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Abstract—In this paper, we propose a multiple-input multiple-
output (MIMO) transmission strategy that is closer to the Shan-
non limit than the existing strategies. Different from most existing
strategies which only consider uniformly distributed discrete
input signals, we present a unified framework to optimize the
MIMO precoder and the discrete input signal distribution jointly.
First, a general model of MIMO transmission under discrete
input signals and its equivalent formulation are established. Next,
in order to maximize the mutual information between the input
and output signals, we provide an algorithm that jointly optimizes
the precoder and the input distribution. Finally, we compare
our strategy with other existing strategies in the simulation.
Numerical results indicate that our strategy narrows the gap
between the mutual information and Shannon limit, and shows
a lower frame error rate in simulation.

Index Terms—Discrete input signals, MIMO, Shannon limit

I. INTRODUCTION

A. Background

The Shannon limit [1] theoretically specifies the maximum
rate of reliable transmission with given power over the additive
white Gaussian noise (AWGN) channel. And researchers are
seeking various methods to approach the Shannon limit under
discrete input signal constraints to improve the spectrum effi-
ciency in practice. However, most researches on increasing the
capacity of MIMO communication systems are based on the
uniformly distributed discrete input constellation, remaining
a gap between the capacity-achieving input which requires
Gaussian distribution.

B. Related work

In single-input single-output (SISO) communication sys-
tems, probabilistic shaping methods which can convert the
discrete input into a more Gaussian-like distribution have been
widely studied. However, many of these shaping schemes [2-
4] have the common shortcoming of codec complexity and
rate inflexibility. In [5], the probabilistic amplitude shaping
(PAS) with low complexity and significant shaping gain is
designed to change the distribution of amplitude shift keying
(ASK) or quadrature amplitude modulation (QAM) inputs. At
the transmitter, a Constant Composition Distribution Matcher
(CCDM) [6] and a systematic binary encoder using DVB-S2
low-density parity-check (LDPC) perform PAS and channel
coding. At a frame error rate (FER) of 10−3, the PAS scheme
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operates within less than 1 dB of the AWGN capacity at any
rate between 1 and 5 bits per channel use.

In MIMO communication systems, over the last decade,
most works [7-11] focus on increasing the MIMO capacity
by linear precoding under the premise that the discrete in-
put signals are uniformly distributed, leading to a gap from
Shannon limit which requires Gaussian inputs [12]. In [8],
globally optimal linear precoders for uniformly distributed
discrete signals over complex Gaussian channels are proposed.
The main idea of designing the optimal precoder is to jointly
optimize a power allocation matrix and a unitary matrix
over the equivalent parallelized channel model. Though the
optimal precoder proposed in [8] greatly improves the system
capacity, it still ignores the limiting factor of the input signals
being non-Gaussian distributed. Thus, we see the potential of
applying discrete input signals with non-uniform distributions
to improve MIMO capacity.

C. Our work

The intention of our work is to present a unified frame-
work of MIMO transmission with linear precoders and non-
uniformly distributed discrete input signals. Comparing to
SISO case, the distribution optimization becomes more com-
plicated with vector input signals. This is because the input
distribution of any antenna will affect the optimization of
others. Besides, the joint design of the precoder and the
input distribution poses another difficulty in the optimization
problem.

We first define the original system model and its equivalent
form. We use the maximum mutual information criterion to
increase the system capacity to further approach the Shannon
limit. We formulate the optimization problem and the variables
to be optimized including a power allocation matrix, a unitary
matrix and the input distribution.

Secondly, the gradient descent algorithm, the manifold
optimization, and the coordinate descent algorithm are applied
to jointly solve the problem.

Next, we provide simulations to evaluate the transmission
strategy based on the proposed framework. Numerical results
show that the proposed strategy outperforms the strategy
for uniform discrete input signals in [8] over both constant
and Rayleigh fading channels. Moreover, the signal-noise-
ratio (SNR) gain for FER becomes more obvious for MIMO
systems employing minimum mean mquared error (MMSE)
detector.

In general, the contributions of our work are summarized
as follows:
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I(x; ȳ) = −
MNt∑
i=1

p(xi)

log2 p(xi) + Ev

log2

MNt∑
p=1

p(xp)

p(xi)
e−ai,p

 , (5a)

ai,p = σ−2(‖ΣHΣGΦ∆(xi − xp) + v‖2 − ‖v‖2). (5b)

• The optimal distribution for a MIMO system with non-
uniformly discrete input signals is studied.

• A unified framework for a joint MIMO precoder and
input distribution optimization is established.

• Numerical results indicates that the proposed design
outperforms the existing design for uniformly discrete
input signals in terms of both mutual information and
FER.

The rest of this paper is organized as follows. In Section
II, we propose our system model. In Section III, we formulate
the mutual information maximization problem and provide an
algorithm jointly optimizes the variables. Numerical results
are provided in Section IV. Finally, conclusions are drawn in
Section V.

Notation: Lowercase boldface letters a and uppercase bold-
face letters A respectively denote column vectors and matri-
ces, IN denotes an N×N identity matrix, diag(a) or diag(ah)
denotes a diagonal matrix with diagonal entries formed by a,
diag(A) denotes a diagonal matrix containing the diagonal
of matrix A, det(·) denotes the matrix determinant, trace(·)
denotes the trace operation, Ev[·] represents the expectation
with respect to random variable v, the Euclidean norm op-
erator is denoted by ‖·‖ and the superscripts (·)t, (·)∗ and
(·)h represent transpose, conjugate, and conjugate transpose
operations, respectively.

II. SYSTEM MODEL

Consider a single-user MIMO Gaussian channel where the
transmitter and the receiver are respectively equipped with Nt
and Nr antennas. The input-output relationship can be written
as

y = HG∆x + v, (1)

where y ∈ CNr×1 is the received channel output signal,
H ∈ CNr×Nt is a random channel matrix denoting the com-
plex fading coefficient of each pair of the transmit and receive
antenna, G ∈ CNt×Nt is the linear precoder, and v ∈ CNr×1

is a zero-mean complex Gaussian noise vector with covariance
σ2INr

. Let x = (x1, . . . , xNt
)
t denote the modulated symbol

vector. Under the M -QAM (M = 2m) modulation scheme,
for ith antenna, the in-phase and quadrature elements of xi
are chosen from the alphabet χ =

{
±1,±3, . . . ,±

√
M − 1

}
.

The constellation scaling matrix ∆ = diag (∆1, . . . ,∆Nt
) is

applied to satisfy the unit power constraint Ex[∆x(∆x)
h
] =

INt
. And the overall transmitting power constraint is satisfied

by trace(GGh) = P .

Consider a deterministic channel H with SVD decompo-
sition H = UHΣHVh

H which is perfectly known at the
transceiver. From [16, Prop. 2], when designing the optimal
precoder with SVD decomposition G = UGΣGΦ, for any
input distribution of ∆x, the left singular matrix of G can
always be chosen to be the right singular vectors of H, i.e.,
UG = VH. Then, based on [8, Prop. 1], let ȳ = Uh

Hy and
model (1) can be simplified as the following equivalent model
with I(x; ȳ) = I(x; y)

ȳ = ΣHΣGΦ∆x + v, (2)

where ΣH and ΣG are diagonal matrices with nonnegative
elements, Φ is a unitary matrix and v is the noise vector with
its statistical information unchanged.

To find the optimal MIMO transmitting strategy, we aim to
maximize the mutual information I(x; ȳ) which is positively
correlated with FER performance. For given ΣH and ΣG, the
probability density function of ȳ can be computed by

p(ȳ) = Ex[p(ȳ|x)] =

MNt∑
i=1

p(xi)p(ȳ|xi), (3)

p(ȳ|x) =
1

(πσ2)Nr
exp

(
‖ȳ −ΣHΣGΦ∆x‖2

σ2

)
. (4)

Then, I(x; ȳ) is given by (5), where the probability density
function of v is given by

p(v) =
1

(πσ2)Nr
exp

(
−‖v‖

2

σ2

)
. (6)

After presenting the framework of MIMO transmission with
non-uniformly distributed input signals, we aim to design an
effective strategy to maximize the mutual information. The
corresponding optimization problem is formulated as:

max
ΣG,Φ,p(x)

I (x; ȳ) (7a)

s. t. ΦΦh = INt
, (7b)

trace
(
ΣGΣh

G

)
= P,ΣG � 0, (7c)

Ex

[
∆x (∆x)

h
]

= INt . (7d)

For convenience, we use the notations of the input dis-
tribution p(x) and the constellation scaling matrix ∆ inter-
changeably since they are determined by each other in (7d).
Obviously, there exists a feasible point ΣG =

√
P
Nt

INt
,Φ =

INt
,∆ =

√
3

2(M−1)INt
satisfying the constraints (7b)-(7d),



∂I(x; ȳ)

∂ΣG
∗ = diag

MNt∑
i=1

p(xi)Ev

∑MNt

p=1 p(xp)e
−bi,pci,p∑MNt

p=1 p(xp)e−bi,p

 , (8a)

bi,p = σ−2 ‖ΣHΣGΦ∆(xi − xp) + v‖2 , (8b)

ci,p = σ−2(Σ2
HΣGΦ∆(xi − xp)(xi − xp)h∆Φh + ΣHv(xi − xp)h∆Φh). (8c)

which verifies the feasible of the problem [14, §4.1.1]. How-
ever, it is worth noting that the optimization problem is quite
challenging due to the following reasons. First, computing
the objective function of I (x; ȳ) with expectation term is
computationally expensive, and so is the constraint (7d).
Secondly, the objective function is non-concave with respect
to ΣG, Φ, and ∆. Additionally, the presence of the unitary
matrix Φ further complicates the optimization procedure.

III. MUTUAL INFORMATION OPTIMIZATION

In this section, we develop an efficient algorithm for the
problem which optimizes the power allocation matrix ΣG,
unitary matrix Φ, and the distribution of input signal ∆x
in an alternating manner. Specifically, we solve it by solving
the following three subproblems iteratively: optimize ΣG with
given Φ and ∆x, optimize Φ with given ΣG and ∆x, and
optimize ∆x with given ΣG and Φ. Then we present the
overall algorithm and show its convergence.

A. Optimize power allocation matrix ΣG

Though mercury-waterfilling proposed in [13] is the optimal
power allocation policy for parallel channels, it can not be
applied here because of Φ. To handle the problem, we adopt
the gradient projection method [15, §3.3.1] to optimize ΣG

with fixed Φ and ∆. The subproblem is given by

max
ΣG

I (x; ȳ) (9a)

s. t. trace
(
ΣGΣh

G

)
= P,ΣG � 0. (9b)

Proposition 1: The projection of the result Σ̂G onto a set
Z ,

{
ΣG : trace

(
ΣGΣh

G

)
< P

}
is given by

ΠZ [Σ̂G] = arg min
ΣG∈Z

‖ΣG − Σ̂G‖2

=

√√√√√ P

trace

[[
Σ̂G

]+ [
Σ̂h

G

]+] [Σ̂G

]+
,

(10)

where [X]
+ denotes the projection of X onto the positive

semidefinite cone.
Proof 1: In the following we solve the above problem via

the partial Lagrangian function.

L (ΣG, λ)=‖ΣG−Σ̂G‖2 + λ
[
trace

(
ΣGΣh

G

)
−P

]
.

(11)

Algorithm 1 The gradient descent algorithm for optimizing
ΣG with given ΣH,Φ and p(x).

1: Initialize k = 0 and ΣGk =
√

P
Nt

INt .
2: Compute the gradient Γk for ΣG in (8).
3: Update ΣGk+1 by ΣGk + µ[Γk − trace(Γk/Nt)] with

step size µ determined by the backtracking line search.
4: Update ΣGk+1 according to (10). Compute the mutual

information Ik+1. k := k + 1.
5: Repeat step 2-4 until step size µ approaches zero.

The dual function is given by g(λ) = inf
ΣG

L (ΣG, λ). Since

L (ΣG, λ) is a convex function of ΣG, we can find the optimal
matrices ΣG from the optimality condition

∇Σ∗
G
L (ΣG, λ) = (1 + λ) ΣG − Σ̂G = 0, (12)

which yields ΠZ [Σ̂G] = 1
1+λΣ̂G. Then, ΣG is projected

onto the positive semidefinite cone, which leads to the desired

ΠZ [Σ̂G] = 1
1+λ

[
Σ̂G

]+
.

Putting the closed-form solution into the constraint, we have

trace
(
ΠZ [Σ̂G]ΠZ [Σ̂G]h

)
=

trace

[[
Σ̂G

]+[
Σ̂h

G

]+]
(1 + λ)

2 = P.

(13)
Therefore,

ΠZ [Σ̂G]=

[
Σ̂G

]+
1+λ

=

√√√√√ P

trace

[ [
Σ̂G

]+[
Σ̂h

G

]+] [Σ̂G

]+
.

(14)
See complete steps for optimizing ΣG in Algorithm 1.

B. Optimize unitary matrix Φ

For given ΣG and ∆, we can rewrite the initial problem as

max
Φ

I (x; ȳ) (15a)

s. t. ΦΦh = INt
. (15b)

Some relax-based algorithms hardly guarantee a stationary
point under unitary matrix constraint. Here, we introduce a
manifold optimization algorithm to overcome this drawback



∂I(x; ȳ)

∂Φ∗
=

MNt∑
i=1

p(xi)Ev

∑MNt

p=1 p(xp)e
−bi,pdi,p∑MNt

p=1 p(xp)e−bi,p

 , (19a)

di,p = σ−2(Σ2
HΣ2

GΦ∆(xi − xp)(xi − xp)h + ΣHΣGv(xi − xp)h∆). (19b)

Algorithm 2 The SD algorithm on the Riemannian space for
optimizing Φ with given ΣH,ΣG and p(x).

1: Initialize k = 0 and Φk = INt
.

2: Compute the gradient Γk for Φ on the Euclidean space
in (19).

3: Compute the gradient direction on the Riemannian space:
Rk = ΓkΦh

k −ΦkΓh
k .

4: Determine the rotation matrix: Pk = exp(µRk) with step
size µ determined by the backtracking line search.

5: Update Φk+1 = PkΦk and compute the mutual informa-
tion Ik+1. k := k + 1.

6: Repeat step 2-4 until step size µ approaches zero.

[17]. The constraint defines an Stiefel manifold which can be
characterized by

S =
{
Φ : ΦΦh = IMt

}
(16)

The tangent space of the Stiefel manifold S at each point
Φ is identified as the matrix space

{
X : XhΦ + ΦhX = 0

}
.

In this paper, we set the Riemannian metric as 〈Z1,Z2〉Φ =
1
2R{trace (Z1 − Z2)}. The Riemannian gradient at a point Φ
is

∇Φ∗I(x; ȳ) = ΓΦ −ΦΓhΦΦ (17)

where ΓΦ = ∂I(x;ȳ)
∂Φ∗ is the gradient on the Euclidean space

at a given Φ.
Furthermore, the unitary optimization can be solved in an

iterative manner by using a steepest descent algorithm, and
the corresponding rotational update at iteration k is given by:

Φk+1 = exp (−µkGk) Φk (18)

where Gk , ∇Φ∗I(x; ȳ)WH
k = ΓΦΦh

k − ΦkΓ
h
Φ. The

step size µk controls the convergence speed and needs to
be computed at each iteration. Backtrack line search based
on Armijo-Goldstein condition is efficiently used [18]. More
details are provided in Algorithm 2.

C. Optimize signal distribution p(x)

For given ΣG and Φ, the subproblem is formulated as

max
p(x)

I (x; ȳ) (20a)

s. t. Ex

[
∆x (∆x)

h
]

= INt . (20b)

Under the premise that the signals from different antennas
are independent of each other, we first introduce how the dis-
tribution of a single input stream is optimized, and then present

Algorithm 3 The Coordinate Descent algorithm for optimizing
p(x) with given ΣH,ΣG and Φ.

1: Initialize k = 0,∆ =
√

3
2(M−1)INt . Compute the mutual

information Ik with uniform input distribution. Compute
the desirable range of constellation scaling: 1√

2(
√
M−1)

≤
∆j ≤ 1√

2
, j = 1, . . . , Nt. Decide the step size δ and

threshold ε.
2: For each ∆j , j = 1, . . . , Nt, traverse the feasible interval

with step size δ and update ∆j to the value that maximizes
the mutual information. Compute the mutual information
Ik+1 after ∆ is updated, u = Ik+1 − Ik. k := k + 1.

3: Repeat step 2 until u ≤ ε.

the coordinate descent algorithm to optimize the distribution
p(x) alternatively.

For each antenna, the relation between constellation scaling
∆j and the input distribution can be derived by maximizing the
input entropy under the unit power constraint. To maximize the
input entropy, the input signal should be subject to Maxwell-
Boltzmann distributions [19] expressed as

p(xi) = Aeλ‖xi‖2 , A =
1∑M

i=1 e
λ‖xi‖2

. (21)

To satisfy the power constrain Ex[∆x(∆x)
h
] = INt , param-

eter λj for jth antenna should satisfy the following equation

Aj

M∑
i=1

eλj‖xi‖2 ‖xi‖2 = ∆−2
j , j = 1, . . . , Nt. (22)

For a given ∆j , the distribution of QAM symbols for jth
antenna can be determined by (22) through Newton’s method.
Thus, we can traverse the desirable range of ∆j with a small
step size to get an maximum gain on the mutual information.
Based on the single stream optimization, we propose coordi-
nate descent algorithm to optimize p(x) for a vector input as
shown in Algorithm 3.

Based on the algorithms that optimize variables separately,
we finally propose Algorithm 4 to jointly optimize the
mutual information I(x; ȳ) over the model (2). Recall that
the objective function is monotonically non-increasing after
each iteration of Algorithm 1-3. Therefore, the proposed
alternating optimization algorithm is guaranteed to converge
to a suboptimal solution.

IV. SIMULATION RESULTS

In this section, we evaluate our transmitting strategy in
simulations, and compare it with the strategy proposed in



Algorithm 4 Joint optimization for I(x; ȳ)

1: For a given channel H, apply SVD to get ΣH and convert
the original system model (1) into model (2). Initialize
ΣG =

√
P
Nt

INt
,Φ = INt

,∆ =
√

3
2(M−1)INt

, k=0 and
compute Ik. Compute the desirable range of constellation
scaling: 1√

2(
√
M−1)

≤ ∆j ≤ 1√
2
, j = 1, . . . , Nt. Decide

the step size δ and threshold ε.
2: Optimize Φ according to Algorithm 2.
3: Optimize ΣG according to Algorithm 1.
4: Optimize p(x) according to Algorithm 3. Compute the

mutual information Ik+1 after ∆ is updated, u = Ik+1−
Ik. k := k + 1.

5: Repeat step 2-4 until u ≤ ε.

Fig. 1. Mutual information of the diagonal channel matrix ΣH as a function
of SNR with Gaussian and 16-QAM input.

[8]. The SNR is defined as SNR = trace(ΣG
2)/(Nrσ

2). All
simulations are performed under 16-QAM over 2× 2 MIMO
channels. As for massive MIMO, similar simulations can be
done by blocking [20]. Both mutual information results and
FER performance are presented.

A. Constant MIMO channel

In this subsection, we consider a 2× 2 MIMO system with

the static channel matrix H =

[
2 1
1 2

]
, whose singular value

matrix can be normalized as ΣH =

[
1.3416 0

0 0.4472

]
.

Fig. 1. plots the resulting values of mutual information of
model (2) as functions of the average SNR. Apart from our
strategy, we also evaluate the Shannon Limit, the strategy
applying optimal precoder proposed in [8], and the strategy
allocating equal power for parallel channels. It is illustrated
that our strategy outperforms the existing optimal strategy [8].
Though optimizing the linear precoder already brings 1-2 dB
gain in mid SNR compared with equal power allocation, the
proposed design brings additional 0.2 dB SNR gain. And the
gain will become higher for higher modulations [21].

Fig. 2 shows the proportion of the transmitting power
allocated to the stronger channel in different power allocation

Fig. 2. The percentage of the transmitting power allocated to the stronger
channel of ΣH as a function of SNR with 16QAM input .

Fig. 3. The transceiver model of 2× 2 MIMO system with 16QAM input.

policies. We calculate the result of our proposed strategy and
compare it with classic waterfilling [12], mercury-waterfilling
[13] for uniformly distributed 16-QAM and equal power allo-
cation. Contrary to mercury-waterfilling, the proposed design
tends to allocate more power for the stronger channel while
less for the weaker channel for SNR > 9dB. This is because
the optimization of the the input distribution with PAS and
unitary matrix Φ makes the input signal more Gaussian
distributed. Since the power allocation results in the proposed
strategy are closer to classic waterfilling, we can apply classic
waterfilling policy to initialize ΣG in Algorithm 1 for faster
convergence.

B. Rayleigh fading MIMO channel

We also evaluate our design in 2 × 2 Rayleigh fading
channels. The 2 × 2 MIMO transceiver model for evaluating
the FER performance with different transmitting strategies is
displayed in Fig. 3. In our simulation, CCDM and DVS-S2
LDPC codes are combined to achieve 1/2 overall code rate
transmission under 16QAM modulation. Although a capacity-
achieving receiver is necessary to reach the Shannon limit, its
high computational complexity makes it hardly used in prac-
tical. Thus, we simply apply the non-iterative MMSE detector
at the receiver. Despite this compromise, the optimization
of mutual information can still guide us to increase system
capacity when designing transmission strategies.



Fig. 4. The average mutual information of 2 × 2 Rayleigh fading channels
as a function of SNR with Gaussian and 16-QAM input.

Fig. 5. The average FER performance of Rayleigh fading 2× 2 channels as
a function of SNR with 16QAM input .

The mutual information and FER curves respectively plotted
in Fig. 4 and Fig. 5 are averaged from 2× 2 Rayleigh fading
channels. We can observe from Fig. 4 that the proposed design
achieves about 0.2 dB gain compared with the design in [8]
and 1 dB gain compared with equal power allocation. And
the proposed design even shows better performance in FER
simulations. Fig. 5 elaborates that our proposed design brings
about 1.2 dB and 3 dB gain comparing to the design in [8]
and equal power allocation, respectively.

V. CONCLUSION

In this paper, we study the MIMO transmission under
discrete input signals constraints and present a unified frame-
work with linear precoders and non-uniformly distributed input
signals. First, the system model is defined. Based on this
model, a joint optimization algorithm is proposed to solve the
mutual information maximization problem. Next, We evaluate
our strategy and other existing strategies for comparison.

Numerical results indicate that the proposed strategy performs
best. When evaluated over 2×2 Rayleigh fading channels with
16QAM input and the MMSE detector, our strategy achieves
an SNR gain about 1.2 dB, comparing to the strategy only
with the optimal precoder, averagely. In the future, we expect
to evaluate the proposed strategy under more practical MIMO
system constraints.
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