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Abstract

Mobile edge computing (MEC) has recently become a prevailing technique to alleviate the intensive

computation burden in Internet of Things (IoT) networks. However, the limited device battery capacity

and stringent spectrum resource significantly restrict the data processing performance of MEC-enabled

IoT networks. To address the two performance limitations, we consider in this paper an MEC-enabled

IoT system with a wireless device (WD) replenishing its battery by means of energy harvesting (EH)

and opportunistically accessing the licensed spectrum of an overlaid primary communication link to

offload its sensing data to an MEC server (MS) for edge processing. Under time-varying fading channel,

random energy arrivals, and stochastic ON-OFF state of the primary link, we aim to design an online

algorithm to jointly control the cognitive data sensing rate and processing method (i.e., local and edge

processing) without knowing future system information. In particular, we aim to maximize the long-term

average sensing rate of the WD subject to quality of service (QoS) requirement of primary link, average

power constraint of MS and data queue stability of both MS and WD. We formulate the problem as

a multi-stage stochastic optimization and propose an online algorithm named PLySE that applies the

perturbed Lyapunov optimization technique to decompose the original problem into per-slot deterministic

optimization problems. For each per-slot problem, we derive the closed-form optimal solution of data

sensing and processing control to facilitate low-complexity real-time implementation. Interestingly, our

analysis finds that the optimal solution exhibits an threshold-based structure related to the current energy

state, secondary queueing backlogs and primary link activity. Simulation results collaborate with our

analysis and demonstrate more than 46.7% data sensing rate improvement of the proposed PLySE over

representative benchmark methods.
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I. INTRODUCTION

A. Motivations and Contributions

Mobile edge computing (MEC) has been widely recognized as a key enabling technology

towards data-intensive and latency-critic applications in Internet of Things (IoT) systems, such

as smart manufacturing and industrial automation [2], which deploys massive number of IoT

devices (e.g., wireless sensors) capable of sensing, communication and computation. Via pushing

the computation resource toward network edge, MEC allows IoT devices to offload intensive

computation tasks to the nearby edge server for faster execution [3]–[6]. However, constrained by

device size and manufacturing cost, an IoT device is often equipped with low-capacity battery that

can hardly support sustainable operations especially in energy-hungry intelligent applications.

Meanwhile, the large-scale deployment of IoT systems demands wideband spectrum resource

and can cause severe interference to co-channel wireless communication systems, e.g., WiFi and

cellular networks. Overall, the fundamental limitations on device energy and spectrum resource

significantly restrict the data processing capability of existing MEC-enabled IoT systems.

Recently, energy harvesting (EH) has emerged as a promising technique to mitigate the energy

shortage of IoT devices [7], [8]. In particular, EH enables IoT devices to scavenge renewable

energy from external sources like solar and thermal power to local batteries, with which they

can replenish device power consumption in real-time. Recent studies have considered powering

IoT devices in mobile edge computing applications by means of EH [9]–[14]. Under stochastic

renewable energy arrivals, the task offloading decisions of EH-enabled wireless devices (WDs)

are highly coupled across sequential time slots by the time-varying battery state. Therefore, the

optimal design of an online computation offloading strategy in EH-MEC system requires to reach

a good balance between the current and future system performance.

On another front, compared to purchasing expensive licensed bandwidth, it is more cost-

effective to implement cognitive radio (CR) technique in IoT networks for opportunistic spectrum

access to alleviate spectrum scarcity [15]–[17]. In this case, IoT devices as the secondary users

(SUs) periodically sense the spectrum licensed to primary users (PUs) and opportunistically

access the channel given that the PUs can maintain a satisfied quality of service (QoS). Thanks

to the effective spectral reuse of CR technology, we can achieve scalable deployment of IoT

networks that coexist with existing communication infrastructures under stringent spectrum

resource constraint.
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In this paper, we aim to build a sustainable and scalable MEC-enabled IoT system, where the

IoT device relies on harvesting ambient renewable energy for power supply and uses CR tech-

nique to access the spectrum licensed to a primary communication system. The joint application

of CR and EH techniques has the potential to fully address the two fundamental performance

limitations of MEC-enabled IoT systems, however, also raises new technical challenges. On one

hand, the optimal data sensing (collecting task data) and processing (local computing and task

offloading) solution at each time instant is affected by the double randomness of PU link activity

and energy arrivals. For instance, the offloading data rate is constrained by not only the available

energy but also the current PU link ON/OFF operating state. On the other hand, the solutions are

tightly coupled over time due to the temporal correlations of PU link activities and EH process.

It can result in large task data queue backlog if we independently maximize the data processing

rate within each time slot in a greedy manner. Overall, it requires jointly considering both the

short-term and long-term effects of stochastic PU link state and EH process to optimize the data

processing capability of an MEC-enabled IoT system.

n,k

n,k

thtg

te

th tr

ta

Fig. 1: The considered MEC system model.

As a starting point to gain essential insights of the optimal designs, we consider a basic

system setup in a cognitive EH-MEC system that consists of a primary transmitter (PT), a

primary receiver (PR), an MEC server (MS), and an energy-harvesting WD, as shown in Fig.

1. Within each sequential time slot, the WD acquires sensing data from the environment and

buffers the data in a task data queue. Meanwhile, it processes the task data either locally or by

offloading to the MS utilizing the licensed spectrum of primary link. Under time-varying fading

channel, random energy arrivals, and stochastic ON-OFF state of the primary link, our objective

is to design an online algorithm that maximizes the average data sensing rate of the WD subject

to QoS requirement of the primary link, long-term average power constraint at the MS, and
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data queue stability at both MS and WD. To the best of our knowledge, this is the first paper

that studies the long-term performance optimization in a cognitive EH-MEC system. The main

contributions of this paper are:

• Joint Cognitive Data Sensing and Processing Design: We formulate the problem as a multi-

stage stochastic optimization that decides the cognitive data sensing and processing solutions

in sequential time slots. In particular, we focus on designing a practical online algorithm

that obtains the control solution in each time slot without future system information. The

two major challenges of the online design are to satisfy all the long-term constraints under

the randomness of multiple system parameters and the strong coupling of control solutions

over different time slots.

• Low-complexity Online Algorithm: We propose an online algorithm named PLySE that

applies the perturbed Lyapunov optimization technique to remove the time dependency

of control decisions and transforms the multi-stage stochastic problem into per-slot deter-

ministic optimization problems. For each per-slot problem, we propose a low-complexity

algorithm that obtains the optimal solutions in closed-form to facilitate real-time imple-

mentation. Interestingly, we find that both the optimal sensing and task execution solutions

follow simple threshold-based structure that is directly related to the primary link activity,

secondary battery state and queueing backlogs.

• Theoretical Performance Analysis: We prove that if a mild condition on the battery capacity

is satisfied, the online algorithm PLySE always produces a feasible solution to the original

multi-stage stochastic optimization problem. Meanwhile, we prove that PLySE achieves

an [O(1/V ), O(V )] tradeoff asymptotically between the sensing rate and processing delay,

where V is a tunable parameter that a larger V leads to higher sensing rate, and vice versa.

We conduct extensive simulations to verify the performance of the proposed PLySE method,

where we show that it satisfies all the long-term constraints and achieves more than 46.7%

higher sensing rate than the considered representative benchmark methods.

B. Related Works

1) Energy harvesting edge computing: EH-powered MEC technology has attracted significant

attention in recent years. For example, [9] studied the optimal online offloading and autoscaling

policy in a renewable edge computing system, where multiple co-located MSs are powered by

a common EH cell site. [10] designed a deep reinforcement learning (DRL)-based online task
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offloading strategy for an EH IoT device assisted by multiple MSs. Considering an EH-MEC

with an MS and an energy harvesting WD, [11] proposed a task offloading policy that balances

execution delay and energy consumption of the WD. On the other hand, [12] focused on the

geographical load balancing control among energy harvesting MSs, and proposed an online task

offloading policy to minimize the backhaul data traffic and computation workload. Aiming at

minimizing the execution latency and task failure rate, [13] developed a Lyapunov optimization-

based algorithm to jointly optimize the offloading decision and resource allocation in a single-WD

EH-MEC system. Besides, considering hybrid energy supply at the edge devices, [14] studied

dynamic control on task scheduling and energy management to maximize the MEC system utility.

It is worth mentioning that all these studies assume that the MEC system occupies a dedicated

bandwidth. However, this will incur enormous spectrum license cost as the number of IoT devices

soars up. In comparison, applying CR technology in MEC systems to opportunistically utilize

the spectrum licensed to existing communication networks is a more cost-effective and scalable

solution. In this case, the optimal task offloading solution is directly affected by the dynamic

spectrum access method, where the conventional optimization methods (such as in [9]–[14]) are

no longer applicable.

2) Cognitive radio technology in MEC: Recently, some studies have introduced CR to

MEC-enabled IoT systems to address the inherent spectrum scarcity problem. For example, [18]

maximized the energy efficiency of a secondary relay in a cognitive MEC network powered by

wireless energy transfer. [19] designed a risk-aware task offloading strategy for secondary WDs

based on game theory. [20] studied the trade-off between spectrum sensing and task offloading,

and proposed an energy-aware task offloading policy using deep reinforcement learning. To opti-

mize the task processing performance, [21] focused on the routing and bandwidth scheduling in

a three-layer cognitive MEC network. [22] considered a vehicular MEC system opportunistically

accessing the TV white space for computation offloading and minimized the monetary cost of

vehicular terminals and MEC server on task processing. Nonetheless, all these works either

assume static wireless channel gain [18], [19] or constant power supply at WDs [20]–[22]. In

the case of random channel fading and energy arrivals in our considered setup, the design of

computation offloading strategy in the secondary MEC system is challenged by the unknown

system parameters and the strong coupling of offloading decisions over different time slots.

Overall, most existing works separately investigate the applications of EH and CR to MEC-

enabled IoT network. In our considered cognitive EH-MEC system, however, the time-varying
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PU link operating state and EH process jointly affect the optimal data sensing and processing

performance. In general, this calls for a joint consideration of random energy arrivals and

stochastic ON-OFF state of the primary link in the online algorithm design. In this paper, we

find that the optimal online data sensing and processing solution exhibits an interesting threshold

structure directly related to the PU link activity and EH process, and validate the effectiveness

of the online control via simulations.

The rest of the paper is organized as follows. In Section II, we introduce the system model

of the cognitive EH-MEC network and formulate the sensing rate maximization problem. We

propose the PLySE method to solve the problem in Section III and show the feasibility and

optimality of PLySE in Section IV. In Section V, we conduct numerical simulations to evaluate

the proposed method. Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider in Fig. 1 an MEC system consisting of one MS and one energy harvesting WD

that share the narrow spectrum band with a pair of primary users, i.e., a PT and a PR. The

MS is connected to a stable power grid, while the WD is solely powered by external energy

sources (e.g., solar power, thermal energy and wind energy). The MS assists the computation of

WD in sequential time slots of equal duration T . Notice that the considered single-user MEC

system may correspond to a typical user in a multi-user network, where the MS uses dedicated

computing power, memory and communication bandwidth to serve the user via infrastructure

vitalization technique [23]. In time slot t, WD collects raw sensing data from the monitored

environment, stores it into the local task data queue, and processes the data later. We assume

that WD adopts a partial computation offloading rule, whereby the raw task data can be arbitrary

divided into two parts with one computed locally and the other opportunistically offloaded to

the MS for edge processing, using the spectrum licensed to the primary link. The primary link

activity follows a general ON/OFF random process, e.g., 1-stage Markov process. Specifically,

we use a binary indicator at to denote the ON/OFF state of primary link, where at = 1 and 0

denote that the primary link is active and idle, respectively. In particular, we assume that the

PT is active with probability ā, i.e., Pr(at = 1) = ā. With the primary and secondary systems

coexisting in the same spectrum, computation offloading of secondary MEC system will cause

interference to the concurrent primary communications.
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A. Communication Model

Denote the channel gain between MS and WD, PT and MS, PR and WD as ht, ḡt, and h̄t,

respectively. We assume block fading for signal propagation, i.e., ht, ḡt and h̄t are constant in

a time slot t while vary randomly from one slot to another. In order to maintain the service

quality of primary transmission, we consider interference constraints which confines the co-

channel interference and noise power suffered by the PU to a threshold Γth, i.e.,

at
(

Wδ2p + put h̄t − Γth

)

≤ 0, ∀t = 0, 1, · · · , (1)

where W is the system bandwidth and δ2p is the power spectrum density of additive while

Gaussian noise (AWGN) at the PU. Notice that constraint (1) is imposed only when the primary

link is active (at = 1) and becomes immaterial otherwise (i.e., when at = 0). put is the transmit

power of WD that is limited by the maximum value pmax. We assume that the PT transmits with

fixed power PB. Then, the offloading task data size from WD to MS in time slot t is

lofft = WT log2 (1 + put γt) , (2)

where γt = ht/(atPBḡt +Wδ2s ) is the signal-to-interference-plus-noise ratio (SINR) at the

MS and δ2s is the power spectrum density of AWGN at the MS. Correspondingly, the energy

consumption of the WD for data transmission is

eofft = put T. (3)

B. Task Data Sensing and Computation Model

In time slot t, the WD collects rt ≤ rmax bits of raw measurement data, where rmax is the

maximum sensing data size in T (e.g., determined by the maximum measurement sampling rate

or sensing resolution). We model the energy consumption on data sensing as [24]

ecolt = ecolunitrt, (4)

where ecolunit in Jolue/bit is the unit energy cost for data sensing. The sensed data is piled in a

local storage for subsequent task computation, where each task data bit is executed either locally

at the WD or remotely at the MS via task offloading. We denote fu
t as the local CPU frequency,

where fu
t is constrained by its maximum value fu

max. Then, the local processing data size and

the corresponding energy consumption for local computing are

lloct = fu
t T/C, eloct = κc (f

u
t )

2Clloct = κc (f
u
t )

3 T, (5)

respectively, where C is the required CPU cycles to process one bit of data and κc is the energy

efficiency for local computing. Similarly, we denote the edge CPU frequency at the MS as f s
t ,
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which is upper bounded by f s
max. The edge computation data size ledgt and the corresponding

energy consumption eedgt are

ledgt = f s
t T/C, eedgt = κe (f

s
t )

2Cledgt = κe (f
s
t )

3 T, (6)

respectively, where κe is the energy efficiency for edge computing. Then, the total energy

consumption of the WD in time slot t on data sensing and processing is

eut = ecolt + eofft + eloct . (7)

C. Task Data Queue Model

The data sensed in the tth time slot is ready for processing at the beginning of the (t + 1)th

time slot. Let QU
t and QS

t be the data queue length in the WD and MS at the start of slot t,

respectively. For analytical tractability, we assume infinite task queue capacity. For both the data

queues at the MS and WD, the data processed within the current time slot cannot exceed the

data queue backlog, i.e.,

0 ≤ lofft + lloct ≤ QU
t , 0 ≤ f s

t T/C ≤ QS
t , ∀t = 0, 1, · · · . (8)

As a result, the data queues of the WD and MS evolve as following

QU
t+1 = QU

t − lofft − lloct + rt, QS
t+1 = QS

t − ledgt + lofft , t = 1, 2, · · · . (9)

To maintain stable data queues at the WD and MS, we consider stability constraints on QU
t and

QS
t as following [25]

Q̄U = lim
N→+∞

1

N

N
∑

t=1

E
[

QU
t

]

< ∞, Q̄S = lim
N→+∞

1

N

N
∑

t=1

E
[

QS
t

]

< ∞, (10)

where the expectation is taken over all random events, i.e., random channel fading, energy arrivals

and operation state of the primary link.

D. Energy Queue Model

We model the EH process at the WD as a stochastic process with random energy arrivals in

different time slots. In particular, eht Joules of energy arrives at WD throughout the t-th time

slot, where eht is bounded above by Eh
max. Let Bt be the battery level of the WD at the beginning

of time slot t. We consider an energy-aware battery management policy: when Bt is lower than

a threshold Bmin, the WD stops consuming energy on data sensing and processing, while only

harvesting ambient energy to replenish the battery. As a result, the energy consumed by the WD

in the tth slot must satisfy

0 ≤ λee
u
t ≤ Bt · 1Bt≥Bmin

, (11)
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where λe is a non-negative scaling factor (e.g., λe = 1000 denotes using mJ as the unit) and

1{·} is the indicator function. The dynamics of battery level is:

Bt+1 = min
(

Bt − λee
u
t + λee

h
t ,Ω

)

, (12)

where Ω is the battery capacity.

E. Problem Formulation

In this paper, we aim at maximizing the long-term average data sensing rate of the WD under

system stability and interference constraints. Given limited energy harvested from the ambient

environment, this requires the WD to judiciously optimize the data sensing and task computation

operations in sequential time slots. Denote the objective function as R̄ = limN→+∞
1
N

∑N−1
t=0 rt.

We formulate the target problem as below:

(P1) max
rt,p

u
t ,f

u
t ,f

s
t ,∀t

R̄ (13a)

s. t. (1), (8), (10), (11) (13b)

lim
N→+∞

1

N

N
∑

t=1

E

[

eedgt

]

≤ cth, (13c)

0≤ rt≤rmax, 0≤ pt≤pmax,0 ≤fu
t ≤fu

max,0 ≤f s
t ≤f s

max, ∀t, (13d)

where (1) is the QoS constraint of the primary link. (8) and (11) are the data causality and energy

causality at the WD, repetitively. (10) denotes the data queue stability constraints. (13c) denotes

the average power constraint at the MS, where cth is the power threshold. At the beginning of

time slot t, we assume perfect knowledge of the current system state st = {ωt, It} at the MS,

where ωt = {at, e
h
t , ht, ḡt, h̄t} captures the environment random events and It = {QS

t , Q
U
t , Bt} is

the queue backlog state. We seek an online algorithm that makes control decisions {rt, p
u
t , f

u
t , f

s
t }

in the tth slot based only on st. The difficulty of the online design is twofold. First, under the

stochastic channels and random access of the primary user, it is hard to meet the long-term

requirements when the decisions are made in each time slot without knowing the future system

information. Second, due to the random energy supply at the WD, the system decisions in

different slots are inherently coupled with each other. This poses great challenge to allocate the

battery energy to strike a good balance between the current and future system performance. In the

following, we propose a Perturbed-Lyapunov-based online data Sensing and Edge computation

(PLySE) algorithm to solve (P1), which controls data sensing and processing in an online manner

without requiring a priori knowledge of the system state.
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III. ONLINE DATA SENSING AND COMPUTATION OFFLOADING OPTIMIZATION

A. Perturbed Lyapunov-based Optimization

Lyapunov optimization is a well-established method to design online algorithm with long-

term stability requirement. However, standard Lyapunov optimization technique is not directly

applicable to solve (P1) because the feasible control action sets are coupled over time due to the

temporally correlated battery energy in constraint (11). Here, we introduce a perturbed Lyapunov

method to circumvent this issue. To start with, we introduce for the WD a perturbed battery

queue, i.e.,

B̃t , Bt − Ω. (14)

As shown in Section IV, by employing a sufficient large battery capacity Ω, we can safely

remove the constraint (11) without violating the energy causality and at the same time decouple

the feasible control action sets in different time slots. We define for the MS a virtual power

deficit queue with the update equation:

Zt+1 = max
(

Zt + λce
edg
t − λccth, 0

)

, t = 1, 2, · · · , (15)

where λc is a positive scaling factor. Intuitively, the average power consumption constraint in

(13c) is satisfied if Zt is finite as t → ∞. We rewrite the system queue backlog as Θt ,
{

B̃t, Zt, Q
U
t , Q

S
t

}

. Further, we define the perturbed Lyapunov function as

Φt =
1

2

(

B̃t

)2

+
1

2
(Zt)

2 +
1

2

(

QU
t

)2
+

1

2

(

QS
t

)2
, (16)

and the Lyapunov drift as

∆t = E [Φt+1 − Φt|Θt] , (17)

where the expectation is with respect to the system random processes given the current system

queue state Θt. To maximize the data sensing rate R̄ while maintaining stable system queue Θt,

we adopt the drift-plus-penalty approach [25], which greedily minimizes an upper bound of the

following Lyapunov drift-plus-penalty function in each time slot:

∆t
V = ∆t − V E [rt|Θt] . (18)

where V is a positive weight factor.

In the following, we provide an upper bound of ∆t
V . For convenience, we denote a constant

D=
1

2

[

(

λce
edg
max

)2
+(λccth)

2+(λee
u
max)

2+
(

λeE
h
max

)2
+
(

loffmax+l
loc
max

)2
+r2max +

(

ledgmax

)2
+
(

loffmax

)2
]

, (19)

where eedgmax , κc (f
s
max)

3 T is the largest per-slot energy cost at the MS. eumax,ecolunitrmax+pmaxT+

κe (f
u
max)

3 T is the maximum per-slot energy cost at the WD. loffmax , E [WT log2 (1+pmaxγt)]
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corresponds to the maximum average transmission rate of the WD. ledgmax ,
fs
maxT

C
and llocmax ,

fu
maxT

C

are the maximum data processing rate for edge computing and local computing, respectively.

Lemma 1. Under any control method, the Lyapunov drift-plus-penalty function (18) has the

following upper bound for all t, all possible values of Θt, and all parameters V ≥ 0:

∆t
V ≤ D −E

{

V rt+Ztλc

(

cth−eedgt

)

+λe(Bt−Ω)(eut −eht )

+QU
t

(

lofft + lloct − rt
)

+QS
t (l

edg
t − lofft ) |Θt

}

.
(20)

Proof. Please refer to Appendix A for detail.

Algorithm 1 The online PLySE algorithm to solve (13)

Initialization: The initial system state s0 = {ω0,Θ0}, where Θ0 = {QS
0 , Q

U
0 , B̃0, Z0}.

1: for each time slot t do

2: Observe the system state st.

3: Solve problem (21) for {r∗t , f
s∗
t , fu∗

t , pu∗t } using (23), (25) and (29).

4: Execute the control action {r∗t , f
s∗
t , fu∗

t , pu∗t } and update Θt+1 =
{

QS
t+1, Q

U
t+1, B̃t+1, Zt+1

}

according to (9), (14) and (15), respectively.

5: end for

With Lemma 1, we illustrate the proposed PLySE method to solve (P1) in Algorithm 1. In

time slot t, PLySE observes the current system states st and minimizes the right hand side of

(20). Specifically, it determines the actions of the MS and WD in time slot t by solving the

following problem:

max
rt,p

u
t

fu
t ,f

s
t

V rt+Ztλc

(

cth−eedgt

)

+λe(Bt−Ω)(eut −eht ) +QU
t

(

lofft + lloct −rt
)

+QS
t (l

edg
t −lofft ) (21a)

s. t. at
(

put h̄t +Wδ2p − Γth

)

≤ 0, (21b)

lofft + lloct ≤ QU
t , (21c)

0 ≤ f s
t T/C ≤ QS

t , (21d)

0≤rt≤rmax, 0≤put ≤pmax,0 ≤fu
t ≤fu

max, 0≤f s
t ≤f s

max. (21e)

Comparing with (P1), we remove the energy causality constraint (11) in the per-slot problem

(21). In Section IV, we show that (11) can always be satisfied when implementing PLySE given

that the battery capacity satisfies a mild condition. A close observation shows that (21) can be
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decomposed into three independent subproblems, which correspond to CPU frequency control

at the MS, data sensing control at the WD, and task execution control at the WD, respectively.

These three subproblems can be solved in parallel as follows.

B. Optimal Edge CPU Frequency

The optimal CPU frequency at the MS can be obtained by solving the following convex

optimization problem:

max
fs
t

− Ztλcκe (f
s
t )

3 T +QS
t f

s
t T/C (22a)

s. t. 0 ≤ f s
t ≤ f̄ s

max, (22b)

where f̄ s
max = min(QS

tC/T, f
s
max), which is obtained by absorbing (21d) into the box constraint

0≤f s
t ≤f s

max. The solution of (22) can be easily obtained as

f s∗
t = min





√

QS
t

3ZtλcCκe
, f̄ s

max



 . (23)

As shown in (23), the MS operates at a high CPU frequency when the data queue length QS
t is

large, and slows down when the power deficit queue Zt is large. Such an operation stabilizes

the data queue QS
t and satisfies the long-term energy budget at the MS.

C. Optimal Data Sensing Rate

The optimal task data size collected in time slot t can be obtained by solving the following

linear programming:

max
0≤rt≤rmax

[

V + λe(Bt−Ω)ecolunit −QU
t

]

rt, (24)

where the optimal solution exhibits a simple ON-OFF structure:

r∗t = rmax · 1Csen≤0, ∀t, (25)

where Csen , QU
t − V − λe(Bt−Ω)ecolunit. Specifically, the WD senses task data at the maximum

rate (i.e., rt = rmax) if Csen ≤ 0, and collects zero-bit data otherwise. Because Csen increases

with QU
t and decreases with Bt, the WD reduces sensing activity when QU

t is large or Bt is

small, thus avoiding continuous data queue backlog and energy draining at the WD.
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D. Optimal Task Execution

The remaining sub-problem optimizes the task execution, including local computing and task

offloading control at the WD. After removing the terms that are only related to f s
t and rt in

(21), we solve the following optimization problem:

max
put ,f

u
t

F (fu
t ) +G(put ) (26a)

s. t. lofft + lloct ≤ QU
t , (26b)

0≤put ≤pth, 0 ≤fu
t ≤fu

max. (26c)

Here, pth = atmin
(

Γth−Wδ2p
h̄t

, pmax

)

+ (1 − at)pmax, which is obtained by absorbing put ≤ pmax

into (21b). Besides, the objective of (26) is detailed as,

F (fu
t ) = λeB̃tκc (f

u
t )

3 T+QU
t

fu
t T

C
, (27)

G(put ) = λeB̃tp
u
t T+

(

QU
t −QS

t

)

TW log2 (1 + put γt) . (28)

Remark 1. In (26), the proposed PLySE method optimizes a weighted summation of energy

cost and data processing rate (see (27) and (28)) at the WD. At a low battery level, the weighting

factor of energy cost (i.e., B̃t) has a large absolute value |B̃t|. In this case, the WD prefers energy

conservation to data processing (i.e., task offloading and local computation). On the contrary,

when the battery level is high (i.e., |B̃t| is small), the WD tends to utilize the harvested energy

for data processing. This yields a closed loop control on battery level which improves the energy

efficiency at the WD.

Let Fp(x) , 1
γt
2

1
WT (Q

U
t −xT

C ) − 1
γt

and Ff(x) ,
[QU

t −WT log2(1+xγt)]C
T

. From (26b) and (26c),

we can equivalently express the feasible region of (26) as put ∈ [0, p̄th] and fu
t ∈ [0, f̄th], where

p̄th = min (pth,Fp(0)), and f̄th = min (fu
max,Ff(0)). Due to constraint (26b) and time-varying

coefficient
(

QU
t −QS

t

)

in G(put ), (26) is generally a non-convex optimization problem. In the

following Lemma 1, we derive the closed-form expression of optimal solution of (26).

Proposition 1. The optimal solution of (26) is

{fu∗
t , pu∗t } =







































{

f̂u
t , p̂

u
t

}

, if QU
t −QS

t ≥ 0 and l̂offmax + l̂locmax ≤ QU
t , (29a)

{

f̂u
t ,Fp

(

f̂u
t

)}

, if QU
t −QS

t ≥ 0 and l̂offmax + l̂locmax > QU
t and B̃t = 0, (29b)

{

f̆u
t ,Fp

(

f̆u
t

)}

, if QU
t −QS

t ≥ 0 and l̂offmax + l̂locmax > QU
t and B̃t < 0, (29c)

{

f̂u
t , 0
}

, if QU
t −QS

t < 0. (29d)
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Here, f̂u
t =min

(√

−Qu
t

3λeB̃tκcC
, f̄th

)

and p̂ut =

[

(QS
t−QU

t )W
λeB̃t ln 2

− 1
γt

]p̄th

0

, with [·]yx = min(max(·, x), y).

f̆u
t =

[

f̄u
t

]fub
I

f lb
I

, with fub
I = f̂u

t , f lb
I = max (0,Ff (p̂

u
t )), and f̄u

t ∈ [0,+∞) is the unique solution

of

U ′(fu
t ) = 3λeκcTB̃t (f

u
t )

2 −
λeB̃tT ln 2

WCγt
2

QU
t

WT
−

fut
WC +

T

C
QS

t = 0. (30)

In particular, U ′(fu
t ) is a monotonically decreasing function of fu

t , and thus f̄u
t can be obtained

via bisection search.

Proof. Please refer to Appendix B for detail.

Remark 2. From Proposition 1, we see that the optimal edge computation control solutions are

directly affected by the current available energy Bt (absorbed in B̃t), time-varying data queue

length {QU
t , Q

S
t } and primary link activity at, detailed as following: a) The local CPU frequency

f̂u
t and transmit power p̂ut increase with the current available energy Bt. b) A larger data queue QU

t

yields a higher local CPU frequency f̂u
t . c) The optimal offloading solution follows a threshold-

based structure: the WD offloads to the MS only when the local data queue length is longer than

that in the edge, i.e., QU
t −QS

t ≥ 0, otherwise it only performs local computation. Besides, the

larger the difference of QU
t −QS

t , the higher the transmit power p̂ut at the WD. d) If the primary

link is active in the tth slot, the maximum allowable transmit power at the WD pth monotonically

decreases with the interference threshold Γth. e) A larger active probability ā imposes a stringent

transmit power constraint to pth in more time slots, which eventually reduces the task offloading

rate in the long-term. In contrast, since the CPU frequency lower bound f lb
I = max (0,Ff (p̂

u
t ))

decreases with p̂ut , a larger ā would yield a higher local CPU frequency f̆u
t . Overall, the PLySE

algorithm tends to stabilize both QU
t and QS

t , and satisfy the QoS requirements of primary link.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed PlySE algorithm. Recall that

we have removed the energy causality constraint (11) in problem (P1) when designing the

PLySE algorithm. Here, we first show that (11) is always satisfied when implementing the online

PLySE algorithm given that the battery capacity satisfies a mild condition. Then, we prove that

the PLySE algorithm also satisfies all the long-term performance constraints, thus producing a

feasible solution to (P1), and achieves an [O(1/V ), O(V )] sensing-delay tradeoff by tuning the

Lyapunov parameter V .
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To start with, we derive in the following Lemma 2 an upper bound for data queue QU
t , which

is useful to determine the threshold of battery capacity Ω.

Lemma 2. For a non-negative parameter V and an initial data queue satisfying QU
0 ∈ [0, Qmax],

where Qmax = V + rmax, we have 0 ≤ QU
t ≤ Qmax, for t = 0, 1, 2, · · ·

Proof. We prove this result by induction. Notice that 0 ≤ QU
0 ≤ Qmax holds initially. In the

following, we assume that 0 ≤ QU
t ≤ Qmax holds in time slot t, and prove that 0 ≤ QU

t+1 ≤ Qmax

by considering two cases:

• If the WD does not collect any data in time slot t, we obviously have that QU
t+1 ≤ QU

t ≤

V + rmax;

• If the WD collects rt-bit data in time slot t, then rt = rmax and V +λe(Bt−Ω)e
col
unit−QU

t ≥ 0

according to (25). Therefore, we have that QU
t ≤ V + λe(Bt−Ω)ecolunit ≤ V . As a result, we

can obtain that QU
t+1 ≤ QU

t + rmax ≤ V + rmax.

This completes the proof that 0 ≤ QU
t+1 ≤ Qmax.

To facilitate our exposition, we denote A1 = 3CκcBmin

κe(V+rmax)T
, A2 = −3CWκc

κe ln 2
, A3 = − (V+rmax)

3λeCκc
,

Ā1 = −
A2

2

3A2
1

and Ā2 =
−2A3

2+27A1A3

27A3
1

. The following Proposition 2 provides a sufficient condition

to remove the energy causality constraint (11) when implementing PLySE to solve (P1).

Proposition 2. Suppose that Ω≥max
(

V

λee
col
unit

+λee
u
max, xmax+λee

u
max

)

+ λeE
h
max, where xmax =

maxk (xk) and xk = 2
√

− Ā1

3
cos
[

1
3
arccos

(

3Ā2

2Ā1

√

− 3
Ā1

)

− 2πk
3

]

, for k = 0, 1, 2, the energy

causality constraint (11) is satisfied in every time slot.

Proof. Please refer to Appendix C for detail.

Proposition 2 shows that the energy causality constraint can be safely removed when im-

plementing the PLySE algorithm to solve (P1), as long as the battery capacity is sufficiently

large. Such a condition easily holds in practice. For instance, the condition is Ω ≥ 137.8 Joules

using the parameters in Section IV, which holds for commercial battery with several thousand

Joules capacity. Moreover, Proposition 2 shows that the required battery capacity increases with

V . Together with the fact that a larger V yields a higher data sensing rate (to be shown in

Proposition 3), we observe a critical tradeoff between the battery capacity and achievable data

sensing rate. That is, the data sensing rate improves with the battery capacity, and can achieve

arbitrarily close-to-optimal sensing performance when the battery capacity is sufficiently large.
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In the following, we show that the PLySE algorithm can achieve [O(1/V ), O(V )] sensing-delay

tradeoff while respecting all the long-term performance constraints. To facilitate the performance

analysis, we introduce the following auxiliary problem:

(P2) max
rt,p

u
t ,f

u
t ,f

s
t ,∀t

lim
N→+∞

1

N

N−1
∑

t=0

rt (31a)

s. t. (1), (8), (10), (13c), (13d), (31b)

lim
N→+∞

1

N

N−1
∑

t=0

E
[

eut − eht
]

≤ 0. (31c)

Compared to (P1), (P2) replaces the energy causality constraint (11) in (P1) with a long-term

energy constraint (31c). Let R̄∗
P1 and R̄∗

P2 be the optimal value of (P1) and (P2), respectively.

Then, we show in the following lemma that R̄∗
P1 ≤ R̄∗

P2.

Lemma 3. Any feasible solution to (P1) is also feasible to (P2). Specifically, (P2) is a relaxed

version of (P1), i.e., R̄∗
P1 ≤ R̄∗

P2.

Proof. For any feasible solution of (P1), based on the battery dynamics (12), we have

Bt+1 ≤ Bt − λee
u
t + λee

h
t , t = 0, · · · , N − 1. (32)

By summing up both sides of the above N equalities, taking the expectation, diving both sides

by λeN and letting N go to infinity, we have

lim
N→+∞

1

λeN
E [BN ]≤ lim

N→+∞

1

λeN
E [B0]− lim

N→+∞

1

N

N−1
∑

t=0

E
[

eut − eht
]

. (33)

Since Bt ≤ Ω < +∞, we have limN→+∞
1

λeN
E [BN ] = limλeN→+∞

1
N
E [B0] = 0, i.e., (31c) is

satisfied. Hence, any feasible solution of (P1) is also feasible to (P2), and thus R̄∗
P1 ≤ R̄∗

P2.

We denote the environment random event ωt of the considered problem as an i.i.d process.

We introduce a class of stationary and randomized policies called ω-only policy, which observes

ωt for each time slot t and makes control decisions independent of the queue backlogs Θt.

To ensure the long-term requirements (10), (13c) and (31c), we assume (P2) is feasible and

following Slater condition holds.

Assumption 1. There are constant ǫ > 0 and ϕ(ǫ) ≤ R̄∗
P2 and an ω-only policy Γ satisfying that

E
[

rΓt
]

= ϕ(ǫ), E

[

eedg,Γt

]

≤ cth − ǫ, E

[

eu,Γt − eh,Γt

]

≤ −ǫ, (34a)

E

[

loff ,Γt

]

≤ E

[

ledg,Γt

]

− ǫ, E
[

rΓt
]

≤ E

[

loff ,Γt + lloc,Γt

]

− ǫ. (34b)
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In the following Proposition 3, we show that PLySE achieves asymptotic optimality to the

primary problem (P1), while satisfying the long-term constraints (10) and (13c).

Proposition 3. Under the proposed PLySE method, we have that:

a) The achieved time average expected computation rate, denoted as R̄Ψ, satisfies that

R̄Ψ ≥ R̄∗
P1 −

D

V
. (35)

b) The data queue stability (10) are guaranteed. In particular, the data queue length QU
t and

QS
t satisfy that

lim
N→+∞

1

N

N
∑

t=0

E
[

QU
t

]

≤
D + V

(

R̄∗
P1 − ϕ(ǫ)

)

ǫ
< +∞, (36a)

lim
N→+∞

1

N

N
∑

t=0

E
[

QS
t

]

≤
D + V

(

R̄∗
P1 − ϕ(ǫ)

)

ǫ
< +∞. (36b)

c) Zt is strongly stable, and the long-term average power constraints (13c) is satisfied.

Proof. Please refer to Appendix D for detail.

According to Little’s law, the network delay is proportional to the time-averaged data queue

length. Proposition 3 indicates that the PLySE algorithm achieves an [O(1/V ), O(V )] sensing

rate-delay tradeoff. In particular, as V increases, the sensing rate improves at the rate of O(1/V ),

but at the cost of longer data queue length (processing delay) increasing at rate of O(V ).

V. NUMERICAL RESULTS

In this section, we evaluate the system performance via numerical simulations. We consider

an MS deployed at dg = 500 meters away from the PT. The communication distance between

the MS and the WD is dh = 50 meters and that between the WD and the PR is dh̄ = 50

meters. We model all the channels as Rayleigh fading channels. Denote σg, σh, and σh̄ as the

path-loss exponents of channel MS-PT, MS-WD, and WD-PR, respectively. Then, we model

the corresponding channel gain as gt = ςtH(dg, σg), ht = ςtH(dh, σh), and h̄t = ςtH(dh̄, σh̄),

respectively. Here, ςt is an independent exponential random variable of unit mean, which captures

the small-scale channel fading effect in time slot t. H(d, σ) denotes the average channel gain

that follows a path-loss model H(d, σ) = GA

(

3×108

4πfcd

)σ

, where GA = 4.11 captures the total

antenna gain and fc = 2.4 GHz represents the carrier frequency. Unless otherwise statement,

we set σg = σh = σh̄ = 2.7, the power budget at the MS cth = 1.6 Joules, and the maximum

sensing data size rmax = 10 Mbits. We initialize the data queue length and battery level to 0,
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TABLE I: Simulation Parameters

PB = 33 dBm pmax = 20 dBm ecolunit = 10
−8 Joules/bit T = 1 sec

W = 1 MHz kc = ke = 10
−26 C = 100 cycles/bit Bmin = 10

−3 Joules

δ2s = δ2p = −174 dBm/Hz fs = 4 GHz fu
max = 400 MHz V = 256× 10

7

i.e., QS
0 = QU

0 = B0 = 0. The energy arrival rate Eh
t is uniformly distributed in

[

0, Eh
max

]

with

Eh
max = 0.6 Joules. We consider the operation state indicator at of the PT follows a binomial

distribution with expectation ā = 0.6. We refer to ā as the active rate of PT. Besides, we set the

interference tolerance at the PR as Γth = 53×Wδ2p. The simulation length is set to N = 6×104

time slots. The other parameters used in simulation are listed in Table I.

To verify the performance of the proposed PLySE method, we consider three representative

methods as the benchmarks, all of which computes f s∗
t and r∗t similar to PLySE (i.e., using (23)

and (25), respectively), while determining pu∗t and fu∗
t via following strategies:

• Local computing only (LCO): WD computes all tasks locally rather than task offloading.

In this case, the optimal local CPU frequency fu∗
t is obtained by solving (26) with pu∗t = 0.

Specifically, fu∗
t = f̂u

t .

• Edge computing only (ECO): WD offloads all tasks to the MS for edge processing. In this

case, the optimal transmit power pu∗t is obtained by solving (26) with fu∗
t = 0. Specifically,

pu∗t = p̂ut if QU
t −QS

t ≥ 0 or pu∗t = 0, otherwise.

• QS-oblivious computation offloading (QS-oblivious): Instead of computing pu∗t and fu∗
t using

(29) where QS
t acts as a key factor, QS-oblivious method ignores the state of QS and obtains

pu∗t and fu∗
t by solving the following problem:

max
put ,f

u
t

lloct + lofft , s. t. (11), (26b), (26c). (37)

Constrained by (26b), (37) is a non-convex optimization problem. Nonetheless, we can

obtain the optimal solution of (37) following similar steps to solve (26), where the detail

is omitted here for concision.

A. Feasibility of PLySE and Benchmark Methods

We first investigates the feasibility of the proposed PLySE algorithm and the three bench-

mark methods. For convenience, we denote the average energy consumption at the MS as

c̄ = limN→+∞
1
N

∑N

t=1 E

[

eedgt

]

. We consider two different average power budgets at the MS,

i.e., cth = 1.6 and 0.2 Joules, and plot in Fig. 2 the average data queue length Q̄U and Q̄S as

well as the average energy consumption at the MS (denoted as c̄) as the time proceeds, where



19

0
1500
3000

Q̄
U
(M

b
it
s) (a)

0
1500
3000

(e)

0
1500
3000

Q̄
S
(M

b
it
s) (b)

0
10000
20000

Q̄
S
(M

b
it
s) (f)

0.0
1.0
1.6
(c)

0.0
0.2
0.5
(g)

0 20000 40000 60000
time slot t (cth =1.6 Joules)

0.0
50.0
137.8

(d)

Battery capacity

0 20000 40000 60000
time slot t (cth =0.2 Joules)

0.0
50.0
137.8

B
t
(J
ou
le
s) (h)

Battery capacity

c̄
(J
ou
le
s)

B
t
(J
ou
le
s)

Q̄
U
(J
ou
le
s)

c̄
(J
ou
le
s)

PLySE QS-oblivious LCO ECO

Fig. 2: Feasibility of PLySE and Benchmark methods.

each point is a moving-window average of 400 time slots. We also display in the figure the

change of battery level Bt over time slot. The results in Fig. 2(a)-(d) show that all the methods

provide feasible solutions to (P1) at a high average power budget cth = 1.6. In particular, all

the methods stabilize the data queues Q̄U and Q̄S in Fig. 2(a) and (b), respectively, where

the proposed PLySE method achieves relative shorter data queues than ECO. Besides, they all

satisfy the average energy consumption constraint 1.6 Joules in Fig. 2(c). We also observe that

the battery levels fluctuate between 0 and the battery capacity over time, which means that all

the methods respect the energy causality constraint (11) in every time slot. However, when we

decrease cth from 1.6 to 0.2, QS-oblivious yields an unstable Q̄S (as shown in in Fig. 2(f)), which

increases almost linearly with time. This is because QS-oblivious offloads computing tasks to

the MS regardless of the edge queue length. Besides, QS-oblivious does not satisfy the power

budget cth at the MS (as shown in in Fig. 2(g)). In contrast, as shown in Fig. 2(e)-(h), ECO,

LCO, and the proposed PLySE methods still produce stable data queues and satisfy the average

energy consumption and energy causality constraints.

B. Impact of Lyapunov Control Parameter V

In this subsection, we investigate the impact of parameter V to the performance of PLySE. As

shown in Fig. 3, the data sensing rate R̄ increases with V and becomes saturated when V is large

enough (i.e., V ≥ 256× 107 here). However, as V increases, Q̄S, Q̄U and Ω become large and

grow rapidly especially when V > 256 × 107. These results are consistent with the theoretical

analysis in section IV, where a larger V yields a larger battery capacity and longer data queues.
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Fig. 3: System performance of PLySE under different V

By adjusting the value of V , PLySE offers a trade-off between the reduction of data queue length

and increase of data sensing rate. In the following simulations, we set V = 256× 107, whereby

PLySE enjoys near-optimal data sensing rate with small data queue length and battery capacity.

C. Impact of Primary Link Activities

In this subsection, we investigate the impact of primary link activities on the data processing

performance of PLySE. In Fig. 4(a), we reveal the impact of interference tolerance at the PR

to the task execution method. As shown in the figure, the local computing data size are almost

constant when Γth varies, while the average offloading data size (i.e., the orange and green bars

combined) increases with Γth. This is because that a larger Γth allows a higher transmit power

at the WD. Interestingly, as Γth increases, the WD offloads less task data to the MS when the

primary link is idle (i.e., at = 0), but more data when the primary link is active (i.e., at = 1),

because the WD has a larger freedom to control its transmit power when the primary link is

active to reduce the overall energy consumption.

Then, we plot in Fig. 4(b) the impact of active probability ā of primary link on the computation

offloading and local computing behavior of the WD. It displays that the local computing data

size is almost immune to the change of ā. Besides, since higher ā leaves the secondary MEC

system less chance to access the licensed channel, the average offloading data size and total

sensing data size decrease as ā increases. Meanwhile, because the primary link is active for a

larger portion of time under a larger ā, the total task data offloaded when the primary link is

active (inactive) increases (decreases) with ā.
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Fig. 4: The impact of (a) Γth and (b) ā on computation offloading and local computing.

D. Performance Comparison Under Various System Parameters

In order to show the effectiveness of the proposed PLySE method, we compare PLySE with the

three benchmark methods in Fig. 5 considering various system parameters. For the QS-oblivious

method, the points of unstable data queue are omitted.

We first examine in Fig. 5(a) the performance of PLySE, ECO, LCO, and QS-oblivious methods

under different path-loss exponent σh. For PLySE, QS-oblivious and ECO, R̄ decreases with the

rise of σh. This is for the reason that a larger σh results in a more severe signal attenuation

during computation offloading. In particular, at a small σh = 2.3, the performance of PLySE and

ECO become saturated due to the limited system resources (e.g., constrained transmit power and

CPU frequency) and inherent co-channel interference from the primal link, while QS-oblivious

bears an unstable QS due to the surging offloading data at small σh. Because LCO does not

perform task offloading, its data processing rate is not related to σh. As σh increases, crossovers

can be observed between ECO and LCO as well as QS-oblivious and LCO. This is because that

the WD tends to perform local computing at a large σh. Nevertheless, for all considered σh’s,

the PLySE method shows a significant superiority over the other benchmarks.

In Fig. 5(b), we depicts the long-term average data sensing rate as a function of the edge

power budget cth. For PLySE and ECO, R̄ grows with the increase of cth, and finally becomes

steady due to the limited energy arrivals. Intuitively, LCO has constant data sensing performance

unrelated to edge computing. For QS-oblivious, it maintains the data queue stability and yields

constant R̄ when cth ≥ 0.4 Joules. However, its offloading rate overwhelms the edge processing
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Fig. 5: Long-term average data sensing rate R̄ versus: (a) path-loss exponent between the MS

and WD σh; (b) power budget cth at the MS; (c) average energy arrival rate
Eh

max

2
; and (d)

maximum sensing data size rmax.

capability under stringent edge power constraint when cth < 0.4, leading to infinite data queue

backlog at the MS. Our proposed PLySE method enlarges its performance gaps to the other

benchmarks as cth climbs. Specifically, it offers 46.7%, 132.8%, 65.2% higher average sensing

rate than the QS-oblivious, LCO, and ECO, respectively.

We also investigate in Fig. 5(c) the impact of energy arrival rate on the average data sensing

performance. Here, we vary the maximum energy arrival within a slot Eh
max, such that the

average energy arrival rate is set as
Eh

max

2
accordingly. It displays that the PLySE method provides

significant performance improvement compared with the benchmarks for all Eh
max considered.

For all the methods, R̄ increases with the rise of Eh
max. This is because larger Eh

max allows

higher local computing and task data offloading rate. Compared to the other three methods, QS-
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oblivious is more sensitive to energy arrivals. In particular, QS-oblivious yields the worst data

sensing performance when Eh
max = 0.0375 Joules, but rapidly improves R̄ with increasing Eh

max

and finally achieve a similar R̄ to PLySE at Eh
max = 1.2 Joules. As Eh

max grows, QS-oblivious

leads to unstable data queue at the MS, while PLySE, ECO and LCO achieve saturated R̄ due

to the hardware constraints on transmit power and CPU frequency.

In Fig. 5(d), we further evaluate the data sensing performance under different task data size

rmax. For PLySE, LCO, and ECO, R̄ grows with the increase of rmax and finally arrives at a stable

value due to limited resources on data processing. On the other hand, with the growth of rmax,

QS-oblivious first increases and then declines. This is due to the excessive energy consumption

of QS-oblivious on local computing and task data offloading, which leads to lower battery level

under a larger rmax. This renders a higher sensing cost Csen and thus suppressing the data sensing

rate. Nevertheless, for all rmax’s, the proposed PLySE method significantly outperforms the three

benchmark methods in terms of average data sensing rate.

VI. CONCLUSION

In this paper, we studied the optimal online policy design in a cognitive EH-MEC system.

Aiming at maximizing the long-term average sensing rate while respecting the constraints on

prescribed QoS requirement of primary link, long-term average power consumption at the mobile

server and data queue stability, we developed an efficient online data sensing and processing

algorithm named PLySE. In particular, we formulated a multi-stage stochastic optimization

problem and transformed the intractable problem into per-slot deterministic optimization via

the perturbed Lyapunov optimization technique. We further proposed low-complexity algorithm

that obtains the optimal solution of the per-slot problem. Besides, we proved that the proposed

PLySE algorithm achieves the optimal sensing rate asymptotically and meanwhile satisfying

all the long-term constraints. The simulation results validated our analysis and demonstrated

significant performance gain of the proposed PLySE algorithm over the considered benchmark

methods.
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APPENDIX A

PROOF OF LEMMA 1

In the following, we derive an upper bound of (18). To begin with, we have that
1

2

(

QU
t+1

)2
−

1

2

(

QU
t

)2
=

1

2

(

rt − lofft − lloct

)2
+QU

t

(

rt − lofft − lloct

)

≤
1

2

[

(

lofft + lloct

)2
+ (rt)

2
]

−QU
t

(

lofft + lloct − rt
)

.

(38)

By taking the conditional expectation on both sides of (38), we have

E

[

1

2

(

QU
t+1

)2
−

1

2

(

QU
t

)2
| Θt

]

≤ D1 − E
[

QU
t

(

lofft + lloct − rt
)

| Θt

]

, (39)

Here, D1 is a constant obtained as

E

[

1

2

[

(

lofft + lloct

)2
+ (rt)

2
]

]

≤
1

2

[

(

loffmax + llocmax

)2
+ (rmax)

2
]

, D1, (40)

where loffmax = E [WT log2 (1 + pmaxγt)] and llocmax =
fu
maxT

C
. Similarly, we have that

E

[

1

2

(

QS
t+1

)2
−

1

2

(

QS
t

)2
| Θt

]

≤ D2 − E

[

QS
t

(

ledgt − lofft

)

| Θt

]

, (41)

where D2 =
1
2

[

(

loffmax

)2
+
(

ledgmax

)2
]

and ledgmax =
fs
maxT

C
.

For the battery queue, we have that
1

2
B̃2

t+1 −
1

2
B̃2

t ≤
1

2

(

Bt − λee
u
t + λee

h
t − Ω

)2
−

1

2
(Bt − Ω)2

=
1

2
λ2
e

(

eut − eht
)2

− λe(Bt − Ω)(eut − eht )

≤
1

2

[

λ2
e(e

u
t )

2 + λ2
e

(

eht
)2
]

− λe(Bt − Ω)(eut − eht ).

(42)

By taking the conditional expectation on both sides of (38), we have

E

[

1

2
B̃2

t+1 −
1

2
B̃2

t | Θt

]

≤ D3 − E
[

λe(Bt − Ω)(eut − eht ) | Θt

]

, (43)

where D3 =
1
2

[

(λee
u
max)

2 +
(

λee
h
max

)2
]

and eumax = ecolunitrmax + pmaxT + κe (f
u
max)

3 T .

On the other hand, using the fact that [max(x, 0)]2 ≤ (x)2, we have
1

2
Z2

t+1 −
1

2
Z2

t ≤
1

2

(

λce
edg
t − λccth

)2

+ Ztλc

(

eedgt − cth

)

≤
1

2

(

λce
edg
t

)2

+
1

2
(λccth)

2 + Ztλc

(

eedgt − cth

)

(44)

Correspondingly, we have

E

[

1

2
Z2

t+1 −
1

2
Z2

t | Θt

]

≤ D4 − E

[

Ztλc

(

cth − eedgt

)

| Θt

]

, (45)

where D4 =
1
2

[

(

λce
edg
max

)2
+ (λccth)

2
]

and eedgmax = κc (f
s
max)

3 T .

By summing up (39), (41), (43) and (45), we obtain an upper bound of ∆t
V in (20).
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APPENDIX B

PROOF OF PROPOSITION 1

Depending on the value of QU
t −QS

t , we solve (26) by considering the following two cases:

Case I: QU
t − QS

t ≥ 0. Remind that B̃t = Bt − Ω ≤ 0. In this case, F (fu
t ) and G (put )

are concave functions and achieve maximum at f̃u
t =

√

−Qu
t

3λeB̃tκcC
and p̃ut =

(QS
t−QU

t )W
λeB̃t ln 2

− 1
γt

,

respectively. In a special case of B̃t = 0, we set f̃u
t = fu

max and p̃ut = pth. Denote f̂u
t =

min
(

f̃u
t , f̄th

)

and p̂ut = min (max (p̃ut , 0) , p̄th). Then, the optimal solution must satisfy that

fu∗
t ∈

[

0, f̂u
t

]

and pu∗t ∈ [0, p̂ut ], where both F (fu
t ) and G (put ) are monotonically increasing.

Let l̂locmax =
f̂u
t T

C
and l̂offmax = WT log2 (1 + p̂ut γt) denote the maximum amount of data processed

via local computing and computation offloading in time slot t, respectively. Then, the optimal

solution of (26) can be obtained as below:

• When l̂offmax + l̂locmax ≤ QU
t , we can directly obtain that fu∗

t = f̂u
t and pu∗t = p̂ut .

• When l̂offmax+ l̂locmax > QU
t , lofft +lloct = QU

t must hold at optimum. By substituting put = Fp(f
u
t )

into G(put ), we can rewrite (26) as

max
fu
t

U (fu
t ) , s. t. f lb

I ≤fu
t ≤fub

I , (46a)

where U (fu
t ) = λeB̃t

[

Fp (f
u
t )T + κc (f

u
t )

3 T
]

+
(

QU
t

)2
+

QS
t f

u
t T

C
− QS

tQ
U
t , fub

I = f̂u
t , and

f lb
I = max (0,Ff (p̂

u
t )). When B̃t = 0, U (fu

t ) =
(

QU
t

)2
+

QS
t f

u
t T

C
−QS

tQ
U
t is a linear function

of fu
t . The optimal solution of (46) can be obtained as fu∗

t = f̂u
t and thus pu∗t = Fp

(

f̂u
t

)

.

When B̃t < 0, U (fu
t ) is a concave function. We assume U (fu

t ) achieves maximum at f̄u
t ,

which can be obtained by solving equation

U ′(fu
t ) =

∂U

∂fu
t

= 3λeκcTB̃t (f
u
t )

2 − λeB̃tTA02
−

fut
WC +

T

C
QS

t = 0, (47)

where A0 =
ln 2

WCγt
2

QU
t

WT .

Lemma 4. U ′(fu
t ) is a monotonically decreasing function of fu

t and U ′(fu
t ) = 0 has a

unique solution f̄u
t ∈ [0,+∞).

Proof. By taking the derivative of U ′ in terms of fu
t , we can easily find that ∂U ′

∂fu
t
< 0 for

fu
t ∈ [0,+∞). That is, U ′(fu

t ) is a monotonically decreasing function of fu
t . When fu

t = 0,

U ′(fu
t ) = −λeTA0B̃t +

T
C
QS

t > 0. When fu
t → +∞, U ′(fu

t ) → −∞. Therefore, there is a

unique solution f̄u
t ∈ [0,+∞) for U ′(fu

t ) = 0.

Based on Lemma 4, we can obtain f̄u
t that satisfies U ′(f̄u

t ) = 0 using bi-section search

method. Then, for the case of B̃t < 0, the optimal solution of (46) can be given as fu∗
t = f̆u

t ,
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where f̆u
t =min

(

max
(

f lb
I ,f̄

u
t

)

,fub
I

)

. Correspondingly, pu∗t = Fp

(

f̆u
t

)

.

Case II: QU
t − QS

t < 0. In this case, F is a concave function of fu
t and G monotonically

decreases with put . The optimal solution of (26) can be easily obtained as pu∗t = 0 and fu∗
t = f̂u

t .

By summarizing the results in Case I and II, we finally obtain the optimal solution of (26) as

shown in (29).

APPENDIX C

PROOF OF PROPOSITION 2

The main idea of proving Proposition 2 is to select an appropriate Ω to make constraint (11)

implicit for any Bt ∈ [0,Ω]. By initially setting Ω ≥ λee
u
max + λeE

h
max, we prove Proposition 2

by considering following three cases depending on the value of Bt.

Case I: When Bt ∈ [λee
u
max,Ω], we have Bt+1 ≤ min

(

Ω+ λeE
h
max,Ω

)

= Ω based on the

energy dynamic (12). Because Bt ≥ λee
u
max ≥ λee

u
t for all feasible rt, f

u
t and put , the energy

causality constraint (11) is satisfied. Thus, we have 0 ≤ Bt+1 ≤ Ω.

Case II: When Bt ∈ [0, Bmin], we have Bt+1 ≤ Bt + λee
h
t ≤ Bmin + λeE

h
max < Ω. From (11),

the WD stops consuming energy on data sensing and processing, i.e., ecolt = eofft = eloct = 0. The

energy causality constraint (11) is satisfied and thus we have 0 ≤ Bt+1 < Ω.

Case III: When Bt ∈ [Bmin, λee
u
max], we have Bt+1 ≤ λee

u
max + λeE

h
max ≤ Ω. To satisfy

the energy causality λee
u
t ≤ Bt for all Bt ∈ [Bmin, λee

u
max], one possible solution is to set an

appropriate Ω, such that the energy cost on data collection is zero (i.e., Csen > 0 and thus rt = 0)

and that on data transmission and local computing is less than Bmin. Accordingly, we derive the

condition on Ω as follows.

• Based on (25), we have that rt = 0 if
V−QU

t

λee
col
unit

+ Bt <
V

λee
col
unit

+ λee
u
max ≤ Ω, where the first

inequality holds because Bt ∈ [Bmin, λee
u
max] by assumption.

• Based on (29), we observe that the WD consumes the maximum energy on data transmission

and local computing when {fu∗
t , pu∗t } =

{

f̂u
t , p̂

u
t

}

. To ensure λe

(

eofft + eloct

)

≤ Bmin, it

suffices to select an Ω that satisfies λe

(

êofft + êloct

)

≤ Bmin, where êofft = p̂ut T and êloct =

κe

(

f̂u
t

)3

T . Recall that p̂ut = min (max (p̃ut , 0) , p̄th) and f̂u
t = min

(

f̃u
t , f̄th

)

, where f̃u
t =

√

−Qu
t

3λeB̃tκcC
and p̃ut =

(QS
t−QU

t )W
λeB̃t ln 2

− 1
γt

, respectively. In the following, we discuss the value

of Ω considering two sub-cases:
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a) When p̃ut > 0, we have p̂ut ≤ p̃ut . Using the result in Lemma 2 that QU
t ≤ V + rmax, we

have

f̂u
t ≤

√

−Qu
t

3λeB̃tκcC
≤

√

V + rmax

3λe (Ω− λeeumax)κcC
, (48a)

p̂ut ≤

(

QS
t −QU

t

)

W

λeB̃t ln 2
−

1

γt
≤

(V + rmax)W

λe (Ω− λeeumax) ln 2
, (48b)

where the first inequality of (48a) holds because f̂u
t ≤ f̃u

t . By submitting the right-hand

sides of (48a) and (48b) into λe

(

êofft + êloct

)

≤ Bmin, the inequality can be equivalently

written as

H(Ω) = λeκe

(
√

V + rmax

3λe (Ω− λeeumax)κcC

)3

T +
(V + rmax)W

(Ω− λeeumax) ln 2
T ≤ Bmin. (49)

Notice that Ω ≥ λee
u
max. It is obviously that H(Ω) is decreasing with Ω. Besides, H(Ω) →

+∞ when Ω → λee
u
max and H(Ω) → 0 when Ω → +∞. Therefore, there exists at least

one Ω ∈ (λee
u
max,+∞) that satisfies (49). After some simple mathematical manipulations,

we can rewrite (49) as

H̄(x) = A2
1x

3 + 2A1A2x
2 + A2

2x+ A3 ≥ 0 (50)

where x = Ω− λee
u
max, A1 =

3CκcBmin

κe(V+rmax)T
, A2 = −3CWκc

κe ln 2
, A3 = −V+rmax

3λeCκc
. H̄(x) is a cubic

function and the three solutions of H̄(x) = 0 can be given as

xk = 2

√

−
Ā1

3
cos

[

1

3
arccos

(

3Ā2

2Ā1

√

−
3

Ā1

)

−
2πk

3

]

, for k = 0, 1, 2, (51)

Where Ā1 = −
A2

2

3A2
1

and Ā2 =
−2A3

2+27A1A3

27A3
1

.

Notice that Ā1 < 0 and the coefficient of x3 in H̄(x) is A2
1 > 0. Accordingly, we can satisfy

(50) by selecting x ≥ xmax, i.e., Ω ≥ xmax + λee
u
max, where xmax = maxk (xk).

b) When p̃t ≤ 0, we have p̂t = 0. In this sub-case, we need to select an Ω satisfying

êloct ≤ Bmin. That is,

λeκe

(
√

V + rmax

3λe (Ω− λeeumax) κcC

)3

T ≤ Bmin. (52)

Obviously, Ω ≥ xmax + λee
u
max also satisfies (52).

From the above discussions, we can set Ω≥max
(

V

λee
col
unit

+λee
u
max,xmax+λee

u
max

)

+λeE
h
max to meet

the energy causality constraint (11) for all Bt∈ [0,Ω], which ends the proof of Proposition 2.

APPENDIX D

PROOF OF PROPOSITION 3

To start with, we introduce the following two useful lemma to prove Proposition 3.
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Lemma 5. The optimal utility R̄∗
P2 to the relaxed problem (P2) can be achieved arbitrarily

closely by an ω-only policy, i.e., for any δ > 0, there exists an ω-only policy Π, achieves

E
[

rΠt
]

≥ l∗P2 − δ, (53)

while satisfying the constraints (1), (8), and (13d) in (P2), and

E

[

eedg,Πt − cth

]

≤ δ, E

[

eu,Πt − eh,Πt

]

≤ δ, (54a)

E

[

loff ,Πt

]

≤ E

[

ledg,Πt

]

+ δ, E
[

rΠt
]

≤ E

[

loff ,Πt + lloc,Πt

]

+ δ. (54b)

Proof. The proof follows the framework of Theorem 4.5 in [25] and is omitted here for brevity.

Lemma 6. If Zt is mean rate stable, i.e., limN→∞
E[ZN ]
N

= 0, then the average constraint (13c)

is satisfied.

Proof. Using the sample path property (Lemma 2.1 in [25]), we have that

ZN

N
−

Z0

N
≥

1

N

∑N
t=1

(

eedgt − cth

)

. (55)

Dropping the negative terms Z0

N
, taking the expectation of the equation above and letting N → ∞,

we have that

lim
N→∞

E [ZN ]

N
≥ lim

N→∞

1

N

∑N

t=1E

[

eedgt − cth

]

. (56)

Submitting limN→∞
E[ZN ]
N

= 0, then we have limN→∞
1
N

∑N

t=1 E

[

eedgt

]

≤ cth, which completes

the proof.

Proof of Proposition 3: Consider the upper bound on the Lyapunov drift-plus-penalty function

(20). We denote the policy produced by PLySE as Ψ. Since the solution of PLySE minimizes the

upper bound on the Lyapunov drift-plus-penalty function ∆t
V , the following inequality holds:

∆t
V = ∆t − V E [rt|Θt]

≤ D−E
{

V rΨt +Ztλc

(

cth−e
edg,Ψ
t

)

+λe(Bt−Ω)
(

e
u,Ψ
t −eh,Ψt

)

+QU
t

(

l
off,Ψ
t +lloc,Ψt −rΨt

)

+QS
t

(

l
edg,Ψ
t −loff,Ψ

t

)

|Θt

}

≤ D−E
{

V rΠt +Ztλc

(

cth−e
edg,Π
t

)

+λe(Bt−Ω)
(

e
u,Π
t −eh,Πt

)

+QU
t

(

l
off,Π
t +lloc,Πt −rΠt

)

+QS
t

(

l
edg,Π
t −loff,Π

t

)

|Θt

}

(†)
= D − E

[

V rΠt
]

+E

[

Ztλc

(

e
edg,Π
t −cth

)]

+E

[

λe(Ω−Bt)(e
u,Π
t −e

h,Π
t )

]

+ E

[

QU
t

(

rΠt − l
off,Π
t − l

loc,Π
t

)]

+E

[

QS
t (l

off,Π
t − l

edg,Π
t )

]

(‡)

≤ D − V
(

R̄∗
P2 − δ

)

+
[

Ztλc +QS
t + λeΩ+QU

max

]

δ,

(57)

where (†) holds for the independence of policy Π on Θt and (‡) is obtained by plugging (54).

Let δ → 0, we have that

∆t − V E
[

rΨt |Θt

]

≤ D − V R̄∗
P2. (58)
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By summing up the both sides of (58) from t = 1 to N , and taking iterated expectations and

telescoping sums, then normalizing by V N , we have that

E [Φt]−E [Φ0]

NV
−

1

N

∑N−1
t=0 E

[

rΨt
]

≤
D

V
−R̄∗

P2. (59)

By rearranging terms and letting N → ∞, we prove a) that

R̄Ψ = lim
N→+∞

1

N

∑N−1
t=0E

[

rΨt
]

≥R̄∗
P2−

D

V

(§)

≥ R̄∗
P1−

D

V
, (60)

where § is due to R̄∗
P1 ≤ R̄∗

P2.

To prove b), we plug the stationary and randomized policy Γ that satisfies the Slater conditions

(34) into the RHS of the inequality (†) in (57). By removing the negative term −ǫλe (Ω−Bt),

we obtain that

∆t − V E
[

rΨt |Θt

]

≤ D − V ϕ(ǫ)−
(

Ztλc +QS
t +QU

t

)

ǫ. (61)

Taking iterated expectations and telescoping sums, and normalizing by Nǫ, we have that

E [Φt]−E [Φ0]

Nǫ
−

V

Nǫ

∑N−1
t=0 E

[

rΨt
]

≤
D − V ϕ(ǫ)

ǫ
−

1

N

∑N

t=0E
[

Ztλc +QS
t +QU

t

]

. (62)

Letting N → ∞, rearranging the terms and using the fact that limN→+∞
1
N

∑N−1
t=0 E

[

rΨt
]

≤ R̄∗
P1,

we have

lim
N→+∞

1

N

∑N
t=0E

[

Ztλc +QS
t +QU

t

]

≤
D + V

(

R̄∗
P1 − ϕ(ǫ)

)

ǫ
, (63)

which implies the strong stability of QU
t , QS

t and Zt, i.e.,

lim
N→+∞

1

N

∑N

t=0E
[

QU
t

]

< ∞, lim
N→+∞

1

N

∑N

t=0E
[

QS
t

]

< ∞, lim
N→+∞

1

N

∑N

t=0E [Zt] < ∞. (64)

Since Zt, QU
t and QS

t are non-negative, we obtain the results in (36). Meanwhile, because

strong stability implies mean rate stable (see Theorem 2.8 in [25]), the long-term average power

constraint (13c) is satisfied according to Lemma 6, which proves c).
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