
Privacy-Preserving Model Aggregation for
Asynchronous Federated Learning

Jianxiang Zhao, Xiangman Li, and Jianbing Ni
Department of Electrical & Computer Engineering, Queen’s University, Kingston, Canada K7L 3N6

Email: {jianxiang.zhao, xiangman.li, jianbing.ni}@queensu.ca

Abstract—We present a novel privacy-preserving model ag-
gregation for asynchronous federated learning, named PPA-
AFL that removes the restriction of synchronous aggregation
of local model updates in federated learning, while enabling the
protection of the local model updates against the server. In PPA-
AFL, clients can proactive decide when to engage in the training
process, and sends local model updates to the server when the up-
dates are available. Thus, it is not necessary to keep synchronicity
with other clients. To safeguard client updates and facilitate local
model aggregation, we employ Paillier encryption for local update
encryption and support homomorphic aggregation. Furthermore,
secret sharing is utilized to enable the sharing of decryption keys
and facilitate privacy-preserving asynchronous aggregation. As a
result, the server remains unable to gain any information about
the local updates while asynchronously aggregating to produce
the global model. We demonstrate the efficacy of our proposed
PPA-AFL framework through comprehensive complexity analysis
and extensive experiments on a prototype implementation, high-
lighting its potential for practical adoption in privacy-sensitive
asynchronous federated learning scenarios. 1

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

With the rapid development of IT infrastructure, a mas-
sive amount of data has become available, making machine
learning-based solutions more feasible and cost-effective.
Federated learning, a novel collaborative machine learning
approach, addresses data barriers across diverse clients by
utilizing more data for training without violating privacy
regulations. In a typical client-server model, a group of clients
collaborates with an aggregation server to form a ”feder-
ation” for training a global model that benefits from data
owned by different clients. This interactive training process
requires clients and the server to frequently communicate in
a synchronous manner. During each training round, a client
receives the latest global model from the server, trains its
local model using its local dataset, and sends model updates
(e.g., gradients, model parameters) to the server. The server
then generates the next global model version through an
aggregation process that takes local model updates as input.
Throughout this process, raw data never leaves its owner,
providing basic privacy protection for participating clients.

Federated learning, while offering privacy benefits, may still
leak sensitive client information due to model inversion and

1A part of the study has been published in Jianxiang Zhao’s Master thesis.
The authors own the copyright to the thesis as a whole and it is allowed to
republish according to Intellectual Property Guidelines at Queen’s University.

membership inference attacks [1]. To protect local model pri-
vacy, existing works employ various methods such as differen-
tial privacy (DP) [2]–[5] and Local Differential Privacy (LDP)
[6]. Privacy-Preserving Federated Learning (PPFL) techniques,
including homomorphic encryption (e.g., Paillier encryption)
[7] and Multi-Party Computation (MPC), have also been
explored. However, both homomorphic encryption and MPC-
based approaches suffer from lower efficiency compared to the
original federated learning, limiting their practical application
in real-world projects.

Bonawitz et al. [8] proposed Secure Aggregation (SecAgg)
for federated learning to address the trade-off between model
privacy and aggregation efficiency. The noise used to protect
model updates are pairwise negotiated between clients to
make sure that the sum of noise added by all clients is zero.
Considering clients may drop unexpectedly in any step of the
protocol and cause the result incorrect, the server needs to
collect the secret shares from online clients and recover the
secret for every dropped client. However, its synchronized
workflow, which requires devices to wait for the slowest
one, leads to accumulated idling time and reduced efficiency
compared to the original federated learning approach. Asyn-
chronous federated learning can have higher utilization of
computing power and communication bandwidth for devices,
which increases the overall efficiency of the system. However,
asynchronous federated learning cannot use the original feder-
ated aggregation algorithm, because the updates from clients
are not based on the same version of a global model. To
handle this problem, clients’ models should always have tags
to denote the version of the global model. The update of the
global model can happen when the clients’ updates come, by
using the mixing algorithm [9], or when there is a certain
number of updates from clients received, by using weighted
aggregation with staleness function [10]. Both methods can
modify federated learning into an asynchronous alternative.
However, privacy preservation becomes a concern, because
mask-based secure aggregation requires synchronization. The
aggregation method of one-shot recovery [11] allows clients
to communicate with the server without synchronization in
the early rounds of one training epoch, but synchronization is
still required when one-shot mask removal happens. So et al.
[12] proposed secure aggregation in buffered asynchronous
federated learning, in which the server maintains a buffer
to temporarily store the coming updates and performs the
aggregation and updates the global model when the buffer is

ar
X

iv
:2

30
5.

17
52

1v
1

 [
cs

.C
R

]
 2

7
M

ay
 2

02
3

full.
In this paper, we study the method to achieve secure aggre-

gation for fully asynchronous federated learning and propose a
Privacy-Preserving Asynchronous Federated Learning protocol
(PPA-AFL) which facilitates secure aggregation of clients’
local models while enhancing the efficiency of global model
training. The conflict between local model leakage and local
model aggregation is addressed by employing Paillier encryp-
tion in asynchronous federated learning, ensuring that clients’
updates’ cleartext remains concealed while maintaining the
same aggregation result. By implementing a dual-server set-
ting and threshold secret sharing, local model aggregation is
only executed when a specific number of clients’ updates
are received, effectively mitigating the risk of global model
leakage related to individual clients by reducing the contri-
bution proportion of single clients in each aggregation. The
proposed protocol offers full asynchronicity from the clients’
perspective, allowing them to determine their participation and
eliminating the requirement for continuous online presence
until aggregation. Consequently, the overhead imposed on
clients by the system is comparable to that of the original
federated learning approach.

Outline. The remainder of this paper is organized as fol-
lows: Section II formalize the system model, security threats,
and design goals of our proposed solution. The detailed
construction of our novel design is presented in Section III,
followed by an in-depth security analysis in Section IV.
Finally, Section V showcases the performance evaluation of
our design, and Section VI offers concluding remarks.

II. PROBLEM STATEMENT

We present the entities in the system, the security model,
and the goals of the proposed PPA-AFL.

A. Entities

The dual-server federated learning system consists of three
entities: an encryption server, an aggregation server, and
clients.

• The encryption server: The encryption server is a rela-
tively powerful machine that has high computing ability,
and a reliable network connection. The server does not
have data for the training task. In the training, this
server generates keys for homomorphic encryption and
secret shares for threshold aggregation. This server can
communicate with clients bidirectionally to allow clients
to join the training at any time. The incentive of the server
is to receive a commission from the duties of managing
the cryptographic system.

• The aggregation server: The server is a relatively pow-
erful machine that has high computing ability, reliable
network connection, and large storage. The server does
not have data for the training task. The incentive of the
server is to produce a global model. This server maintains
a buffer to store updates from clients and performs the
aggregation on the ciphertext of local models. The aggre-
gation result is sent to the other server for decryption.

• Clients: A client is a device with the local dataset. It
is assumed that a client does not have high computing
ability, reliable network connection, and large storage.
A single client has limited data that is not diverse
enough but the gathering of data from multiple clients
can cover throughout data distribution. To find benefits
in a global model that has better generalization ability,
clients are motivated to join federated training. Clients in
this system can occasionally contribute to some rounds
of aggregation.

Fig. 1: System Model for PPA-AFL

The system model is depicted in Fig.1. In the original
federated learning, there is only one server and multiple
clients. In the proposed design, two servers are responsible
for different parts of the protocol. The first server is called
the aggregation server, which performs the aggregation of
updates. The second server is called the encryption server,
which distributes keys for encryption and decrypts the final
result. The aggregation server maintains a buffer to save the
updates from clients. The encryption server keeps the global
model of different versions, and maintains the key pairs and
secret shares for the next round of aggregation. The clients
have their dataset on the local storage, and train the local
model based on the global model using local data.

In this system, communication does not happen between
arbitrary two parties. Two servers can communicate. Clients
and encryption servers can communicate bidirectional, while
the communication between clients and aggregation is only
from clients to the server.

Clients contribute to the global model by doing local
training and submitting updates. The aggregation server per-
forms the aggregation, which uses the local models’ ciphertext
and outputs the global model’s ciphertext. The aggregation
server should only expose the encrypted global model to the
encryption server but not any individual encrypted update. The
encryption server generates keys for homomorphic encryption
and sends them to clients who claim they are about to do
the local training. The encryption server also decrypts the
ciphertext from the aggregation server to get the new global,
which is sent to clients along with encryption keys. The
encryption server should only decrypt the ciphertext of the
global model when the global model is aggregated from a large
enough number of clients’ updates, which is implemented by
using secret sharing.

B. Security Threats

There are three parties in our protocol, the encryption server,
the aggregation server, and the clients. There are two threat
models for our system:

• All entities in our system are assumed to be honest but
curious.

• The aggregation server and the encryption server are
honest but curious. Some clients are malicious, and the
rest of the clients are honest but curious.

For every client in the system, it has a local dataset that it is
not willing to share. The raw data in the dataset of other clients
is not accessible in the federated learning, but the updates that
contain the information of the local data can be analyzed to
expose the sensitive information. Unprotected updates from
clients can become a possible privacy leakage. Additionally,
because a federated learning system is open and welcoming
clients from the internet in practice, the communication chan-
nel may not be secure. The motivation of secure federated
learning is to perform the federated learning, while protecting
the clients’ privacy at the same time.

There are three possible threats to the privacy of clients,
when “all entities in our system are assumed to be honest but
curious” assumption is applied:

• In our protocol, updates are sent from the clients to the
aggregation server. The channel between a certain client
and the aggregation server may not be secure, which
means an attacker may access the updates of certain
clients. The protocol needs to protect clients’ privacy,
even when their updates are known by an attacker.

• Aggregation happens on the aggregation server. The
aggregation server performs a linear operation on the
ciphertext of the clients’ local model. The result is sent to
the encryption server to be decrypted. The fewer updates
are included in an aggregation, the more possibility of a
certain client’s privacy can leak. The minimum number
of updates that must be reached to allow an aggregation
start should be considered.

• The encryption server has keys to encrypt, decrypt, and
perform the evaluation on the ciphertext. When a certain
update is received by the encryption server, the plaintext
of that client’s local model is exposed. The encryption
server in our protocol should never receive a ciphertext
of the model that only contains one’s or a fewer clients’
information.

In addition, when some clients in our system are malicious,
possible threats to the privacy of clients are:

• Malicious clients can use a model in which every param-
eter is zero as its local model. When there are multiple
malicious clients that work together, they can get the sum
of other clients’ local models. The extreme situation is
that, in one aggregation, there is only one honest client
and all the rest clients are malicious.

• Malicious clients can send requests to the encryption
server at a high frequency to get more shares. When the
number of shares surpasses the recovery threshold, it can

determine when to start the next aggregation. With this
advantage, it may exploit more information from honest
clients.

C. Design Goals

The main goal is to achieve both privacy protection and ef-
ficient asynchronous model aggregation in federated learning.
To achieve this goal, the following issues need to be addressed:

• Local model privacy: The locally trained models and
gradients can still leak the sensitive information of the
training sample. To protect the privacy of clients, both
their local dataset and local models shall not be available
in the form of plaintext for any other parties.

• Model aggregation conditions: The aggregated global
model contains the information of local models. To
reduce the information leakage of a specific sample,
the global model must be aggregated from at least a
certain number of local models, which means threshold
aggregation should be adopted.

• The staleness of local models: In asynchronous federated
learning, the aggregation server receives local models
trained on different versions of global models. In order to
ensure the validity of the model, the version of the local
model needs to be tracked.

III. PROPOSED PPA-AFL

In this section, we review the cryptographic primitives and
the detailed construction of PPA-AFL.

A. Cryptographic Primitives

In the proposed work, secret sharing and homomorphic
encryption are adopted.

B. Secret Sharing

Shamir’s Secret Sharing (SS) is one of the widely used
secret sharing schemes, in which the generated shares have
additive homomorphism. It consists of the following three
algorithms:

• SS.Setup(1k): On inputting the security parameter, the
algorithm gives Param← SS.Setup(1k). Param is the
parameter for the secret sharing protocol and is implicitly
used in the following algorithms.

• SS.Share(n, t,m): There is a pre-determined number
of shares n and a recovery threshold t, and a mes-
sage m. Call the algorithm to get {[si]}i∈[0,n) ←
SS.Share(n, t,m). {[si]}i∈[0,n) are n shares.

• SS.Combine(t, {[si]}i∈P ′): There is {[si]}i∈P ←
Share(n, t,m). To be noted, P is a set of virtual parties
to hold the shares and |P | = n. P ′ is a subset of P , in
additional |P ′| > t. The combination algorithm outputs
the message as m← SS.Combine(t, {[si]}i∈P ′)

Paillier encryption (PE) is one of the widely used homomor-
phic encryption schemes that support additive homomorphism.
It consists of the following five algorithms:

• PE.Setup(1k): On inputting the security parameter, the
algorithm gives Param ← PE.Setup(1k). Param is

the parameter for the Paillier encryption scheme and is
implicitly used in the following algorithms.

• PE.Keygen(Param): On inputting Param generated
from PE.Setup(Param), the algorithm randomly gen-
erates a pair of keys pk and sk.

• PE.Enc(m, pk): On inputting the public key pk and a
message m, the algorithm gives c ← PE.Enc(m, pk).
c is the ciphertext corresponding to the message m. The
related key pair is (pk, sk).

• PE.Eval({[ci]}, f): On inputting a set of ciphertext [ci]
and a linear function f , the algorithm gives ceval ←
PE.Eval({[ci]}, f). All ciphertext in {[ci]} is related to
the same key pair (pk, sk). This evaluation should show
homomorphism, which means the decryption of ceval is
as same as the result of feeding the decryption of {[ci]}
to the linear function f .

• PE.Dec(c, sk): On inputting the secret key sk and a
ciphertext c, the algorithm gives m ← PE.Dec(c, sk).
m is the plaintext corresponding to the ciphertext c.

C. The Detailed PPA-AFL

There are three kinds of parties in our PPA-AFL, the en-
cryption server, the aggregation server, and the clients. During
system initialization, the encryption server calls SS.setup(1k)
and PE.setup(1k) to setup parameters.

1) Encryption Server: This server maintains a global acces-
sible value tag, which indicates the version of the variables
and messages in this system. At the beginning of the protocol,
tag is set to tag = 0. During training, if the current value tag
is n, the new tag is assigned as n+ 1 when the tag needs to
be updated. The tag is maintained by the encryption server,
and the server behaves following the description below.

• After the aggregation or when tag = 0. The current value
of tag is v. At the same time, the server randomly gener-
ates a secret value sv . The server calls {[sv,i]}i∈[0,n) ←
SS.share(nv, tv, sv), where nv controls the number of
shares and tv controls how many updates are needed to
allow the aggregation. n is a large enough integer that
should always be greater than the number of updates in
the system. t is selected by the encryption server to limit
the behaviour of the aggregation server. Then, the server
calls (pkv, skv)← PE.keygen().

• When receiving a request from a client i, the server
responds to the client a message with the following
values: the current tag v, the public key pkv , a secret
share that has not been sent to others yet sv,x, and the
latest global model Mv .

• During the aggregation process, upon receiving the
ciphertext of the new global model cv,M and the
shares {[sv,i]}i∈[0,t′) from the aggregation server, the
server first verifies if t′ ≥ t, and computes sv =
SS.combine(tv, {[sv,i]}i∈[0,t′)). If the verification result
is satisfactory, the server proceeds to call Mv+1 ←
PE.dec(cv,M , skv) to obtain the updated global model;
otherwise, the aggregation is deemed unsuccessful, leav-
ing tag and the global model unchanged. This informa-

tion should be disseminated to all parties in the system
as notification.

2) Clients: When the client i wants to join the train, it
sends a request to the encryption server. In the response from
the server, it gets the current tag v, the public key pkv , a secret
share sv,x, and the latest global model Mv . This client runs the
local training to get mv,i,count. count indicates the number of
the local models under the same v, i.e., countth. This value
may be omitted in the following description. The client calls
cv,i,count ← PE.enc(mv,i,count, pkv) to get the ciphertext of
the local model. The client sends an update to the aggregation
server with the following values: the encrypted local model
cv,i,count and a secret share sv,x.

To join the training again, the client needs to send a request
to the encryption server again. Generally, there is no limit on
how many times a client can create updates under the same
tag.

3) Aggregation Server: The aggregation server maintains a
buffer to save the updates from clients temporarily.

When the number of local model updates with the
same tag = v surpass tv , the server calls cv,M ←
PE.eval({[cv,x]}, f) to obtain the ciphertext of the aggre-
gation result. f is the aggregation algorithm, which is used in
the original federated learning.

The shares in these updates are packaged as {[sv,x]}. The
subtext x is used for simplicity, while the local models and
shares are still from clients with information like “client i”
and “update times count”.

The updates with the old tag whose related global model
has been decrypted by the encryption server are discarded. For
the new updates with a different tag, the first one that reaches
the number of tv is processed as above. The message sent
to the encryption server contains the corresponding tag, the
ciphertext of the global model cv,M , and a set of shares.

IV. SECURITY ANALYSIS

In PPL-AFL, the security goals, specifically local model
privacy and threshold aggregation, are discussed under two
threat models. The first one is all parties are honest but curious.
The second threat model is some clients are malicious. When
assuming all parties are honest but curious, it is demonstrated
that local model privacy is protected, and model aggregation
does not occur before the threshold is reached.

A client intending to join federated training first sends a
request to the encryption server, receiving a response con-
taining an encryption key generated by the server. The client
conducts local training and uses the encryption key to encrypt
the local model. All encrypted local models are transmitted to
the aggregation server, where aggregation is performed on the
ciphertext of local models. The aggregated result is then sent to
the encryption server for decryption. Throughout this process,
the local model plaintext remains on the local device. Due to
the security of the Paillier encryption, without the decryption
key, the probability of an adversary distinguishing a ciphertext
from a random string in the cipher space is negligible, ensuring

the aggregation server and potential eavesdroppers cannot
extract information from the ciphertext of local models.

Alongside the encryption key, the encryption server provides
a secret share to the client. These shares are submitted to
the aggregation server when clients send their updates. To
decrypt the global model’s ciphertext, the aggregation server
must provide these shares to the encryption server. If the secret
can be reconstructed from the shares, the encryption server
performs decryption; otherwise, the request is denied. Based
on the Shamir’s secret sharing scheme, secrets cannot be re-
constructed without a sufficient number of shares, compelling
the aggregation server to execute the threshold aggregation
honestly.

If some clients are malicious, malicious clients may request
encryption keys and secret shares from the encryption server
at a high frequency. To make such requests, a malicious
client must expose its identity to the encryption server. By
maintaining a record of requests, the encryption server can
easily detect this attack, allowing for the suspension of the
abnormal client and associated aggregation.

V. EVALUATION

To evaluate the performance of our proposed protocol, we
implement it with java. In this section, the time complexity of
different parties is analyzed, and the running time is shown.

A. Complexity Analysis

For simplicity, the setting is given here.
• Global models and local models are of size m.
• The number of updates with the same tag is u.
• “t out of n” secret shares are generated by the encryption

server.
We discuss the communication cost and computation cost

of our PPA-AFL for different parties.
• For clients:

– Communication cost
O(m) for each update. The cost to send a request to
the encryption server is O(1). The cost to receive the
response from the encryption server is O(1). The cost
to send the update to the aggregation server is O(m).

– Computation cost
O(m) for each update. The cost to encrypt the plaintext
of the local model is O(m).

• For the encryption server:
– Communication cost
O(u) for the period between two aggregations. The
cost to receive a request from clients is O(u) and the
cost to send a response to clients is O(u).
O(m) for each aggregation. The cost to receive a
ciphertext of a global model from the aggregation
server is O(m).

– Computation cost
O(n) for the period between two aggregations. The
cost to generate “t out of n” shares is O(n).

O(u2) or O(m) for each aggregation, the larger one
should be applied. The cost to check the recovery result
from shares is O(u2), and the cost to decrypt the global
model is O(m).

• For the aggregation server:
– Communication cost
O(mu) for the period between two aggregations. The
cost to receive updates from clients is O(mu).
O(m) for each aggregation. The cost to send a cipher-
text of the global model to the encryption server is
O(m).

– Computation cost
O(mu) for each aggregation. The cost to perform the
aggregation is O(mu).

B. Experiment Results

We implement our PPA-AFL in java and acquire the running
time. The computers have the CPU Intel Core i7-10750H,
Intel Xeon W-2255, and AMD Ryzen 7 4800U. The CPU
frequency is locked at 2.60GHz, 3.70GHz, and 1.80GHz,
respectively. The above-mentioned hardware is selected to
simulate the setting of a relatively powerful personal PC, a
common business server, and a slim laptop. The operating
system is the latest version of Windows 11. All programs only
use a single thread to run.

Because the proposed PPA-AFL is asynchronous, most
operations can run in parallel. The efficiency of the system is
determined by the slowest operation of each party. The result
is shown in Fig. 2.

To evaluate the performance of the homomorphic encryption
adopted in PPA-AFL, we use three hardware settings men-
tioned above to run the encryption and decryption algorithm,
the time consumption is shown in Fig. 2a and Fig. 2b. From
the result, the time consumption is linear to the model size m.
When assuming the model size is 1000, which is a common
value in practice, a slim laptop can perform the encryption in
about 800ms, and a business server can perform the decryption
in about 750ms. This reflects that the cryptosystem adopted in
PPA-AFL can be implemented with high efficiency.

To assess the performance of the homomorphic aggregation,
an Intel Xeon W-2255 powered computer is utilized to execute
the homomorphic evaluation algorithm. The time consumption
results are depicted in Fig. 2c and Fig. 2d. The time con-
sumption is linearly related to both the model size m and the
number of updates u. Training a complex model with a large
m typically necessitates many updates, resulting in a linear
increase in time consumption as the model complexity rises.
A trade-off between the model size m and the number of
updates u should be carefully considered. Within a reasonable
range, reducing the number of updates u for each aggregation
can decrease time consumption.

To evaluate the performance of the secret sharing scheme
implemented in PPA-AFL, the sharing and recovery algorithms
are executed on a computer with Intel Xeon W-2255. The time
consumption results are illustrated in Fig. 2e and Fig. 2f. These
figures indicate that the time consumption for generating and

(a) Time Cost for Local Model Encryption (b) Time Cost for Local Model Decryption (c) Time Cost for Mobile Aggregation with respect
to ”u”

(d) Time Cost for Mobile Aggregation with respect
to ”m”

(e) Time Cost for Secret Shares Generation (f) Time Cost for Secret Recovery

Fig. 2: Performance Evaluation of PPA-AFL

recovering shares is quadratic with respect to the number of
shares n and the threshold of recovery t. The selection of n is
contingent on the maximum number of updates allowed in the
aggregation, while the choice of t depends on the minimum
number of updates permitted in the aggregation. In practice,
adopting a more frequent aggregation with fewer updates can
enhance system performance.

VI. CONCLUSIONS

In this paper, we have proposed a fully asynchronous secure
federated learning protocol, which mitigates the effects of
device heterogeneity during federated training. The proposed
protocol enables federated learning to maximize the use of
clients’ computational resources, facilitating frequent aggre-
gations when other factors remain constant. Asynchronous
aggregation also results in reduced impact from communi-
cation latency on the system. Collectively, these advantages
contribute to the robust performance in practical applications.
However, a notable limitation of the proposed protocol is
the requirement for two non-colluding servers. This constraint
prevents the protocol’s implementation in scenarios where only
one party can serve as a server or when the parties acting as
servers have the motivation to collude.

REFERENCES

[1] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning,” in Proceedings of the 2019 IEEE Symposium
on Security and Privacy (SP), 2018, pp. 1–15.

[2] O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park,
G. Hsu, and A. Das, “Differential privacy-enabled federated learning
for sensitive health data,” arXiv preprint arXiv:1910.02578, 2019.

[3] Y. Pan, J. Ni, and Z. Su, “Fl-pate: Differentially private federated
learning with knowledge transfer,” in IEEE GLOBECOM 2021, 2021,
pp. 1–6.

[4] J. Zhou, Z. Su, J. Ni, Y. Wang, Y. Pan, and R. Xing, “Personalized
privacy-preserving federated learning: Optimized trade-off between util-
ity and privacy,” in IEEE GLOBECOM 2022, 2022, pp. 4872–4877.

[5] Y. He, X. Tan, J. Ni, L. T. Yang, and X. Deng, “Differentially private
set intersection for asymmetrical id alignment,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3479–3494, 2022.

[6] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “Ldp-fed:
Federated learning with local differential privacy,” in Proceedings of
the Third ACM International Workshop on Edge Systems, Analytics and
Networking, 2020, pp. 61–66.

[7] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys (Csur), vol. 51, no. 4, pp. 1–35, 2018.

[8] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in ACM SIGSAC CCS 2017,
2017, pp. 1175–1191.

[9] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[10] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and
D. Huba, “Federated learning with buffered asynchronous aggregation,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2022, pp. 3581–3607.

[11] C.-S. Yang, J. So, C. He, S. Li, Q. Yu, and S. Avestimehr, “Lightsecagg:
Rethinking secure aggregation in federated learning,” arXiv preprint
arXiv:2109.14236, 2021.

[12] J. So, R. E. Ali, B. Güler, and A. S. Avestimehr, “Secure aggre-
gation for buffered asynchronous federated learning,” arXiv preprint
arXiv:2110.02177, 2021.

	Introduction
	Problem Statement
	Entities
	Security Threats
	Design Goals

	Proposed PPA-AFL
	Cryptographic Primitives
	Secret Sharing
	The Detailed PPA-AFL
	Encryption Server
	Clients
	Aggregation Server

	Security Analysis
	Evaluation
	Complexity Analysis
	Experiment Results

	Conclusions
	References

