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Abstract—In this paper, we investigate a multi-user downlink
multiple-input single-output (MISO) unmanned aerial vehicle
(UAV) communication system, where a multi-antenna UAV is
employed to serve multiple ground terminals. Unlike existing
approaches focus only on a simplified two-dimensional scenario,
this paper considers a three-dimensional (3D) urban environ-
ment, where the UAV’s 3D trajectory is designed to minimize data
transmission completion time subject to practical throughput and
flight movement constraints. Specifically, we propose a deep rein-
forcement learning (DRL)-based trajectory design for completion
time minimization (DRL-TDCTM), which is developed from a
deep deterministic policy gradient algorithm. In particular, to
represent the state information of UAV and environment, we
set an additional information, i.e., the merged pheromone, as a
reference of reward which facilitates the algorithm design. By
interacting with the external environment in the corresponding
Markov decision process, the proposed algorithm can continu-
ously and adaptively learn how to adjust the UAV’s movement
strategy. Finally, simulation results show the superiority of the
proposed DRL-TDCTM algorithm over the conventional baseline
methods.

Index Terms—Multi-antenna UAV, UAV communication sys-
tems, 3D trajectory design, deep reinforcement learning.

I. INTRODUCTION

The unmanned aerial vehicle (UAV)-assisted communi-
cation paradigm is expected to play a pivotal role in

the next-generation wireless communication systems, which
promise to provide ubiquitous connectivity with broader and
deeper coverage [1]. Particularly, using UAVs as aerial mobile
base stations (BSs) to transmit data for distributed ground
terminals (GTs) is anticipated to be a promising technology for
realizing green communications [2]. Compared to terrestrial
BS-based communication systems, the UAV-based aerial BS
system has salient attributes, such as a high probability in
establishing strong line-of-sight (LoS) channels to improve
coverage, a flexible deployment and fast response for unex-
pected or limited-duration missions, and a dynamic three-
dimensional (3D) placement and movement for improving
spectral and energy efficiency, etc [3].

Due to the high mobility, UAVs can move towards potential
GTs and establish reliable connections with a low power
consumption. Thus, the UAVs’ trajectory design is essen-
tial for UAV-assisted communication systems. To date, there
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have been several related work investigating the trajectory
design with various optimization targets, such as throughput,
energy-efficiency, and flight time [4]–[6]. In [4], the authors
considered to jointly optimize GTs’ transmission scheduling,
power allocations, as well as the multi-antenna UAV’s two-
dimensional (2D) trajectory for maximizing the minimum
sum-rate in uplink communication. Besides, to minimize the
total power consumption in multi-user multiple-input single-
output (MISO) communication systems, authors in [5] jointly
optimized the 2D trajectory and the transmit beamforming
vector of the UAV. Also, in [6], the authors designed the UAV’s
flight trajectory for minimizing the UAV cruising time for data
transmission, so as to achieve the throughput, energy and delay
requirements.

However, the above UAV trajectory designs based on con-
ventional optimization solutions have some critical limitations.
First, formulating an optimization problem requires an accu-
rate and tractable radio propagation model, which is often dif-
ficult to be obtained. Second, optimization-based design also
requires the perfect channel state information (CSI), which
is tough to acquire in practice. At last, most optimization
problems in modern communication systems are highly non-
convex and difficult to be efficiently solved.

Considering these challenges, there have been several works
leveraging deep reinforcement learning (DRL) [7] for UAV-
assisted communications. Specifically, in [8], [9], the authors
proposed a DRL-based UAV control method for maximizing
the energy efficiency, data transmission, and fair communica-
tion coverage in mobile crowd sensing systems. In [10], to
minimize the weighted sum of the mission completion time
and the expected communication outage duration, the authors
focused on optimizing a UAV trajectory with the assistance of
DRL. Nevertheless, existing DRL-based approaches usually
assume a simplified channel model [8], [9], or single service
target scenario [10], which may lead to a model mismatch with
an unavoidable performance loss for practical urban scenario.

To overcome the limitations above, this paper considers
a 3D trajectory design for completion time minimization
(TDCTM) in a multi-user downlink MISO UAV communi-
cation system. Specifically, the UAV with multi-antenna is
employed to serve multiple GTs distributed in a 3D urban
scenario. For such scenario, to cope with the continuous
control problem with an infinite action space, we propose
a DRL-based TDCTM (DRL-TDCTM) algorithm, which is
conceived based on an actor-critic algorithm, called deep
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Fig. 1. Multi-antenna UAV-assisted MISO communication system.

deterministic policy gradient (DDPG) [11]. Besides, inspired
by ant colony algorithm [12], we set up an additional infor-
mation, i.e., the merged pheromone, which is adopted as a
input of reward function. Finally, simulation results verify the
superiority of the proposed algorithm over the conventional
baseline methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
As shown in Fig. 1, we consider a multiuser downlink

MISO UAV communication system, where a UAV equipped
with an Nt-element uniform linear array (ULA) is dispatched
to serve a large number of single-antenna static GTs. We
assume that K GTs are randomly distributed in a given
geographical region of D × D m2 and the set of GTs is
denoted by K = {1, · · · ,K}. The positions of the k-th GT
and the UAV are denoted by wk = [x̄k, ȳk, 0] ∈ R3 and
q(t) = [xt, yt, zt] ∈ R3, 0 ≤ t ≤ T , respectively, where
(x̄k, ȳk) denotes the horizontal coordinate of the k-th GT,
(xt, yt, zt) denotes the 3D Cartesian coordinate of the UAV,
and T is the mission execution duration.

Compared with [4]–[6], we consider a more practical
ground-air (G2A) channel model [10], which can be char-
acterized by large-scale fading and small-scale fading, and
both of them are calculated based on a simulated 3D map by
taking into account the existence of buildings as propagation
scatterers. Specifically, the location and height of the buildings
are generated according to a statistical model [14]. In this
model, there are three parameters to characterize an urban
environment, including the ratio of land area covered by
buildings to the total land area α, the average number of
buildings per square kilometer β, and the building height that
can be modeled as a Rayleigh distribution with mean value λ.

Given a specific area with the simulated building location
and height, we can accurately determine whether there is a LoS
link between the UAV and the k-th GT by checking whether
the line connecting them is blocked by any building. Thus,

the large-scale fading of the G2A channel associated with the
k-th GT can be expressed as [13]

PLk(t) =

{
LFS
k (t) + ηLoS,

LFS
k (t) + ηNLoS,

(1)

where LFS
k (t) = 20 log dk(t) + 20 log fc + 20 log

(
4π
c

)
rep-

resents the free space pathloss between the UAV and the
k-th GT, dk(t) = ‖q(t)−wk‖ denotes the distance from
the UAV to the k-th GT, fc denotes the carrier frequency,
and c represents the velocity of light. Besides, ηLoS and
ηNLoS represent the propagation loss of the LoS and NLoS
links, respectively1. Considering a MISO UAV communication
system, the baseband equivalent complex channel between the
UAV and the k-th GT can be modelled as

hk(t) = 10−PLk(t)/20gk(t), (2)

where gk(t) denotes the small-scaling fading, which is mod-
elled as the Rician fading with

gk(t) =

√
G

G+ 1
ḡk(t) +

√
1

G+ 1
g̃k(t), (3)

where G is the Rician factor, ḡk(t) is the steering vector
function defined as

ḡk (t) =
[
1, ejπθ̄k , ejπ2θ̄k , · · · , ejπ(N−1)θ̄k

]T
, (4)

where θ̄k represents the phase of the LoS path between the
UAV and the k-th GT, and g̃k(t) ∼ CN (0, INt) denotes
the Rayleigh fading channel component. As shown in Fig. 1,
the ULA of the UAV always maintains the forward direction
vector [1, 0, 0]. Thus, the phase of the direct link can be
expressed as θ̄k = (x̄k − xt) /dk (t). Furthermore, the Doppler
effect caused by the UAV mobility is assumed to be well
estimated and then compensated at the receiver [15].

B. Problem Formulation
To make the UAV’s trajectory optimization problem

tractable, the continuous time domain is discretized into N
time steps with unequal duration length δn, n ∈ {0, 1, . . . , N},
and the data transmission task is performed within a series of
time steps, i.e., {δ0, δ1, . . . , δN}. In addition, we consider that
each time step consists of two parts, i.e., δn = δft + δht,n,
where δft is the fixed flight time and δht,n is the hovering
time for data transmission. If there is no active GT in the
current time step, the UAV would skip hovering and directly
execute the next time step, i.e., δht,n = 0 s. During each time
step, the UAV’s moving strategy can be expressed as

xn+1 = xn +mn sin (φn) cos (θn) , (5)
yn+1 = yn +mn sin (φn) sin(θn), (6)
zn+1 = zn +mn cos (φn) , (7)

where mn = δftυn represents the moving distance of the UAV,
υn ∈ [0, υmax] denotes the average flight speed, υmax denotes
the maximum cruising speed, φn ∈ [0, π] denotes the pitch

1The above pathloss expressions are all in dB.



angle of the UAV from the positive z-axis, and θn ∈ (0, 2π]
denotes the horizontal direction of the UAV in the xy-plane
with respect to the x-axis.

Moreover, we consider a downlink communication system
with three main steps: First, the UAV only activates a single-
antenna for broadcast service to wake up the GTs which satisfy
the communication requirement. Then, the active GTs will
send control signals to the UAV through the uplink channels,
and the UAV aerial BS will detect the active GTs and estimate
the corresponding channels. Last, the downlink precoding is
performed on the UAV according to the channel reciprocity
of TDD system for downlink MISO data transmission service.
Due to the assumption that active device detection and channel
estimation can be addressed well [16], we only pay attention
to the first and last steps2.

Thus, the channel gain from the UAV to the k-th GT during
the broadcast stage in the n-th time step can be expressed as

h1
k,n = 10−PLk,n/20gk,n. (8)

We assume that only when GT is awakened by the UAV,
it can feed back its status to the UAV by the uplink channel,
otherwise it continues to stay in the silent mode for energy
saving. In the n-th time step, if the k-th GT is waken up, the
corresponding signal-to-noise ratio (SNR) between the k-th
GT and the UAV can be expressed as

ρ1
k,n =

P
∣∣∣h1
k,n

∣∣∣2
σ2

, (9)

where P is the transmitter power during the broadcast stage
and σ2 represents the power of the additive white Gaussian
noise (AWGN) at the ground receiver. For the downlink data
transmission service associated with the k-th GT, we set a pre-
defined SNR threshold ρth, and the k-th GT can be awakened
and served by the UAV if and only if ρ1

k,n ≥ ρth. Therefore,
we define a binary variable bk,n ∈ {0, 1} to indicate whether
the k-th GT can satisfy the SNR requirement by the UAV in
the n-th time step. Due to the assumption that each GT can
only be served at most once in one realization, we define the
following indicator function of the k-th GT as

b̃k,n =

{
1, if bk,n = 1, and ck,n = 0,

0, otherwise,
(10)

where ck,n ∈ {0, 1} is a binary variable to indicate whether
the k-th GT has been served by the UAV. Thus, we define the
serving flag ck,n as

ck,n/0 = min

{
n∑
i=0

b̃k,i, 1

}
, ck,0 = 0 (11)

where if ck,n = 1, the k-th GT has been served during the
mission; otherwise, the k-th GT has not been served.

Define Kn =
{
k ∈ K : b̃k,n = 1

}
as the set of the active

GTs in the transmission stage of the n-th time step and Kn =

2Studying joint trajectory design, active device detection, channel estima-
tion, and data transmission for fixed-wing UAVs is an interesting topic for
future work.

|Kn|. When Kn 6= 0, the corresponding channel vectors can
be expressed as

h2
k,n = 10−PLk,n/20gk,n, k ∈ Kn. (12)

Therefore, the corresponding channel matrix is defined by
Hn =

[
h2

1,n, · · · ,h2
Kn,n

]T ∈ CKn×Nt . Then, to serve
Kn GTs simultaneously, the UAV first encodes the data
symbols for active GTs with a normalized precoding matrix
Wn ∈ CNt×Kn . In this paper, we adopt the zero-forcing
(ZF) precoder as it can obtain a near-optimal solution at a
low complexity. Denote the signal vector for Kn GTs by
sn ∈ CKn×1, which satisfies E

[
sns

H
n

]
= PIKn . Thus, the

received signal at the active GTs in the n-th time step can be
written by

yn = HnWnsn + q, (13)

where the k-th element of yn is the received signal for the
k-th GT and q ∼ CN

(
0, σ2IKn

)
is the AWGN vector. Here,

we assume that the downlink CSI is perfectly obtained for
the UAV by the channel reciprocity of TDD system. For ZF
precoding, the precoding matrix Wn can be written by

Wn = ξH†n, (14)

where H†n = HH
n

(
HnH

H
n

)−1
and ξ is a constant to meet

the total transmitted power constraint after precoding, which
can be expressed as

ξ =

√√√√√ Kn

Tr

{
H†n

(
H†n
)H} . (15)

Consequently, with the ZF precoding, the transmission SNR
for the k-th GT can be expressed as

ρ2
k,n =

P‖hk,nwk,n‖2

σ2
, k ∈ Kn. (16)

The transmission rate between the UAV and the k-th GT
can be expressed as

Rk,n = W log2

(
1 + ρ2

k,n

)
, k ∈ Kn, (17)

where W is the transmission bandwidth of the UAV. Thus, the
hovering time of UAV in the n-th time step, which equals to
the maximum transmission data duration from the Kn GTs,
can be expressed as

δht,n = max
k∈Kn

{
Dk

Rk,n

}
, (18)

where Dk denotes the information file size to be received by
the k-th GT. The completion criterion of the data transmission
mission is that all GTs has been served, which can be
expressed as

K∑
k=1

ck,N = K. (19)



Thus, the problem to minimize the mission completion time
via trajectory optimization can be formulated as

minimize
{υn,φn,θn},N

∑N
n=0 δn

s.t. ck,n = min
{∑n

i=0 b̃k,i, 1
}
,∀n, k,∑K

k=1 ck,N = K,
0 ≤ υn ≤ υmax,∀n,
0 ≤ φn ≤ π,∀n,
0 < θn ≤ 2π,∀n,
0 ≤ xn ≤ D,∀n,
0 ≤ yn ≤ D,∀n,
zmin ≤ zn ≤ zmax,∀n,

(20)

where zmin and zmax are the altitude constraints of the UAV.
It is noteworthy that the above optimization problem is a
mixed-integer non-convex problem, which is known to be NP-
hard. Moreover, in the considered scenario, the large-scale
fading and small-scale fading depend on the instantaneous
locations of the UAV and GTs as well as the surrounding
buildings, which makes it to be unrealistic to obtain a closed-
form solution. Therefore, it is intractable to solve the above
problem by traditional optimization methods like [4], [5].

III. PROPOSED DRL-BASED TDCTM SCHEME

In this section, we reformulate the original problem as a
MDP structure and propose the DRL-TDCTM algorithm for
UAV trajectory optimization, which aims at minimizing the
mission completion time.

A. Preliminaries

Reinforcement learning (RL) considers the paradigm of an
agent interacting with its environment with the aim of learning
reward-maximizing policy [7]. Specifically, RL can be used to
address a MDP problem with 4-tuple 〈S,A,P,R〉, where S is
the state space, A is the action space, P is the state transition
probability, and R is the reward function. At each discrete
time step n, with a given state s ∈ S, the agent selects action
a ∈ A with respect to its policy π, and receives a reward
r. The return is defined as Rn =

∑N
i=n γ

i−nr (si, ai), where
γ is a discount factor determining the priority of short-term
rewards.

DRL can be considered as the “deep” version of RL,
which uses multiple DNNs as the approximator of the Q-value
function Q (s, a) = E [Rn|s, a]. Here Q (s, a) is the expected
return when performing action a in state s. In DDPG algorithm
[11], the Q-value approximator Qθ (s, a) with parameters θ
can be updated by minimizing the following loss function

L (θ) = E
[
(y −Qθ (s, a))

2
]
, (21)

where y is the target value, which can be estimated by

y = r + γQθ′ (s′, a′) , a′ ∼ πφ′ (s′) , (22)

where s′ is the next state, a′ is an action selected from a target
actor network πφ′ , and Qθ′ is a target network to maintain a
fixed objective y over multiple updates. The policy can be

updated through the deterministic policy gradient algorithm,
which is given by

∇φJ(φ) = E
[
∇aQθ(s, a)|a=πφ(s)∇φπφ(s)

]
. (23)

As a realization of the celebrated actor-critic algorithm,
DDPG can deal with a continuous control problem. Thus, we
choose to use it as the starting point for UAV trajectory design
with minimum mission completion time.

B. MDP Formulation
Based on optimization problem formulated in Section II-B,

we reformulate the original problem of UAV trajectory design
with minimum mission completion time as an MDP structure
so that DRL algorithm can be applied. In DRL-TDCTM, the
UAV is treated as an agent. During the training process, the
agent regularly collects the current state information of the
environment, then selects a better strategy to control the flight
path based on the historical states and rewards. Therefore, we
define the state, action, and reward for UAV trajectory design
problem as follows.

1) State sn, ∀n: sn = [b1,n, · · · , bK,n; c1,n, · · · , cK,n;xn,
yn, zn; ζn] is the complete representation of the n-th state,
which has a cardinality equal to 2K+4. In state sn, both bk,n
and ck,n, which have been defined in the Subsection II-B, re-
flect the data transmission situation of the k-th GT; [xn, yn, zn]
represents the UAV’s 3D position; ζn denotes the merged
information between environment and UAV agent during the
mission, which can be regarded as an additional information to
enhance the decision efficiency and also serves as a reference
for reward design. We assume that each GT contains some
pheromones, which can be transferred to the UAV. At the same
time, pheromones on the UAV will evaporate continuously and
more pheromones will evaporate when the UAV’s movement
violates the boundary. Specifically, ζn can be expressed as

ζn = ζn−1 +Kn · κcov − κdis − Pob, (24)

where ζn−1 is the remaining pheromone in the (n− 1)-th
time step, κcov is a positive constant that is used to express
the captured pheromone per GT, κdis is a positive constant
expressing the lost pheromone, and Pob is a penalty when an
action causes the boundary violation of the UAV.

2) Action an, ∀n: The action is defined as an =
[υn, φn, θn]. Since all action variables take continuous values,
the UAV’s trajectory optimization is a continuous control
problem.

3) Reward rn, ∀n: For the above data transmission mis-
sion, the UAV agent can not obtain a positive reward until
it completes the data transmission for all GTs within the
specified time step, i.e., there is no reward in the intermediate
process. Furthermore, at the beginning of training, the agent’s
strategy is random and the reward acquisition needs a series of
complex operations. Therefore, the data transmission mission
is a sparse rewards problem [7], which, however, may lead to
the slow progress over iterations and even non-convergence of
RL algorithm. To overcome this issue, we propose a reward
shaping mechanism, which can transform the original sparse



Algorithm 1: DRL-TDCTM
1: Randomly initialize critic network Q

(
s, a|θQ

)
and actor network π (s|θµ) with

weights θQ and θµ

2: Initialize target networks Q′ and µ′ with weights θQ
′
← θQ, θµ

′
← θµ

3: Initialize experience replay buffer R
4: for episode = 0 to M do
5: Initialize the environment, receive an initial state s0, and set n = 0
6: repeat
7: Select an action an = π (sn|θµ) + σε, where ε is a Gaussian noise and

σ is a decay constant, and observe a reward rn = rtanh (ζn) and a new
state sn+1

8: if the UAV flies over the border then
9: ζn = ζn − Pob, where Pob is a given penalty. Meanwhile, the

movement of the UAV is canceled and update rn, sn+1 accordingly
10: end if
11: if the UAV completes the data transmission task, i.e.,

∑K
k=1 ck,n = K

then
12: rn = rn +Nre, and the episode is terminated in advance
13: end if
14: Store the transition (sn, an, rn, sn+1) in R
15: if R > 2, 000 then
16: Sample a random mini-batch of B transitions from R
17: Update critic by minimizing the loss (21)
18: Update the actor policy using the sample gradient (23)
19: Update the target networks:
20: θQ

′
= τθQ + (1− τ)θQ

′

21: θµ
′

= τθµ + (1− τ)θµ
′

22: end if
23: Update n← n+ 1
24: until n = Nmax or

∑K
k=1 ck,n = K

25: end for

rewards into dense rewards. Specifically, the reward design is
defined as

rn =

{
rtanh (ζn) +Nre, if

∑K
k=1 ck,n = K,

rtanh (ζn) , otherwise,
(25)

where rtanh (ζn) = 2
1+exp(−ζn/(K·κcov))−1 is a shaped reward

function of the pheromone ζn. And rtanh (·) approximates
tanh (·) function, but the gradient is smoother than the latter.
Due to the dynamic change of pheromone ζn, the UAV
agent can obtain dense rewards within the exploration stage.
Furthermore, the gradient information of reward function can
accelerate the convergence of the algorithm. Besides, the UAV
would obtain a remaining time reward Nre = Nmax−n at the
mission completion time step, which thus encourages the UAV
to complete the data transmission mission as soon as possible.

Combining the DDPG method with the above designs, the
DRL-TDCTM is summarized in Algorithm 1.

IV. SIMULATION RESULTS

In this section, numerical results are conducted to evaluate
the performance of the proposed DRL-TDCTM algorithm.

A. Simulation Settings
As shown in Fig. 2, we consider an urban area of size

1, 000×1, 000 m2 with the dense and high-rise buildings that
are generated by one realization of the statistical model in [14]
with parameters α = 0.3, β = 144 buildings/km2, and λ = 50
m. To ensure the practicality, the height of building is clipped
to h ∈ [10, 50] m.

We assume that the number of antennas at the UAV is
Nt = 12, the transmit power of the UAV during the broadcast
stage is P = 10 dBm, the noise power is σ2 = −75
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Fig. 2. UAV’s 2D and 3D flight trajectories according to the proposed DRL-
TDCTM algorithm, where 40 GTs are considered.

dBm, the SNR threshold is ρth = 0 dB satisfying the basic
data transmission requirements, the propagation losses are
ηLoS = 0.1 dB and ηNLoS = 21 dB [13], the Rician factor
is G = 15 dB, the information file size to be received
by the k-th GT is Dk = 20 Mbits, and the transmission
bandwidth is W = 5 MHz. The average flight speed of UAV
is assumed to be υn ∈ [0, 20] m/s, the flight time per step is
δft = 2.5 s, the hovering time of UAV can be computed by
(18), and the altitude constraints of UAV are zmin = 75 m
and zmax = 125 m. The parameter of pheromone designed
is κcov = 10, and when the UAV is at transmission stage,
κdis = δht,n, otherwise, κdis = 2. As for Algorithm 1, all the
actor and critic networks are constructed by a 2-layer fully-
connected feedforward neural network with 200 neurons. To
encourage the UAV to explore the environment, we add a
Gaussian distributed noise ε ∼ N (0, 0.36) with a decay rate
σ = 0.999 into the action during the training phase. Besides,
the maximum number of episodes is M = 8000, the capacity
of the experience replay buffer is R = 1.25× 105, the target
network soft-update rate is τ = 0.005, the discount factor is
γ = 0.99, the mini-batch size is B = 256, and the maximum
time step per episode is Nmax = 200.

Then, we compare DRL-TDCTM with two conventional
non-learning based baseline methods.
• Scan strategy: The UAV flies according to a preset path

which is a rectangular strip track and it starts from the
lower left corner of the area and ends at the upper left
corner. Note that such a trajectory design ensures that all
locations within the target region are covered by the UAV.

• ACO-based approach: Taking each GT as a node, it fixes
the initial position of the UAV and exploit the ant colony
optimization (ACO) algorithm [12] to solve the shortest
path for completing the routing of each node from the
determined starting point.

B. Result and Analysis

To verify the effectiveness of our proposed algorithm, we
use the trained model for testing. In each simulation realiza-
tion, the UAV’s initial position is randomly generated. We
execute 25 mutually independent realizations in total, whose
outputs are averaged to obtain the final results.

In Fig. 2, the UAV’s trajectory is plotted under the case of
40 GTs, where the red triangles represent the served GTs and
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Fig. 3. The impact of the number of GTs on (a) average mission completion
time and (b) convergence performance (i.e., accumulated reward versus
episode).

the blue curve represents the UAV’s trajectory. We can observe
that the UAV can complete the data transmission mission for
all GTs. In such a dense urban environment, buildings are more
likely to block the LoS links between the aerial UAV and the
terrestrial GTs. Then as the learning process progresses, once
the UAV discovers the blockages of LoS links, it would adopt
appropriate cruising direction to reestablish the G2A LoS link
as soon as possible. Besides, the UAV agent will adaptively
adjust its altitude to make a trade-off between the impacts of
the LoS probability and the large-scale fading. This fact shows
that DRL-TDCTM algorithm can pilot the UAV to sense and
learn the external environment. Therefore, it can learn to obtain
an approximately optimal strategy for this practical problem
with minimum information exchange between the UAV and
the environment.

In Fig. 3a, we compare the average mission completion time
of different methods versus different numbers of GTs. We
can observe that the average mission completion time of the
proposed DRL-TDCTM algorithm outperforms that of con-
ventional schemes. For 25 GTs, DRL-TDCTM algorithm saves
80.3s compared with the ACO algorithm, and 291.5s compared
with the Scan strategy. For the Scan strategy, although the UAV
can guarantee to serve all GTs, the exceedingly long mission
completion time is intolerable. For the ACO algorithm, al-
though it addresses the shortest route problem from the UAV to
each GT, it does not exploit the sensing ability of the UAV, thus
there is still a lot of redundancy in flight trajectory. In contrast,
the DRL-TDCTM algorithm can sufficiently and adaptively
learn how to adjust the exploration strategy. Moreover, these
baseline methods can only design the UAV’s 2D trajectory,
while the proposed method can design the 3D trajectory, which
has a higher degree-of-freedom. Therefore, the DRL-TDCTM
algorithm can take the minimum time to complete the data
transmission task, while ensuring each GT can be served.

Fig. 3b shows the accumulated reward per episode in the
training stage under different numbers of GTs. We observe
that the accumulated reward shows an upward trend with the
increase of the training episodes. After training around 6,000
episodes, the accumulated reward gradually becomes smooth
and stable. Besides, the proposed DRL-TDCTM algorithm has
the similar convergence performance in the cases of different
numbers of GTs. Hence, the proposed scheme is capable of
achieving the good convergence and robustness.

V. CONCLUSION

In this paper, we investigate a multi-user downlink MISO
UAV communication system, where a multi-antenna UAV is
employed to serve multiple single-antenna GTs. Specifically,
we have proposed a DRL-based efficient 3D trajectory design,
DRL-TDCTM, to minimize the transmission mission com-
pletion time in a 3D urban environment. In particular, we
set an additional information, i.e., the merged pheromone, to
enhance the decision efficiency. By taking the service status
of IoT nodes, the UAV’s position, and the merged pheromone
as input, the DRL-TDCTM algorithm can continuously and
adaptively learn how to adjust the UAV’s movement strategy
for minimizing the completion time under the constraints in
flight movement and throughput. Numerical results show a
significant performance gain of the DRL-TDCTM algorithm
over the existing baseline methods.
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