
ar
X

iv
:2

10
6.

14
35

6v
1

 [
cs

.I
T

]
 2

8
Ju

n
20

21

Collaborative Edge Learning in MIMO-NOMA

Uplink Transmission Environment

Mian Guo∗, Chun Shan∗, Mithun Mukherjee†, Jaime Lloret‡, Quansheng Guan§,

∗School of Electronics and Information, Guangdong Polytechnic Normal University, P.R. China
†School of Artificial Intelligence, Nanjing University of Information Science and Technology, P.R. China

‡Instituto de Investigación para la Gestión Integrada de Zonas Costeras (IGIC), Universitat Politecnica de Valencia, Spain
§School of Electronic and Information Engineering, South China University of Technology, P.R. China

Abstract—Multiple-input multiple-output non-orthogonal mul-
tiple access (MIMO-NOMA) cellular network is promising for
supporting massive connectivity. This paper exploits low-latency
machine learning in the MIMO-NOMA uplink transmission en-
vironment, where a substantial amount of data must be uploaded
from multiple data sources to a one-hop away edge server
for machine learning. A delay-aware edge learning framework
with the collaboration of data sources, the edge server, and
the base station, referred to as DACEL, is proposed. Based
on the delay analysis of DACEL, a NOMA channel allocation
algorithm is further designed to minimize the learning delay. The
simulation results show that the proposed algorithm outperforms
the baseline schemes in terms of learning delay reduction.

Index Terms—Edge computing, machine learning, multiple-
input multiple-output non-orthogonal multiple access (MIMO-
NOMA), delay sensitive, collaborative edge learning.

I. INTRODUCTION

With the development of the fifth generation (5G) cellular

network, there will be new opportunities for various ad-

vanced applications in Internet of Things (IoT) and vehicle-to-

everything (V2X) areas [1]. Generally, IoT and V2X applica-

tions are data-driven and delay sensitive, such as autonomous

driving and real-time manufacturing, which desire efficient and

effective machine learning for data analytics with low latency.

Mobile edge computing (MEC) is a promising paradigm

for delay-sensitive machine learning [2], [3]. By deploying

machine learning servers at the network edge closer to data

sources (e.g., IoT devices), the network transmission delay for

uploading data from data sources to a remote server could be

explicitly reduced. However, due to limited wireless resource,

the data collection delay, which is defined as the duration

from the time that the first data source starts to upload the

first data to the time that the edge server receives all data

from all data sources, would be non-negligible. For example,

under orthogonal multiple access (OMA) techniques, due to

the limited number of orthogonal uplink resources, all IoT

devices cannot simultaneously upload their data to the edge

server. As a result, the waiting time for the data collection

would dramatically degrade the learning efficiency.

Recently, non-orthogonal multiple access (NOMA) has

gained ever-growing attention for supporting massive connec-

tivity and the increasing demands of advanced IoT applica-

tions [4]–[6]. In NOMA, multiple users are allowed to use

the same resource block. Thus, a massive number of IoT

devices are possible to simultaneously upload their data to

an edge server, which may reduce the data collection delay.

However, in contrast to OMA, users under NOMA would

experience inter-user interference. Besides, the more users use

the same NOMA channel, the more complex for the receiver

to separate different users’ signals. Accordingly, multiple-

input multiple-output (MIMO)-NOMA uplink transmission [4]

is promising for edge learning because of multiple NOMA

channels. IoT devices can be distributed to different NOMA

channels to reduce the intra-cell interference and lower the

receiver’s algorithm complexity. However, the heterogeneity of

dataset sizes from various IoT devices and the nature that user

channels are in the form of matrices are the major challenges

for edge learning in a MIMO-NOMA uplink environment.

In this paper, our objective is to design a low-latency edge

learning framework, referred to as DACEL, in a MIMO-NOMA

uplink transmission environment. To support simultaneous

data upload, we use base station with the collaboration of edge

servers and IoT devices to allocate NOMA uplink resources

to IoT devices (data sources). We also set a delay deadline

for the data collection step of a learning process, aiming to

avoid long waiting time for the data collection from worse

sources/uplinks. By analyzing the delay of DACEL, a NOMA

channel allocation algorithm is further proposed to achieve the

goal of minimizing the edge learning delay.

II. DELAY-AWARE COLLABORATIVE EDGE LEARNING

A. System Model

As illustrated in Fig. 1, we consider a MEC system with

multiple IoT devices and an edge server. The IoT devices are

randomly distributed in a MIMO-NOMA wireless network,

while the edge server is located at the center of the network

(e.g., integrated in the base station). The base station manages

the communications between the IoT devices and the edge

server. The machine learning algorithm is assumed to be

deployed at the edge server, while the datasets are from

IoT devices. In special, we consider the machine learning

for delay-sensitive and computation intensive applications that

need heterogeneous datasets from multiple IoT devices, such

as autonomous driving and real-time manufacturing. We con-

sider a synchronous learning model, that is, the training will

not start until the edge server has aggregated the datasets.

We denote M = {1, 2, . . . ,M} as the set of

IoT device in MEC system. We further denote L =

http://arxiv.org/abs/2106.14356v1

!"1 !"

…

MIMO-NOMA

base station

Edge server

n N

Dataset

IoT device

Fig. 1. An edge learning model with MIMO-NOMA.

(L1, L2, . . . , Lm, . . . , LM) as the vector of dataset size (in

bits), where Lm is the dataset size of IoT device, m, ∀m ∈ M.

Moreover, we denote W = (W1,W2, . . . ,Wm, . . . ,WM) as

the corresponding computing requirement vector, where Wm

indicates that the dataset from the IoT device, m, has Wm

number of samples.

B. MIMO-NOMA Uplink

As illustrated in Fig. 1, we consider a MIMO-NOMA uplink

transmission environment [7], where the base station com-

municates with IoT devices (assume that the communication

between the base station and the edge server can be ignored

due to their closer locations). The base station is equipped with

N antennas, while all IoT devices are equipped with single

antennas. Thus, there are N number of channels available to

the IoT devices, while an IoT device can only use one of these

channels to upload its dataset to the edge server. Besides, IoT

devices use the same channel will be supported by the same

beamforming vector. We assume that the full channel state

information (CSI) is available at the base station.

Let N = {1, 2, . . . , N} be the available channel set. Let

I = (I1, I2, . . . , Im, . . . , IM) be the channel decision vector,

where Im = (Im,1, Im,2 . . . , Im,n, . . . , Im,N) is the channel

decision vector of IoT device m, in which Im,n = {0, 1} for

m ∈ M and n ∈ N is a binary channel allocation variable for

IoT device m in channel n. That is, if channel n is allocated

to IoT device m, then, Im,n = 1, otherwise, Im,n = 0.

C. DACEL Framework

We propose delay aware collaborative edeg learning,

namely DACEL, in Framework 1 to perform machine learning

in MIMO-NOMA uplink base MEC with the collaboration of

IoT devices, the edge server and the base station. As shown

in Framework 1, under DACEL, a machine learning process

mainly experiences the following steps. At the beginning, the

edge server sends an information of data collection request to

IoT devices, which requires the IoT devices to upload their

up-to-date datasets to the edge server for model training. Due

to dynamic wireless environments, some feedbacks may be

Framework 1 Delay-aware collaborative edge learning

1: Initialization: The edge server sends data col-

lection request to the IoT device set M, and initiates a

timer to count the waiting time.

2: Wirelss resource request: Each IoT device

m ∈ M sends channel request to the base station, along

with its dataset size Lm.

3: NOMA channel allocation: The base station ini-

tiates channel allocation algorithm to obtain I∗ =
(I1, I2, . . . , Im, . . . , IM), and then feeds back to IoT

devices.

4: Dataset uploading: Each IoT device m ∈ M
sends its dataset to the edge server via the allocated

channel (e.g., via the channel n
′

where Im,n
′ = 1).

5: Dataset aggregation: When the edge server re-

ceives all the datasets, or, the timer reaches its delay

deadline, it aggregates the received datasets.

6: Training: The edge server trains a learning model

based on the aggregated datasets until the model

achieves at a desired performance or interrupted.

7: Result feedback: The learning result feeds back

to the IoT application.

particularly long. Therefore, in order to avoid extremely long

waiting time, a timer is used to count the waiting time.

When IoT devices receive the request, they will send chan-

nel request to the base station along with its dataset size. Then,

the base station will initiate a channel allocation algorithm to

allocate channels to IoT devices considering the CSI and the

dataset sizes, aiming at reducing the data collection delay.

After that, the IoT device will upload the dataset to the

edge server via the allocated channel. After received all the

datasets, or the timer reaches its delay deadline, the edge server

aggregates the received datasets. Note that, we assume that the

server will drop the dataset arrived after the delay deadline

of the timer. Then, the edge server starts to train a learning

model based on the aggregated datasets. The training will be

stopped when the model achieves at a desired performance

or the number of rounds reaches the pre-setting. Finally, the

learning result will be feedback to the IoT application, which

ends the learning.

D. Delay Analysis

As illustrated in Framework 1, the delay of a machine

learning process can be defined as a duration of the time from

the edge server sends the data collection request to the time

that the learning result feeds back to the application. Com-

paring to the time duration of other steps in DACEL, the time

durations of both dataset uploading and training

dominate the delay of a learning process. Accordingly, we

mainly consider the delay in the dataset uploading and

training steps.

1) Uploading Delay: Assume that the bandwidth of chan-

nels are identical. Let B be the bandwidth of a channel. Let

hm,n be the channel power gain of IoT device m at channel

n. Let Sn be the set of IoT devices sharing the nth channel,

where n ∈ N . Then, the uplink transmission rate from IoT

device m to the base station via channel n is derived by

Rm,n = Blog2

(

1 +
Im,nPm,nhm,n

Gm,n− + γm,n +N0

)

, (1)

where Pm,n is the transmission power; Gm,n− is the inter-cell

interference from the users with lower channel power gain in

all other channels [7]; γm,n is the intra-cell interference; N0

is the noise power.

The inter-cell interference Gm,n− is derived by

Gm,n−=
∑

k∈M\{m}

∑

n
′∈N\{n}

Ik,n′1

(

hk,n
′ < hm,n

)

Pk,n
′hk,n

′ ,

(2)

where 1(K) = {0, 1}, if K is true then, 1(K) = 1 and

1(K) = 0, otherwise.

Under NOMA, a user will also experience intra-cell inter-

ference from all the users with lower channel power gain [8].

Thus, the intra-cell interference is derived by

γm,n =
∑

k∈Sn

Ik,n1 (hk,n < hm,n)Pk,nhk,n. (3)

Accordingly, the uplink transmission rate of IoT device m can

be expressed by Rm =
∑

n∈N Rm,n. Therefore, the dataset

uploading delay is derived by

Dm =
Lm

Rm

=
Lm

∑

n∈N Rm,n

. (4)

We assume that the IoT devices send their datasets almost

at the same time. As shown in Framework 1, the dataset

uploading step finishes when the edge server receives all

the datasets, or the timer reaches its delay deadline. Therefore,

the dataset uploading delay of the system can be expressed by

DTx = min

[

max
m∈M

Dm, DMax
Tx

]

, (5)

where DMax
Tx is the maximum delay that the edge server can

tolerate for data collection.

2) Training Delay: Denote SB and FCPU as the batch size

of the machine learning algorithm and the computing rate,

respectively. Then, the delay of the training with a batch size

can be derived by DCPU, B = SB/FCPU. Thus, the delay of a

round of training can be derived by

DCPU, R = DCPU, B

∑

m∈M 1(Dm ≤ DMax
Tx)Wm

SB

, (6)

where
∑

m∈M 1(Dm ≤ DMax
Tx)Wm is the sum of data received

at the edge server.

We assume that, after KR number of rounds, the training is

converged to the performance objective, or, we will interrupt

the training after KR number of rounds. Then, the total delay

of a training process is calculated by

DCPU = KRDCPU, R . (7)

According to [9], [10], the number of rounds requiring

to run for model accuracy can be expressed by KR =

α/
(
∑

m∈M 1(Dm ≤ DMax
Tx)Wm

)σ
, where α > 0 and σ > 1

are factor parameters.

Therefore, the total learning delay is expressed as

D = DTx +DCPU. (8)

III. ALGORITHM FOR NOMA CHANNEL ALLOCATION

A. Problem Formulation

The delay analysis in Section II-D indicates that, the channel

allocation decision I affects the dataset uploading and training

delays, as illustrated in (1) and (6), respectively, thus af-

fects the learning delay. Accordingly, in the NOMA channel

allocation step, our objective is to find optimal channel

allocation policy to minimize the learning delay. We formulate

the above problem as the NOMA channel allocation (NOMA-

CA) for delay-minimization problem and write as

min
I∗

D (9a)

s.t.
∑

n∈N

Im,n = 1, ∀m ∈ M, (9b)

(1) − (8). (9c)

Note that, for simplification, this paper considers that one

IoT device will use at most one channel (e.g., equipped with

a single antenna) to transmit its dataset to the edge server.

Thus, (9b) holds for all m ∈ M.

B. DD-maxH

As described in (5) and (7), the more number of datasets

are successfully uploaded within the delay deadline DMax
Tx , the

smaller number of rounds are required to train. In addition,

the smaller of maxm∈M Dm, the lower delay of a learning.

Therefore, we design a NOMA channel allocation algorithm,

namely, delay descent max-H (DD-maxH), to reduce the

maximum dataset uploading delay of all IoT devices, aiming

at achieving the goal of minimizing the learning delay.

As illustrated in Algorithm 2, the algorithm mainly consists

of two steps, including max-H decision and delay descent

decision update. In the max-H decision step, each IoT device

is allocated a channel that has the best channel quality. Since

different IoT devices may experience different inter-cell and

intra-cell interferences according to the channel decisions,

some IoT device may experience large dataset uploading delay,

while others may experience smaller delays. Thus, in the delay

descent decision update step, we will reduce the maximum

dataset uploading delay by adjusting the channel allocation

decision of the IoT device that will experience the maximum

dataset uploading delay.

Specifically, as shown in Algorithm 2, in the delay descent

decision update step, we first calculate the dataset uploading

delay of every IoT device based on the present channel alloca-

tion decision. Then, we find the IoT device with the maximum

uploading delay. We estimate whether there exist other channel

allocation decisions that can reduce the maximum uploading

delay. If there exists, then we switch the decision to the new

channel that will reduce the maximum uploading delay. The

delay descent decision update step repeats until no further

Algorithm 2 Delay descent max-H (DD-maxH) algorithm

Input: M, N , Lm, Pm for m ∈ M, B, hm,n for m ∈ M
and n ∈ N , N0.

Output: I .

Initialization: I = {}.

Max-H decision:

For m ∈ M, do

1) Find a subchannel n
′

that satisfies:

n
′

= argmaxn∈Nhm,n.

2) Set Im,n
′ = 1.

Delay descent decision update:

a) Calculate Dm for all m ∈ M with (4).

b) Find m
′

that satisfies: m
′

= argmaxm∈MDm.

c) Find Dm
′
,n

′′ that satisfies:

Dm
′
,n

′′ = minn∈N\{n′}Dm
′
,n, (10)

where n
′

is the channel that presently satisfies Im′
,n

′ =
1. Dm

′
,n = Lm

′ /Rm
′
,n is the dataset uploading delay

if channel n is selected (equivalently, Im′
,n

′ = 0 and

Im′
,n = 1.), where Rm

′
,n is derived by (1).

d) If Dm
′
,n

′′ < Dm
′
,n

′ , do

(1) Set Im′
,n

′ = 0 and Im′
,n

′′ = 1.

(2) Go to step a).

TABLE I
THE BASIC PARAMETER SETTINGS

Parameters Value

IoT Number of IoT devices, M 6

devices Maximum power, PMax (W) 0.1

Dataset Mean dataset size, Lm (MB/dataset) 1.8

and training Mean, Wm (Samples/dataset) 8.0× 103

model Batch size (Samples/batch) 100

Edge server Computing capability (Samples/s) 1.0× 10
3

Uplink Number of channels, N 3
Channel bandwith, B (MHz) 5.0

info Channel power gain, h [4× 10−10 , 0.035]

Noise, N0 10−10

channel switching can reduce the maximum uploading delay.

Then, the final channel allocation decision is the best decision

that achieves the goal of minimizing the learning delay.

IV. PERFORMANCE EVALUATION

This section investigates the delay performance of the pro-

posed DD-maxH NOMA channel allocation algorithm under

the DACEL framework. In each of the simulation run, the

MEC system has a computation task of object classification,

which will be run at the edge server with independent image

datasets from distributed IoT devices. Each dataset is a subset

of MNIST [11], which comprises 60,000 training images and

10,000 testing images with 10 object classes (i.e., 10 digits).

An image is equivalent to a sample. The basic parameter

settings are listed in Table I.

We compare the proposed algorithm, e.g., DD-maxH, with

three baseline algorithms, e.g., max-H-greedy, min-H-greedy,

and strictly-priority-delay-minimization (namely, SPDM). In

max-H-greedy, for every IoT device, the channel that has

4 5 6 7 8 9 10
Number of IoT devices

10

15

20

25

30

35

40

45

L
ea

rn
in

g
de

la
y

(s
)

max-H-greedy
min-H-greedy
SPDM
DD-maxH

Fig. 2. The impact of IoT devices on the learning delay.

the best channel quality, that is, channel n that satisfies

n = argmaxk∈Nhm,k, is allocated to IoT device m. By

contrast, under min-H-greedy, the channel n that satisfies

n = argmink∈Nhm,k is allocated to IoT device m for m ∈ M.

With min-H-greedy, IoT devices may experience less interfer-

ence under the MIMO-NOMA uplink environments. In SPDM,

the IoT devices are allocated channel resource one-by-one in

the descent order of their dataset sizes. For example, when an

IoT device m ∈ M is the present un-allocated device that has

the largest dataset size, the channel n that will provide the

minimum dataset uploading delay Dm,n = minn
′∈NDm,n

′

would be allocated to this device.

We evaluate the performance of the above algorithms by

setting the timer, equivalently, the dataset uploading de-

lay deadline of all the investigated algorithms as DMax
Tx =

maxm∈MDmax-H-greedy
m , where Dmax-H-greedy

m is the uploading

delay of the dataset from IoT device m for m ∈ M under

the max-H-greedy algorithm.

A. Adaptive to IoT Devices

This scenario observes the performance by varying the

number of IoT devices, equivalently, varying the sum of

dataset sizes. We observe the delay performance by varying M
from 4 to 10. As illustrated in Fig. 2, under all the investigated

algorithms, the learning delay increases with the increasing

number of IoT devices. This is because, the aggregated dataset

size increases with the increasing number of IoT devices.

Thus, the training delay increases.

Our proposed DD-maxH outperforms the others by provid-

ing the lowest learning delay under various number of IoT

devices, as shown in Fig. 2. This is because, by iteratively

reducing the maximum uploading delay via adjusting the

channel decision, the DD-maxH algorithm provides the lowest

maximum uploading delay while successfully uploading the

most amounts of samples to the edge server. Thus, both

uploading delay and training delay given by DD-maxH are

the lowest.

B. Adaptive to Channels

In this scenario, we observe the performance by varying the

number of available NOMA channels from 2 to 16. We set the

2 4 6 8 10 12 14 16
Number of channels

10

15

20

25

30

35

40

45

L
ea

rn
in

g
de

la
y

(s
)

max-H-greedy
min-H-greedy
SPDM
DD-maxH

Fig. 3. The effect of available channels on the learning delay.

TABLE II
MODEL ACCURACY (%)

M max-H-greedy min-H-greedy SPDM DD-maxH

4 91.14 90.45 90.91 91.14

5 91.50 90.61 91.18 91.51

6 91.76 90.95 91.52 91.78

7 91.84 91.25 91.66 91.90

8 91.85 91.40 91.90 91.95

9 91.92 91.53 92.01 91.98

10 91.68 91.73 92.02 91.80

number of IoT devices to M = 10. Other parameters are listed

in Table I. As illustrated in Fig. 3, the learning delays given by

both max-H-greedy and SPDM vary less under various number

of channels. This is because, under max-H-greedy, the channel

that has the highest channel power gain is allocated to an

IoT device. Similarly, under SPDM, the channel that has the

highest channel power gain will be allocated to an IoT device

with high probability for providing a lower dataset uploading

delay to that IoT device. Although the value of the highest

channel power gain may increase with the increasing number

of channels, the inter-cell and intra-cell interferences would

also increase with the increasing number of channels. Thus,

the uplink transmission rate given by both max-H-greedy and

SPDM may not increase. Therefore, the number of channels

has little effect on the channel allocation decision under both

max-H-greedy and SPDM.

On contrary, the learning delay given by min-H-greedy

increases with the increasing number of channels, as illustrated

in Fig. 3. Under min-H-greedy, the channel that has the lowest

channel power gain is allocated to an IoT device. Although

this behavior can reduce the intra-cell interference, the uplink

transmission rate would decrease with the increasing number

of channels. This is because the value of the lowest channel

power gain reduces with the increasing number of channels.

The efficiency of the proposed DD-maxH algorithm is again

illustrated by providing the lowest learning delay under various

number of channels, as shown in Fig. 3. Different from the

other investigated algorithms, under DD-maxH, the learning

delay decreases with the increasing number of IoT devices.

This is because, with more number of channels available, the

maximum dataset uploading delay could be reduced more by

selecting optimal channels from more wide range of channels.

C. Model Accuracy

Finally, we list the model accuracy of the investigated

algorithms under a varying number of IoT devices. As shown

in Table II, the investigated algorithms provide similar model

accuracy with a different number of IoT devices, which

demonstrates the accuracy of training model described in (7).

V. CONCLUSIONS

In this paper, we have studied a collaborative edge learning

problem in a MIMO-NOMA uplink transmission environment.

A DACEL framework has been designed to support machine

learning at the network edge with the collaboration of edge

servers, IoT devices, and base station. We have further pro-

posed a MIMO-NOMA channel allocation algorithm to reduce

the learning delay of DACEL. Finally, the simulation results

have illustrated the efficiency of the proposed method for

learning delay reduction while satisfying the model accuracy

requirement.

ACKNOWLEDGMENT

This work was supported in part by the Key-Area Research

and Development Program of Guangdong Province under

Grant 2020B0101130023, National Natural Science Founda-

tion of China under Grant 61901128, Startup Foundation

for Introducing Talent of NUIST (1521632101005), National

Key R&D Program of China–Industrial Internet Application

Demonstration-Sub-topic Intelligent Network Operation and

Security Protection (2018YFB1802402), Project supported by

Innovation Group Project of Southern Marine Science and

Engineering Guangdong Laboratory Zhuhai (311021011). The

corresponding author is Mithun Mukherjee.

REFERENCES

[1] J. Boccuzzi, Introduction to Cellular Mobile Communications. Springer
International Publishing, 2019, pp. 3–37.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[3] M. Guo, M. Mukherjee, G. Liang, and J. Zhang, “Computation offload-
ing for machine learning in industrial environments,” in Proc. 46th Annu.
Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2020, pp. 4465–4470.

[4] S. M. R. Islam, M. Zeng, O. A. Dobre, and K.-S. Kwak, Non-Orthogonal
Multiple Access (NOMA): How It Meets 5G and Beyond. Wiley 5G
Ref: The Essential 5G Reference Online, Dec. 2019, pp. 1–28.

[5] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple
access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462–
1465, Aug. 2015.

[6] C. Li, H. Wang, and R. Song, “Intelligent offloading for NOMA-assisted
MEC via dual connectivity,” IEEE Internet Things J., vol. 8, no. 4, pp.
2802–2813, Feb. 2021.

[7] M. Zeng, W. Hao, O. A. Dobre, and H. V. Poor, “Energy-efficient
power allocation in uplink mmWave massive MIMO with NOMA,”
IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3000–3004, Mar. 2019.

[8] H. Tabassum, M. S. Ali, E. Hossain, M. J. Hossain, and D. I. Kim,
“Uplink vs. downlink NOMA in cellular networks: Challenges and
research directions,” in Proc. IEEE 85th Veh. Technol. Conf. (VTC
Spring), Jun. 2017, pp. 1–7.

[9] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artificial Intelligence and Statistics
(AISTATS), 2017.

[10] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol. (TIST),
vol. 10, no. 2, pp. 1–19, 2019.

[11] TensorFlow, “MNIST,” [EB/OL], https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
Accessed June 1, 2020.

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

	I Introduction
	II Delay-Aware Collaborative Edge Learning
	II-A System Model
	II-B MIMO-NOMA Uplink
	II-C DACEL Framework
	II-D Delay Analysis
	II-D1 Uploading Delay
	II-D2 Training Delay

	III Algorithm for NOMA Channel Allocation
	III-A Problem Formulation
	III-B DD-maxH

	IV Performance Evaluation
	IV-A Adaptive to IoT Devices
	IV-B Adaptive to Channels
	IV-C Model Accuracy

	V Conclusions
	References

