =
{

N ; v ≡ 2aτ mod N,
0; otherwise.

Theorem 4: Let r = gcd (2a,N), if r > 1, the maximum zero
auto-ambiguity zone of quadratic phase sequences is given below:

Π =

(
−N

r
,
N

r

)
× (−r, r) ,

which is optimal with respect to the lower bound on ambiguity
function having ZAZ in equation (4) for single sequence.

Theorem 3 and Theorem 4 indicate that each quadratic phase
sequence has a zero auto-ambiguity zone. Next, we propose a
construction of quadratic phase sequence family with zero ambiguity
zone.

Construction 2: With the same notations as above, let bi = i
 N
M
�,

define a sequence family S with integer M as follow,

S = {si : 0 ≤ i ≤ M − 1},
where si = [si(0), si(1), · · · , si(N − 1)], is given by

si(t) = ωat2+bit
N , 0 ≤ t ≤ N − 1.

Then we obtain an (N,M, 0, 4
 N
M
�) unimodular DRS set S, which

is optimal with respect to the lower bound on ambiguity function
having ZAZ in equation (4) if M | N .

V. EXAMPLES

In this section, we present three examples to illustrate the pro-
posed constructions and theoretic bounds. The first two examples
correspond to the bound of ZAZ in Theorem 1 and bound of LAZ
in Corollary 1, respectively. The last example indicates that some
Zadoff-Chu (ZC) sequences are sensitive to Doppler.

Example 1: Let N = 32, M = 2 and 0 ≤ t ≤ 31, define

u(t) = e
j2π(2t2)

32 ,

v(t) = e
j2π(2t2+16t)

32 .

The ambiguity function value of S = {u,v} is given in Fig.
3, where each point refers to a nonzero ambiguity point or zero
otherwise. The ZAZ of the sequence family is (−4, 4) × (−4, 4),
which is optimal with respect to the bound in Theorem 1.
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Fig. 3: ZAZ of the sequence family S in Example 1.

Example 2: Let p = 31 and 0 ≤ t ≤ 30, define

u(t) = e
j2πt3

31 ,

v(t) = e
j2π(t3+15t)

31 ,
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then the magnitude of auto-ambiguity function value of sequence u
is the same as v, which is presented in Fig. 4. Specifically,

|AFu(τ, v)| =
⎧⎨
⎩

31; τ = v = 0,
0; τ = 0, v �= 0,√
31; otherwise,

which is optimal with respect to (5) in Corollary 1. In addition,
sequence u and v form a (31, 2,

√
31, (−31, 31)× (−15, 15)) DRS

set S , the low ambiguity zone is presented in Fig. 5. Note that the
sequences u and v were reported as cubic sequences in [16], where
their traditional correlation function instead of ambiguity function
was studied.
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Fig. 4: Auto-ambiguity function of sequence u in Example 2.

-30 -20 -10 0 10 20 30
Delay

-30

-20

-10

0

10

20

30

D
op

pl
er

0

5

10

15

20

25

30

Π=(-31,-31)×(-15,15)

Fig. 5: LAZ of sequence set S in Example 2.

Example 3: Let

u(t) = e
j2π(2t2)

138 , 0 ≤ t ≤ 137,

v(t) = e
jπ(2t(t+1))

139 , 0 ≤ t ≤ 138,

where u is defined in Construction 2 and v is the well-known Zadoff-
Chu sequence used in 3GPP TS 36.211 version 15.12.0 Release 15.

The comparison of auto-ambiguity function values between se-
quence u and v is given in Fig. 6, where each point refers to
a nonzero ambiguity point or zero otherwise. To keep the nice
Doppler-resilience in the interval (−4, 4), the ZAZ of sequence
u is (−34, 34) × (−4, 4), but the ZAZ of sequence v is only
(−1, 1) × (−4, 4). In fact, the ZC sequence reaches the derived
bounds if and only if Π = (−N,N) × (−1, 1) due to its perfect
autocorrelation.

VI. CONCLUSIONS

In this paper, we have, based on the proposed new concepts, called
low ambiguity zone and zero ambiguity zone, derived two lower
bounds on periodic LAZ/ZAZ of unimodular DRSs. These bounds
may be used as benchmarks to measure the Doppler resilience of
unimodular sequences. Also, we presented a class of optimal DRSs
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Πu=(-34,34)×(-4,4)

Πv=(-1,1)×(-4,4)

Fig. 6: Comparison of auto-ambiguity function between se-

quence u and v in Example 3.

with respect to a collection of the new bounds. In addition, it is
also interesting to investigate aperiodic ambiguity lower bounds and
the associated optimal DRSs. Finally, it should be noted that our
ambiguity lower bounds of DRSs are derived with the assumption
that the whole frequency band of interest are available, i.e. without
spectral holes. However, new ambiguity lower bounds of spectrally-
constrained sequences and related sequence design are also useful,
which shall be reported elsewhere.
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