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Abstract

A critical bottleneck of massive multiple-input multiple-output (MIMO) system is the huge training

overhead caused by downlink transmission, like channel estimation, downlink beamforming and covari-

ance observation. In this paper, we propose to use the channel state information (CSI) of a small number

of antennas to extrapolate the CSI of the other antennas and reduce the training overhead. Specifically,

we design a deep neural network that we call an antenna domain extrapolation network (ADEN) that can

exploit the correlation function among antennas. We then propose a deep learning (DL) based antenna

selection network (ASN) that can select a limited antennas for optimizing the extrapolation, which is

conventionally a type of combinatorial optimization and is difficult to solve. We trickly designed a

constrained degradation algorithm to generate a differentiable approximation of the discrete antenna

selection vector such that the back-propagation of the neural network can be guaranteed. Numerical

results show that the proposed ADEN outperforms the traditional fully connected one, and the antenna

selection scheme learned by ASN is much better than the trivially used uniform selection.
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I. INTRODUCTION

Massive MIMO has attracted tremendous attention in the area of wireless communications, in

which the base station (BS) is equipped with a large scale of antennas and can simultaneously

serve multiple users. It is well admitted that massive MIMO could significantly boost the system

capacity and transmission rate, making it a promising technique for both 5G and future wireless

communications [1]. Nevertheless, accurate downlink channel state information (CSI) is the

prerequisite for achieving the full potential of massive MIMO, and the pilot length is proportional

to the number of transmit antennas. Hence, the training overhead for downlink transmission

becomes extremely large.

Most existing works assumed sparsity when performing the channel estimation, since the BS is

always deployed in a high place and the massive MIMO system mostly works in millimeter wave

(mmWave) frequency band [2]. In turn, many channel estimation algorithms such as compressive

sensing (CS) methods [3]–[5] and angle domain MIMO channel reconstruction [6]–[8] have been

explored. However, these approaches mainly rely on simple mathematical models, which may

not be accurate in complicated channel environment.

Recently, deep learning (DL), a new artificial intelligence (AI) method, has demonstrated

its powerful advantages in many research areas, like image processing, speech processing, and

natural language processing. The application of DL in physical layer communications is also

sweeping [9], and many efforts have been made in channel estimation [10], [11], signal detection

[11], [12], and beam prediction [13], [14], etc. In terms of saving the training overhead, a number

of DL based channel prediction methods have been proposed [15], [16] and achieved better results

than the traditional methods. In [17], Dong et al. designed a machine learning method to predict

the channel of a part of antennas from that of the other antennas, where channel prediction

is modeled as a linear function and is solved by linear regression (LR) and support vector

regression (SVR). In [18], Alrabeiah et al. raised the concept of channel extrapolation in space

and frequency. An important observation made in [18] is that there exists an implicit mapping

function between the channels of two antenna sets with different frequencies and positions as

long as the position-to-channel mapping is bijective. Subsequently, Taha et al. proposed a DL
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based method to find the optimal reconfigurable intelligent surface (RIS) reflection matrices

that approaches the maximum achievable rate with only a few active antenna elements [19].

Moreover, Yang et al. predicted the downlink channel from the uplink channel for FDD massive

MIMO systems with acceptable accuracy [20].

Nevertheless, [18]–[21] simply applied the fully-connected deep neural networks (DNN),

while few specific structure has been designed to fit the antenna domain channel extrapolation.

Moreover, it is readily known that different antenna selection scheme will achieve different

extrapolation accuracy, while the existing works [17]–[19] simply adopted the uniformly selected

antennas for channel extrapolation. Although uniform selection is effective in many traditional

works, it cannot guarantee the optimality due to the various electromagnetic field characteristics

of the environment. It is also noted that many traditional antenna selection algorithms [22]–[24]

refer to selecting the optimal antennas for data transmission after the channels are known, which

is obviously not applicable for channel extrapolation.

In this paper, we propose an antenna domain extrapolation network (ADEN) to perform

channel extrapolation and an antenna selection network (ASN) to choose the optimal antennas

for the extrapolation. Specifically, the antenna domain extrapolation is divided into two steps,

that is coarse CSI extrapolation and fine CSI extrapolation. The coarse CSI extrapolation is

realized by a fully connected neural network and the fine CSI extrapolation is modeled as an

ordinary differential equation (ODE) initial value problem, where the coarse extrapolated CSI is

the initial value while the fine extrapolated CSI is the final value. Moreover, a key challenge of

ASN is that the operation of selecting antennas is non-differentiable and cannot guarantee the

back-propagation. We then design a constrained degradation algorithm (CDA) that formulates a

differentiable approximation of the antenna selection vector. To enhance the overall performance,

we next propose to train the ASN and ADEN jointly by penalizing both the extrapolation error

and the antenna selection vector. Based on ASN and ADEN, we present three typical applications:

(i) extrapolating CSI from a part of antennas to all antennas; (ii) extrapolating channel covariance

matrix (CCM) from a part of antennas to all antennas; (iii) using CSI from a part of antennas

to predict the downlink beamforming coefficient of all antennas directly. The simulation results
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show that the proposed ADEN is better than the existing fully connected DNN, and the proposed

ASN is much better than trivially accepted uniform selection.

The remainder of this paper is organized as follows. Section II introduces the system and

channel model. Section III designs the ASN and the ADEN. Section IV presents three typical

applications of the CSI extrapolation. Section V provides the simulation results and Section VI

draws the conclusion.

Notation: Bold uppercase A is a matrix, bold lowercase a is a column vector, non-bold letter

a and A are scalars, caligraphic letter A is a set; |a| is a magnitude of a scalar, ‖a‖p is the

p-norm of a vector, ‖A‖F is the Frobenius norm of a matrix, |A| is the cardinality of a set; AT ,

A∗, AH are the Hermitian, conjugate, and transpose of A; � and ⊗ represent the Hadamard

product and Kronecker product operator respectively; <(s) and =(s) are the real and imaginary

component of s; E is the expectation.

II. SYSTEM AND CHANNEL MODEL

A. System Model

Let us consider a system where a BS is communicating with a mobile user. The BS has

Nt � 1 antennas and the user has only one antenna. Denote h ∈ CNt as the downlink channel

vector from the BS to the user, P ∈ CN×Nt as the downlink pilot matrix with N being the

length of pilots, and v ∈ CN as the vector of sensor noise with power σ2. The received signal

at the user is

y = Ph + v. (1)

There are many traditional methods to perform channel estimation such as least square (LS)

channel estimation and linear minimum mean square error (LMMSE) channel estimation. The

LS channel estimation can be formulated as

hLS = P†y, (2)

where P† = PH
(
PPH

)−1 is the pseudo-inverse of the matrix P. When the signal-to-noise

ratio (SNR) is not high enough, LS estimation will bring a large estimation error. In this case,
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LMMSE channel estimation could be adopted to obtain higher estimation accuracy:

hMMSE =
(
yT (PHRhP + σ2I)−1PHRh

)T
, (3)

where I ∈ CN×N is the identity matrix. Nevertheless, to perform LMMSE channel estimation,

the statistical CSI, i.e., CCM Rh = E
[
h · hH

]
∈ CNt×Nt is needed. From (2) and (3), we see that

the training consumption is extremely high for massive number of antennas. A natural question

then arises: Can we use the channel of Mt(Mt<Nt) BS antennas to recover the channel of all

Nt antennas?

Extrapolation Based Channel prediction: Define A ∈ ZNt×1 as the complete set of all

antennas and B ∈ ZMt×1 as a subset of A with size Mt. Moreover, denote hA (same as h in (1))

as the vector that contains the channel of antenna set A and hB as the subset of hA that contains

the channel of antenna set B. It has been proved in [18] that if the position-to-channel mapping

is bijective, then the channel-to-channel mapping exists. For a given static communication

environment including the geometry, materials, antenna positions, etc., the location of the user

and the channel usually correspond strictly, i.e., the position-to-channel mapping function is

usually bijective [18]. Hence the following channel mapping exists

Φh : {hB} → {hA} . (4)

Extrapolation Based Beam Prediction: In massive MIMO systems, downlink beamforming

is necessary for spatial multiplexing. The optimal beam for channel hA is chosen from the

beamforming codebook F =
{
f1, f2, · · · , f|F|

}
that maximizes the system rate

fA = argmax
f∈F

log2

(
1 + SNR

∣∣hTAf
∣∣2) . (5)

The number of beamforming vectors in the codebook is proportional to the number of antennas

at BS. Hence, the time and computation cost when selecting the optimal beam is also large

in massive MIMO system. To save time and computation resources, we propose the beam

extrapolation that predict the downlink beamforming of all antennas from a part of antennas’

channel, which utilizes the channel of a part of antennas to predict the beam index of the whole
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antennas. In fact, from (4) and (5), we know that the channel-to-beam mapping exists and can

be denoted as

Φbeam : {hB} → {fA} . (6)

Extrapolation Based Covariance Prediction: In addition to channel and beam, CCM is also

an important parameter for transceiver design. For example, CCM is used both to design optimal

pilots and compute the LMMSE channel estimation. CCM can also be used to find the subspace

of the beamforming vector in a coarse and blind way. However, the cost of obtaining CCM is

huge. We then propose to utilize the CCM of a part of antennas to extrapolate the CCM of

the whole antennas. Before proving the existence of the CCM-to-CCM mapping, we adopt the

following assumption:

Assumption 1: The mapping gB : {C} → {RB} is bijective, where C denotes the location of

an area, and RB denotes the CCM of the area and the antenna set B.

Assumption 1 means that each area in the candidate set {C} has a unique CCM. Note that

the bijectiveness of mapping gB depends on some truths including: (i) the signal attenuation

from the BS to different areas is different; (ii) the geometry and materials of different areas are

different; (iii) the scattering paths in different areas are different.

Now, the inverse mapping of gB can be described as

g−1B : {RB} → {C} . (7)

For antenna set A, there also exists a mapping gA : {C} → {RA}. Hence, the CCM-to-CCM

mapping exist, i.e.,

ΦR = gA ◦ g−1B = {RB} → {RA} . (8)

The previously described channel-to-channel mapping (4), channel-to-beam mapping (6), and

CCM-to-CCM mapping (8) can be summarized in a unified extrapolation function

Φ : {uB} → {uA} , (9)

where uB denotes the information of antenna set B and uA denotes the information of antenna

January 19, 2021 DRAFT



7

Extrapolation

Antenna Selection

Fig. 1: Block diagram of the described antenna selection and extrapolation model.

set A. As the exact mathematical function of extrapolation is hardly to obtain1, we adopt deep

neural networks (DNN) to fit such function with the aided of training data. Then, the extrapolation

function can be described as

{uA} = f({uB} ,Θe), (10)

where Θe is the parameters of DNN.

B. Channel Model

We adopt a 3-D geometric based channel model [25] where signal emitted by the transmitter

reaches the receiver from multiple paths through reflection, diffraction, and refraction [26].

Denote αl as the attenuation coefficient of the l-th path, φa,Dl as the azimuth angle of departure

(AoD) of the l-th path, φe,Dl as the elevation AoD for the l-th path, φa,Al as the azimuth angle

of arrival (AoA) of the l-th path, φe,Al as the elevation AoA of the l-th path, ϑl as the phase of

path l and τl as the propagation delay of the l-th path. The channel vector h is given by [27]

h =
L∑
l=1

αle
j(ϑl+2πτlB)a(φa,Al , φe,Al )a∗(φa,Dl , φe,Dl ), (11)

1The mapping can be treated as the interpolation in antenna domain. The interpolation operation is always based on an
explicit model. For example, The interpolation on the orthogonal frequency division multiplexing (OFDM) subcarrier is realized
by using discrete Fourier transform (DFT). However, in the antenna domain, there is no explicit model to describe the mapping
(9). Hence, the linear interpolation result will be very poor.

January 19, 2021 DRAFT



8

0

0

1

1

 ASN ADEN

Fig. 2: The overall structure of ASN and ADEN.

where B is the signal bandwidth, and a(φa,Al , φe,Al ) and a(φa,Dl , φe,Dl ) are the steering vectors at

the arrival and departure sides. The mathematical expression of a(·) is

a(φa,Al , φe,Al ) = az(φ
e,A
l )⊗ ay(φ

a,A
l , φe,Al )⊗ ax(φ

a,A
l , φe,Al ), (12)

where ax(·), ay(·), az(·) are the BS array response vectors in the x, y, and z directions (the

operation is the same for the AoD). Moreover, the operators ax(·), ay(·), az(·) are respectively

defined as

ax(φ
a,A
l , φe,Al ) = [1, ej

dx
λ
sin(φe,Al )cos(φa,Al ), · · · , ej

dx
λ
(Nx−1)sin(φe,Al )cos(φa,Al )],

ay(φ
a,A
l , φe,Al ) = [1, ej

dy
λ
sin(φe,Al )sin(φa,Al ), · · · , ej

dy
λ
(Ny−1)sin(φe,Al )sin(φa,Al )],

az(φ
e,A
l ) = [1, ej

dz
λ
cos(φe,Al ), · · · , ej

dz
λ
(Nz−1)cos(φe,Al )],

(13)

where λ is the carrier wavelength, while dx, dy, dz are the antenna spacings in the x-, y-, and

z- direction.

III. DEEP LEARNING BASED ANTENNA SELECTION AND ANTENNA DOMAIN

EXTRAPOLATION

We here propose a DL based joint design that contains two subnetworks, antenna selection

network (ASN) and antenna domain extrapolation network (ADEN), as shown in Fig. 2. Define

the output of ASN as the antenna selection vector s = {s1, s2, · · · sNt} ∈ {0, 1}
Nt that is an
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Fig. 3: The three parts of ASN.

Mt-hot vector with Mt elements being ‘1’ and the other elements being ‘0’. Specifically, we set

si = 1 if the i-th antenna is selected, while si = 0 otherwise. The input of ADEN is uB = s�uA,

and the output of ADEN is the extrapolated information ûA. The ASN is trained to find the

antenna selection vector that minimizes the extrapolation error of the ADEN. We also propose

to connect the ASN and ADEN through a product operation, and then jointly train them via

backpropagation at the same time.

A. Antenna Selection Network

The ASN is composed of three parts as shown in Fig. 3. The first part is a layer of randomly

initialized parameters θ0. The second part contains several layers of fully connected neurons to

generate a probability vector p = {p1, p2, · · · , pNt}, where pi represents the probability of the

i-th antenna being selected. The overall vector p satisfies the condition
∑Nt

i=1 pi = 1. Denote

the output of the layer before the probability layer (also the input of probability vector) as

θp = {θ1, θ2, · · · , θNt}. Then pi is generated by

pi = softmax (θp)i =
exp (θi)

Nt∑
j=1

exp (θj)
.

(14)

The third part is the antenna selection vector s that is generated based on p. Specially, define
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the index of the biggest Mt elements as

Is = arg topMt {p} , (15)

where arg topMt {x} is a function that finds the biggest Mt elements in vector x, and Is is an

index set. The elements of s with index Is are 1 and otherwise are 0.

We adopt back-propagation algorithm to train the ASN that requires all operations in the

neural network being differentiable. However, when generating s, the function arg topMt {·}

is not differentiable, which is the key obstacle of performing the antenna selection via DL. To

solve this problem, let us first provide the following lemma:

Lemma 1: For two positive integers Mt and Nt with Mt<Nt, the vector ν = {[ν1, · · · , νNt ]T |ν1+

ν2 + · · ·+ νNt =Mt,∀i, νi ∈ R, 0 ≤ νi ≤Mt} satisfies the following equality constraints
ν21 + ν22 + · · ·+ ν2Nt =Mt

ν31 + ν32 + · · ·+ ν3Nt =Mt

. (16)

Let us sort the elements of vector ν in descending order as ν ′
=
{
νk1 , νk2 , · · · , νkNt

}
, where

νk1 ≥ νk2 ≥ · · · νkNt ≥ 0. Then ν is an Mt-hot vector and νi has the following form

νi =


1, i = k1, k2, · · · , kMt

0, i = kMt+1, kMt+2, · · · , kNt
. (17)

The proof of Lemma 1 can be referred to in Appendix A, and the geometric interpretation

(or inspiration) of the Lemma 1 is shown in Appendix B. Based on Lemma 1, we design a

constrained degradation algorithm (CDA) that could construct a differentiable approximation of

the non-differentiable vector s.

According to the definition (14), the softmax output p satisfies
∑Nt

i=1 pi = 1 and 0 ≤ pi ≤ 1.

Let us construct p̃ = {p̃i =Mt · pi|i = 1, · · · , Nt}. Obviously p̃ satisfies
∑Nt

i=1 p̃i = Mt and

0 ≤ p̃i ≤ Mt. From Lemma 1, we know that if p̃ satisfies the equality constraints (16), then

p̃ is an Mt-hot vector. However, the deterministic constraints (16) are difficult to implement in

neural networks. We then adopt the following penalty to make p̃ gradually satisfy constraints
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Fig. 4: Constrained degradation algorithm: forward-propagation link and back-propagation link of ASN.

(16):

LASN = α1

(
‖p̃‖22 −Mt

)2
+ α2

(
‖p̃‖33 −Mt

)2
, (18)

where α1>0 and α2>0 are the tuning parameters of the two parts of penalties. During the training

process, the penalty LASN keeps on decreasing and will approach zero. Hence, both ‖p̃‖22−Mt

and ‖p̃‖33 −Mt will approach zero, and p̃ will tend to satisfy constraints (16), i.e., p̃ will tend

to be s. Interestingly, p̃ will be always differentiable when it gradually approaches s. Hence, the

key idea of CDA is to utilize the differentiable p̃ as an approximation of the non-differentiable s

during back-propagation. The forward-propagation and back-propagation links are summarized

in Fig. 4.

B. Antenna Domain Extrapolation Network

The ADEN is composed of two parts as shown in Fig. 5. The first part is coarse extrapo-

lation subnetwork that incudes several fully connected neural layers. The second part is fine

extrapolation subnetwork that improves the extrapolation accuracy. Denote the output of coarse

extrapolation subnetwork as ûcA and the output of fine extrapolation subnetwork as ûfA. We

propose to formulate the fine extrapolation (from ûcA to ûfA) as an optimization problem that
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Fig. 5: Antenna domain extrapolation network.

satisfies the following ODE 
duf (t)

dt
= ψ [uf (t), t]

uf (t0) = ûcA

, (19)

where uf (·) denotes the fine extrapolation function, and ψ(·) denotes the differential function of

uf (t). The initial condition uf (t0) is ûcA, while the final condition uf (tN) is ûfA. The derivation

process can be found in Appendix C. Traditional methods to solve ODEs are Runge-Kutta [28]

and Multi-step methods [29]. With the precise knowledge of ψ(·), there is

uf (tN) = uf (t0) +

∫ tN

t0

duf (t)

dt
dt = uf (t0) +

∫ tN

t0

ψ [uf (t), t] . (20)

However, since ψ(·) is not available in the considered extrapolation, we could not use (20) to

solve (19). We then design the ADEN by combining the deep neural network and the structure

of Runge-Kutta solution (in [28]) whose structure is shown in Fig. 5 and the mathematical

expression is formulated as

K0 = f0 (û
c
A) , K1 = fK1 (K0) ,

K2 = fK2 (K0 + a1K1) , K3 = fK3 (K0 + a2K2) ,

K4 = fK4 (K0 + a3K3) , ûfA = f5 (K0 + b1K1 + b2K2 + b3K3 + b4K4) ,

(21)
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where fKi
(·) is the nonlinear mapping (or function) of sub-network Ki, and ai, bi are the

parameters that will be trained.

The penalty of ADEN is set as

LADEN = β1‖uA − ûcA‖22 + β2‖uA − ûfA‖
2
2, (22)

where β1>0 and β2>0 are the tuning parameters of the two parts of penalties.

C. Joint Training of ASN and ADEN

We adopt a combined loss function to jointly train ASN and ADEN:

L = LASN + ρLADEN , (23)

where ρ is the weight to balance the penalties of ASN and ADEN.

The detailed steps of the joint training algorithm are described in Algorithm 1. Since the

neural network can only process real numbers, we construct the input uA (in Fig. 2) as

Zin , [<(uA),=(uA)]. (24)

Correspondingly, the antenna selection vector should also be constructed as

s , [sT , sT ]T . (25)

Then the input of ADEN is Zs , s � Zin. The output of ADEN represents the real part and

imaginary part of extrapolated ûA (in Fig. 2)

Zout , [<(ûA),=(ûA)]. (26)

After joint training of ASN and ADEN, we obtain an antenna selection vector s. During the

online evaluation, since the antenna selection vector s has been obtained, we can delete the ASN

and use s� uA for antenna domain extrapolation.
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Algorithm 1 Joint Training of ASN and ADEN
Require: Training dataset D, Number of iterations niter, hyperparameters α1, α2, ρ, initialized

trainable parameters Θs, Θe and a1 = a2 =
1
2
, a3 = 1, b1 = b4 =

1
6
, b2 = b3 =

1
3
.

Ensure: Trained ASN parameters Θs, antenna selecting vector s and AEN parameters Θe.

for i = k to niter do

ASN Phase:

- Draw mini-batch Dk: a random subset of D

- Generate antenna selection vector s by: s = Mt-hot(arg topMt
i

{pi|i = 1, 2, · · · ,Nt})

- Generate a differentiable approximation of s: p̃ =Mt · p

- Separate the real and imaginary parts of uA: Zin , [<(uA),=(uA)]

- Concatenate s for real and imaginary parts of uA (same operation for p̃): s = [sT , sT ]T

- Perform antenna selecting (Hadamard product) (same operation for p̃): Zs , s� Zin

AEN Phase:

- Compute the output of extrapolation network: Zout , f (Zs,Θs)

- Compute the loss function: L

Back-propagation Phase:

- Replace s with p̃

- Use Adam optimizer to update Θs and Θe

end for

IV. TYPICAL APPLICATIONS IN TRANSCEIVER DESIGN

The proposed antenna selection can be applied into many communications tasks that need to

select antennas with certain purpose, for example, antenna selection for the channel estimation

in hybrid massive MIMO system, antenna activation strategy for RIS, antenna selection for

data transmission, etc. Similarly, the antenna domain extrapolation can be applied in many

extrapolation problems in multi-antenna systems. Next, we explain how our proposed model can

be applied to the channel, beam, and covariance extrapolation problems.
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A. Channel Extrapolation

In the channel extrapolation case, we have uA = hA and uB = hB in (9). The channel

extrapolation can be described as

hA = fh (hB) , (27)

where fh(·) is the channel extrapolation function learned by the ADEN.

We set the network input as hin =
[
<
(
hTB
)
,=
(
hTB
)]T , and the corresponding label is hlab =[

<
(
hTA
)
,=
(
hTA
)]T

.

The quality of the channel extrapolation result is evaluated by the NMSE indicator.

NMSE =

E
[∣∣∣hA − ĥA

∣∣∣2]
E
[
|hA|2

] . (28)

B. Beam Prediction

The beamforming is used to increase downlink transmission rate of massive MIMO system,

and the optimal downlink beamforming vector fA can be generated from (5). When there can

only be limited number of pilots and only limited channel hB of a small number of antennas

can be obtained, we propose to directly predict the beam index BeamA from hB. In this case,

we set uA = BeamA and uB = hB in (9). The mathematical formula of beam prediction is

{BeamA} = fb({hB}), (29)

where fb(·) is the beam extrapolation function that will be learned by the ADEN. After the

BeamA being predicted, the corresponding beamforming vector can be obtained by looking up

the codebook.

C. CCM Extrapolation

CCM is the statistical characteristic of the channel and is conventionally obtained from the

accumulation of sufficient number of estimated channel vectors. For massive MIMO system,

unfortunately, the number of the estimated channel vectors is significantly large. Nevertheless,

according to the mapping (8), CCM can also be extrapolated from a small number of antennas.
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Let uA = RA and uB = RB in (9), and there is

RA = fc (RB) , (30)

where fc(·) denotes the CCM extrapolation function that will be learned by the ADEN. Sim-

ilarly to the channel vector extrapolation, the input of CCM extrapolation network is Rin =

{< (RB) ,= (RB)}, and the corresponding label is Rlab = {< (RA) ,= (RA)}. Denote Rout =

{<(R0),=(R0)} as the output of ADEN. Since the CCMs are positive semi-definite, we add

one more layer to ensure the positive semi-definiteness, and the corresponding output is

R
′

out = {<(R0) + <(RT
0 ),=(R0)−=(RT

0 )} = {<(R0 + RH
0 ),=(R0 + RH

0 )}. (31)

V. SIMULATION RESULT

In this section, we evaluate the performance of the proposed ASN and ADEN for channel

extrapolation, beam prediction, and CCM extrapolation.
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TABLE I: DeepMIMO Dataset Parameters

Parameters Value
Scenario name O1 28

Active BS BS15
Active users Row 3252-3852

Number of BS Antennas 64
Number of BS Antennas in x-axis 8
Number of BS Antennas in y-axis 8
Number of BS Antennas in z-axis 1

Antenna spacing (wave-length) 0.5
Bandwidth (GHz) 0.2

Number of OFDM subcarriers 1
OFDM sampling factor 1

OFDM limit 1
Number of paths 11

A. Communications Set Up

Let us consider a scenario from the DeepMIMO dataset [30] that is constructed from the

3D ray-tracing software Wireless InSite [31] and could capture the channel dependence on

the frequency and location. Specifically, we use the outdoor scenario ‘O1 28’ [30] available at

frequency fc = 28 GHz, as shown in Fig. 6. Meanwhile, the BS (BS 15 in Fig. 6) is equipped with

a uniform planar array (UPA) of 8×8 antennas while the user has only one antenna. The antenna

spacing d is set to λc
2

where λc is the carrier wavelength. The bandwidth of the system is set to

200 MHz and the number of paths is set to 11. The corresponding rows of the communication

scenario in Fig. 6 are from 3252 to 3852. Each row contains 181 users while each user represents

a position in the scenario. Hence, there are a total number of 108,781 channels. The channel

vectors are generated based on formula (11) and the parameters in Table I.

We use the algorithm [32] in [33] to generate a beamforming codebook based on the antenna

array parameters in Table I. Then we select the sequence number of the beamforming vector

according to formula (5) to form the label of the beam prediction network.

The dataset of CCM extrapolation is generated from the channel vectors that are collected
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TABLE II: Network Training Hyper-Parameters

Parameters Channel Beam CCM
Solver Adam

Initial learning rate 1× 10−3

Sub-network Ki fully connected layer and ReLu
Number of neurons in Ki 512 512 16,386

Dataset size 108,781 108,781 52,569
Dataset split 80%-20%

Penalty factor of vector s α1 = α2 = β1 = 1, β2 = 10

Scale factor ρ initial ρ = 5, then ×5 every epoch

from 1× 1m2 area around each user. Define one 1× 1m2 area as a collection block. For each

collection block, we evenly collected channels at 25 locations i.e., 5 rows and 5 columns, and

then obtain the channel covariance matrix as Rh = E
[
h · hH

]
. We collect the CCMs of the

users from 3552 row to 2852 row and generate a total number of 52569 collection blocks.

B. Neural Network Training

The configurations of the neural network in the three applications are as follows:

1) Channel Extrapolation: In case of channel extrapolation, the ASN is composed of three

layers. Each layer has 64 neurons, and the output of ASN is s ∈ {0, 1}64×1. The input of ADEN

is s �
[
<(hTA),=(hTA)

]T ∈ R128×1. Moreover, each sub-network contains 512 neurons and a

ReLu layer.

2) Beam Prediction: The input is the same as that of the channel extrapolation case. The

output and label of the network is the beam index and the loss function is a crossentry function.

Moreover, each layer includes 128 neurons and the activation function is ReLu. For beam

prediction case, since the output of ADEN is the beam index, i.e., a one-dimension number, only

a few layers are needed to achieve satisfactory accuracy. Hence we delete the coarse extrapolation

subnetwork and only use the fine extrapolation subnetwork for beam prediction.

3) CCM Extrapolation: In case of CCM extrapolation, the ASN is composed of three layers.

Each layer has 64 neurons, and the output of ASN is s ∈ {0, 1}64×1. Different from channel
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(a) (b) (c)

Fig. 7: Antenna selection patterns at SNR=30dB: (a) uniform antenna selection pattern; (b) antenna selection pattern
learned by ‘ASN+DNN’; (c) antenna selection patterns learned by ‘ASN+ADEN’.

extrapolation, sampling the covariance matrix in the antenna domain requires expanding the

antenna selection vector into a two-dimensional matrix S = s · sT ∈ {0, 1}64×64. Then we

concatenate S to generate S = [ST ,ST ]T ∈ {0, 1}128×64. CCM should also be constructed as

Rin ∈ R128×64 with the real and imaginary parts separated. Then we perform Hadamard product

on S and Zin as S �
[
<(RT

A),=(RT
A)
]T . Before entering the ADEN network, the result of

Hadamard product should be reshaped into a column vector ∈ R8192×1.

C. Performance Evaluation

For all simulations, we compare four channel extrapolation schemes with the same number

of neurons: (i) ‘Uniform + DNN’ (using traditional DNN to extrapolate from uniform antenna

selection patterns); (ii) ‘Uniform + ADEN’ (using ADEN to extrapolate from uniform antenna

selection patterns); (iii) ‘ASN + DNN’ (using DNN to extrapolate from learned antenna selection

patterns); (iv) ‘ASN + ADEN’ (using ADEN to extrapolate from learned antenna selection

patterns).

1) Channel Extrapolation: We use the channel of 8 antennas to extrapolate the channel of

64 antennas. The uniform antenna selection pattern is shown in Fig. 7(a). At SNR=30dB, the

antenna selection patterns learned by ‘ASN + DNN’ and ‘ASN + ADEN’ are shown in Fig. 7(b),

Fig. (c) respectively, which look quite different from the uniform one. The NMSE of channel
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Fig. 8: The NMSE of channel extrapolation versus epoches with 8 antennas and SNR=30dB.

0 5 10 15 20 25

SNR/dB

10-2

10-1

100

N
M

S
E

uniform selection + DNN
uniform selection + ADEN
proposed ASN + DNN
proposed ASN + ADEN

Fig. 9: The NMSE of channel extrapolation versus SNR with 8 antennas.

extrapolation versus the number of epochs for four different schemes are displayed in Fig. 8. It is

seen that the extrapolation NMSE of ‘Uniform + DNN’ is 0.060, while the extrapolation NMSE of

‘Uniform + ADEN’ reaches 0.050. Moreover, the extrapolation NMSE of ‘ASN + DNN’ reduces

to 0.017, while the extrapolation NMSE of ‘ASN + ADEN’ significantly drops to 0.006. Then

we test the channel extrapolation NMSE at different SNR in Fig. 9. Clearly, ADEN outperforms
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(a) (b)

Fig. 10: Antenna selection patterns at SNR=30dB: (a) antenna selection pattern learned by ‘ASN+DNN’; (b) antenna
selection patterns learned by ‘ASN+ADEN’.
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Fig. 11: Beam prediction accuracy versus epoches at SNR=30dB.

traditional DNN in terms of the accuracy of extrapolation, and the proposed ASN performs much

better than the uniform selection. From Fig .8 and Fig. 9, the proposed ADEN performs slightly

better than DNN for uniform extrapolation. However, with the optimized antenna selection, the

accuracy of ADEN will be much better than that of DNN, which demonstrates the effectiveness

of the proposed joint training scheme.
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Fig. 12: Beam prediction accuracy versus SNR.

2) Beam Prediction: For beam prediction, we utilize the channel of 8 antennas to predict the

beam index of 64 antennas. At SNR=30dB, the antenna selection patterns learned by ‘ASN +

DNN’ and ‘ASN + ADEN’ are shown in Fig. 10. The beam prediction accuracy of the four

schemes are displayed in Fig. 11. The accuracy of ‘ASN + ADEN’, ‘ASN + DNN’, ‘Uniform +

ADEN’, and ‘Uniform + DNN’ are 0.965, 0.933, 0.890, and 0.880 respectively. Then we test the

accuracy of beam prediction at different SNR in Fig. 12. Similarly to the channel extrapolation,

we see that the ADEN achieves high beam prediction accuracy than traditional DNN and the

learned antenna selection pattern by ASN is better than the uniform pattern.

3) CCM Extrapolation: For CCM extrapolation, we first use the CCM of 8 antennas to

extrapolate the CCM of 64 antennas. The antenna selection patterns for CCM extrapolation

learned by ‘ASN + DNN’ and ‘ASN + ADEN’ are shown in Fig. 13, and the NMSE of channel

extrapolation for four different schemes are displayed in Fig. 14. It is seen that the NMSE of CCM

extrapolation for ‘Uniform + DNN’, ‘Uniform + ADEN’, ‘ASN + DNN’, and ‘ASN + ADEN’

are 0.036, 0.026, 0.016, 0.007 respectively. We then show the NMSE of CCM extrapolation

using different numbers of antennas in Fig. 15. It is seen that the improvement brought by the

antenna selection is quite significant when |B| is small. Nevertheless, when |B| increases, the
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(a) (b)

Fig. 13: Antenna selection patterns at SNR=30dB: (a) antenna selection pattern learned by ‘ASN+DNN’; (b) antenna
selection pattern learned by ‘ASN+ADEN’.
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Fig. 14: The NMSE of CCM extrapolation versus epoches with 8 antennas.

improvement brought by the antenna selection reduces while the improvement of extrapolation

mostly comes from the designed ADEN. Moreover, the proposed ‘ASN+ADEN’ always achieves

the best extrapolation accuracy with different antenna numbers.

January 19, 2021 DRAFT



24

8 10 12 14 16 18 20 22 24

Antenna numbers

10-4

10-3

10-2

10-1

100

N
M

S
E

uniform selection + DNN
uniform selection + ADEN
proposed ASN + DNN
proposed ASN + ADEN

Fig. 15: The NMSE of CCM extrapolation versus antenna numbers.

TABLE III: Channel Extrapolation Error with Different Initial Weights

Antenna
Number Channel Extrapolation NMSE (×e-03) Variance

8 6.936 7.220 8.426 4.845 7.062 6.714 8.920 6.670 1.313e-06
16 2.631 3.455 2.821 4.006 4.397 4.612 1.878 3.960 7.943e-07
24 1.813 1.494 2.675 1.621 2.315 1.707 2.528 2.269 1.755e-07
32 1.414 1.412 1.742 1.405 1.629 1.160 1.379 1.446 2.645e-08

D. Sensitivity Analysis

By configuring the neural networks with different initial weights, we will obtain different

antenna selection patterns. It is meaningful to study the variance of extrapolation error under

different initialization conditions. We repeat training the ‘ASN + ADEN’ for channel extrap-

olation with different antenna numbers several times, and compute the variances as depicted

in Table III. Although the learned antenna selection pattern from each training is different, the

extrapolation error does not fluctuate much, and the error variance will be further reduced as

the number of antennas increases.
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VI. CONCLUSIONS

In this paper, we investigated the antenna domain channel extrapolation for massive MIMO

system, where the channels of the whole antenna array can be predicted from that of a few

antennas. We first designed the ASN to achieve the optimal antenna selection, where we proposed

a constrained degradation method to approximate the derivative of the antenna selection vector

such that the gradient can be back propagated when training the network. We next design the

ADEN to complete the channel extrapolation, where the ODE-inspired network structure is

adopted to enhance the performance compared to the conventional DNN. The ASN and ADEN

are jointly trained to find the optimal parameters. We then present three typical applications:

channel extrapolation, CCM extrapolation, and beam prediction. Simulations results show that

the learned antenna selection is superior to the uniform selection, and the ADEN performs better

than the tradition DNN.

APPENDIX A

PROOF OF LEMMA 1

Proof : Since ν ′ is a rearrangement of ν, it still satisfies the equality constraints (16). Without

loss of generality, we assume that there are r (0<r ≤ Nt, r ∈ Z) non-zero elements in ν ′ , i.e.,

νk1 ≥ νk2 ≥ · · · νkr>0 and νkr+1 = νkr+2 = · · · νkNt = 0. Denote ν ′
r = [νk1 , νk2 , · · · , νkr ]

T . Note

that ν ′
r still satisfies the equality constraints (16).

For each νkj in ν ′
r, we have νkj>0, and hence there are ν2kj , ν

3
kj
>0. According to Cauchy

Schwarz inequality [34], we obtain

(νk1 + νk2 + · · ·+ νkr)
(
ν3k1 + ν3k2 + · · ·+ ν3kr

)
≥
[(
ν2k1 + ν2k2 + · · ·+ ν2kr

)]2
, (32)

where the the equality holds if and only if
[
νk1 , · · · , νkNt

]T and
[
ν3k1 , · · · , ν

3
kr

]T are linearly

dependent.

From (16), we know

(νk1 + νk2 + · · ·+ νkr)
(
ν3k1 + ν3k2 + · · ·+ ν3kr

)
=
[(
ν2k1 + ν2k2 + · · ·+ ν2kr

)]2
=M2

t . (33)
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Fig. 16: Norm balls of 2-dimension vectors

Hence, the equality (32) holds, and we obtain

ν3k1
νk1

=
ν3k2
νk2

= · · · =
ν3kr
νkr

= q. (34)

Solving (34), we obtain νk1 = νk2 = · · · = νkr =
√
q. Substitute νki =

√
q(i = 1, · · · , r) into

(16), we obtain the following equation
r · √q =Mt

r · (√q)2 =Mt

. (35)

Solving equation (35), we obtain q = 1, r = Mt, and there are νk1 = νk2 = · · · = νkMt = 1

and νkMt+1
= νkMt+2

= · · · = νkNt = 0. Therefore the vector ν is an Mt-hot vector under the

constraints (16). �

APPENDIX B

GEOMETRIC EXPLANATION OF LEMMA 1

We first display the l1-, l2-, and l3-norm balls of two-dimension vectors in Fig. 16. It is seen

that the intersections of these norm balls are all on x-axis and y-axis with coordinates (1, 0),

(0, 1), (−1, 0), (0,−1). If we restrict the horizontal and vertical coordinates to be non-negative
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Fig. 17: Norm balls of 3-dimension vectors

Fig. 18: Norm balls of 3-dimension vectors: ‖x‖p = p
√
2

numbers, then there are only two intersections (1, 0) and (0, 1) whose coordinates are exactly

two one-hot vectors. We then display the norm balls of three-dimension vectors in Fig. 17, and

there are three intersections (1, 0, 0), (0, 1, 0) and (0, 0, 1). We see that the intersections of the

l1-norm, l2-norm and l3-norm balls are three one-hot vectors.

Next, we show how to yield a K-hot vector by deforming the norm balls. Taking three-

dimension vectors as an example, we wish to find several graphics such that the coordinates of

their intersections are two-hot vectors (1,1,0), (0,1,1), (1,0,1), respectively. Since the lp-norm of
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a two-hot vector is p
√
2, we could construct the following three graphics

‖x‖11 = 2, ‖x‖22 = 2, ‖x‖33 = 2, (36)

as shown in Fig. 18. It seen from Fig. 18 that, the coordinates of three intersections from the

three graphics are exactly the two-hot vectors we need.

For more general case, by limiting the l1-norm, l2-norm, and l3-norm of the vectors to p
√
K,

we can get K different K-hot vectors. The strict proof can be found in Section III.

APPENDIX C

DERIVATION OF ODE

We here derive the mathematical model of the fine extrapolation subnetwork. The target is to

obtain the fine ûfA from the coarse ûcA. A popular way to improve the prediction accuracy is to

increase the depth of DNN. However, simply increasing the depth of DNN may bring various

issues like overfitting, vanishing gradient, etc. In this sense, many neural network structures [35]–

[37] based on skip-connections [38] were proposed to help increase the layers of the network

and have achieved advanced performance. The skip connection can be formulated as

uf (n+ 1) = uf (n) +ψ [uf (n),ω(n)] , (37)

where n+1, n are the layer indices in DNN (also can be seen as the time mark) and uf (n+1),

uf (n) are two neuron layers. Equation (37) is also known as the discretized Euler equation [39].

Replacing discrete variable n with continuous variable t, when the time interval becomes small

(t → 0) (or the number of layers between the connected layers becomes large), equation (37)

can be written as
duf (t)

dt
= ψ [uf (t),ω(t)] . (38)
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For the fine extrapolation subnetwork, the input is uf (0) = ûcA. Then fine extrapolation can be

formulated as an ordinary differential equation (ODE) initial value problem
duf (t)

dt
= ψ [uf (t),ω(t)]

uf (0) = uB

. (39)
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