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Abstract—Timing synchronization (TS) is one of the key tasks
in orthogonal frequency division multiplexing (OFDM) systems.
However, multi-path uncertainty corrupts the TS correctness,
making OFDM systems suffer from a severe inter-symbol-
interference (ISI). To tackle this issue, we propose a timing-
metric learning-based TS method assisted by a lightweight one-
dimensional convolutional neural network (1-D CNN). Specifically,
the receptive field of 1-D CNN is specifically designed to extract the
metric features from the classic synchronizer. Then, to combat the
multi-path uncertainty, we employ the varying delays and gains of
multi-path (the characteristics of multi-path uncertainty) to design
the timing-metric objective, and thus form the training labels. This
is typically different from the existing timing-metric objectives
with respect to the timing synchronization point. Our method
substantively increases the completeness of training data against
the multi-path uncertainty due to the complete preservation of
metric information. By this mean, the TS correctness is improved
against the multi-path uncertainty. Numerical results demonstrate
the effectiveness and generalization of the proposed TS method
against the multi-path uncertainty.

Index Terms—Timing synchronization, OFDM, lightweight
CNN, timing-metric objective, multi-path uncertainty

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been subject to extensive research efforts not only from the
fifth generation (5G) systems but also from the Internet-of-
Things (IoT) systems [1]. In OFDM systems, a correct timing
synchronization (TS) aims to find the starting of the receiver
discrete Fourier transform (DFT) window within an inter-
symbol-interference (ISI)-free region of an OFDM symbol [2].
Although synchronizing to this ISI-free region produces a phase
rotation, this impairment can be easily countered by the channel
equalization [3]. However, achieving this task is not easy due
to the multi-path uncertainty. The multi-path uncertainty is
caused by the rich and diverse communication environments
[4] and manifested in wireless channels with varying power
delay profile (PDP). Because of the multi-path uncertainty,
the timing metric is usually corrupted in non-light-of-sight
(NLOS) scenarios. Consequently, the timing error, i.e., starting
of receiver DFT window located outside the ISI-free region,
is appeared, which will in turn affect the subsequent signal
processing.

To combat timing errors caused by the multi-path uncertainty,
an alternative method for improving the TS correctness is to em-
ploy the joint mode, such as joint the TS and channel estimation,
as done in [5]. The method of joint TS and channel estimation
[5] improves the TS correctness by partially counteracting the
interferences of multi-path uncertainty. Nevertheless, this joint
mode [5] results in a relatively high computational complexity.
Against the impairments caused by multi-path fading, noise,
etc., an alternative method for improving the TS correctness
is to deploy neural networks (NNs). In this context, several

machine learning-based studies have been conducted in finding
high-performance TS methods for OFDM systems [6]–[8].
In [6], a one-dimensional convolutional neural network (1-D
CNN)-based TS method is investigated in OFDM systems,
which improves the TS correctness relative to the conventional
TS method. Yet, this method ignores the impacts of multi-path
uncertainty. In [7], the fine synchronization problem is investi-
gated by assuming that the coarse TS and channel equalization
have been achieved. Accordingly, [7] omits the consideration
for multi-path interference, i.e., the multi-path uncertainty is
neglected. While the work in [8] attempts to find ways to
improve the TS correctness by designing training labels, the
prerequisite of predicting the maximum multi-path delay limits
its generalization performance. To summarize, due to the lack of
considering the high computational complexity in [5] and the
multi-path uncertainty in [6]–[8], the machine learning-based
TS for practical application is limited, inspiring us to investigate
a lightweight machine learning-based TS method against the
multi-path uncertainty.

In this paper, we propose a lightweight timing-metric
learning-based TS method in OFDM systems. To our best
knowledge, against the multi-path uncertainty, the improvement
of TS correctness by learning the timing metric has not been
investigated. The main contributions are listed as below.

• We propose the lightweight metric learning-based TS
method. Different from [6], the receptive field of 1-D CNN
layer is specially designed and flexible according to the
length of cyclic prefix (CP). Also, compared with [7],
[8], the computational complexity of the designed neural
network is significantly reduced.

• From the perspective of de-noising task, we specially
design the timing metric to be learned. Specifically, the
impact of uncertain multi-path delay on timing metric is
considered to design the timing metric, and the impact
of uncertain multi-path gain is also considered into the
training stage. Thus, the adaptability of NN-based TS
against multi-path uncertainty is improved.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

An OFDM system with N sub-carriers is considered. At
the transmitter, the time-domain OFDM symbol {s (n)}N−1

n=0

is obtained by using the inverse DFT, i.e.,

s (n) =
∑N−1

k=0
S (k) ej2π

kn
N , (1)

where {S(k)}N−1
k=0 denotes the data/training symbol at the kth

sub-carrier in the frequency domain. E{|s (n) |2} = Pt with Pt

being the transmitted power.
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Fig. 1. The proposed timing synchronizer.

After appending the Ng-length cyclic prefix (CP), the trans-
mitted signal consecutively passes through a multi-path fading
channel. With a Nw-length observed interval at the receiver, the
received sample is expressed as

y (n) = e
j2πεn

N ·
∑L

l=1
hls (n− τl − θ) + w (n) , (2)

where ε and θ respectively denote the normalized carrier
frequency offset (CFO) and the unknown timing offset to be
estimated. In (2), hl and τl are the complex gain and normalized
delay of the lth arriving path, respectively. Meanwhile, τl = l−1
and 0 ≤ τL < Ng are considered [9]. In (2), w(n) represents
the complex additive white Gaussian noise with zero-mean and
variance σ2

n.
Then, the received Nw-samples {y (n)}Nw−1

n=0 are buffered to
form an observed vector y ∈ CNw×1. To observe at least one
complete training sequence, Nw ≥ 2N + Ng is required, and
thus a discrete searching interval of unknown timing offset is
employed, with its length being Ns = Nw − N . In a classic
synchronizer [10], the timing metric is utilized to estimate the
unknown θ. According to (2), the timing metric, denoted as
{M(d)}Ns−1

d=0 , is calculated as [10]

M (d) =

∣∣∣∑N−1
k=0 x∗(k)y (d+ k)

∣∣∣2∑N−1
k=0 |y (d+ k)|2

, (3)

where {x(k)}N−1
k=0 represents a local training sequence. Due to

the impacts of multi-path fading, noise, etc., the metric in (3)
is easily impaired and then makes TS errors. Therefore, we
develop a learning method to improve the TS correctness with
lightweight network.
B. Problem Formulation

Against the multi-path uncertainty, we focus on the improve-
ments of the computational complexity and the adaptability of
the deployed learning-based TS in OFDM systems. Therein,
M(d) in (3) can be regarded as the extracted initial feature,
and then the impairments (e.g., noisy, multi-path interference)
represented in M(d) can be learned and remedied by NNs,
as done in [8]. The de-noising problem can be mathematically
formulated as

min
Θ
∥Γ−GΘ (M,Θ)∥22 , (4)

where Θ is a set of network parameters to be optimized, and
GΘ(·) is a mapping function parameterized by Θ. In (4),
the vector forms that Γ = [Γ(0),Γ(1), · · · ,Γ(Ns − 1)]T and
M = [M(0),M(1), · · · ,M(Ns−1)]T denote the timing metric
{Γ(d)}Ns

d=1 to be learned and the initial feature {M(d)}Ns

d=1

to be de-noised, respectively. Nevertheless, the trained GΘ(·)
may suffer from a severe TS error due to the multi-path uncer-
tainty. This is due to the fact that the multi-path interference

TABLE I
NETWORK ARCHITECTURE

Layer Name Output Size Filter Size Filter Number Activation

Input Layer (Ns, 1, 1) - - -
1-D CNN Layer (Ns, 1, 4) Ng + 1 4 ReLU

Pooling & Flattening (Ns, 1) - - -
FC Layer (Ns, 1) - - Sigmoid

Output Layer (Ns, 1) - - -

represented in M is randomly unpredictable. Therefore, M are
uncertain to be hardly recognized, degrading the correctness of
learning-based TS in wireless propagation scenarios. To handle
this issue, the timing metric to be learned is specially designed
to improve the TS correctness against multi-path uncertainty,
which will be presented in Section III-B.

III. THE PROPOSED METRIC LEARNING-BASED TS

A. Lightweight NN Architecture

The proposed timing synchronizer is presented in Fig. 1 and
summarized in TABLE I, which consists of a classic correlator
along with a NN process. In the NN block, the single-layer 1-D
CNN and single-layer fully connected NN are considered. For
1-D CNN layer, the rectified linear unit (ReLU) is employed as
the activation function. As for fully connected layer, the tanh
and softmax functions are employed in the hidden and output
layers, respectively.

In the 1-D CNN block, the 1-D CNN deploys one convolution
layer with 4 filters, and its the receptive field is selected as
(Ng + 1). Specifically, the receptive field of each filter layer
is specially designed according to the finite lengths of channel
impulse response (CIR) and CP. This is due to the fact that the
significant TS features are mainly appeared at arriving paths,
and also the CIR length is less than the CP length. The TS
feature extracted by using (3) can be simplified as

M (d) ≈
Pt

/
σ2
n

1 + Pt

/
σ2
n

·
∑L

l=1
hlδ (d− τl − θ). (5)

Since Ng is usually less than one quarter of the symbol
length N (i.e., Ng < 0.25N ), the increase of computational
complexity caused by a large receptive field can be alleviated.
Thus, (Ng + 1)-size receptive field is suitable to capture the
significant TS features extracted by the classic correlator. Also,
the number of filter is set by considering that one complex
multiplication (CM) equals 4 floating point operations (FLOPs),
i.e., filter number is set as 4. Thus, the total CMs of 1-D CNN
processing approximately are equal to a CP-based correlation
processing.

In the fully connected NN block, its hidden layer is selected
according to the maximum searching length of candidate timing
offset, i.e., Ns. To further reduce the data dimension sent for



the fully connected layer, an average pooling layer with patch
equaling to the filter number is considered, i.e., 4-size patch.

In summary, the designed 1-D CNN and fully connected NN
are constructed according to the parameters of Ng and Ns,
which are flexible in different scenarios. Meanwhile, by using
CM as the evaluation of computational complexity, the com-
putational complexity of the designed NN is 0.5N2

s + NsNg ,
while the correlation process in (3) requires NsN . Since Ns

and Ng are constrained by Ns = Nw − N = N + Ng and
0 < Ng < 0.25N , we will have 0.5N2

s + NsNg − NNs < 0.
Therefore, the designed NN is relatively lightweight compared
with the classic correlator [10].

B. Timing Metric for TS Learning

In the ISI-free region of per OFDM symbol, each sampling
point can be regarded as the correct TS point [2]. Consequently,
the timing metric to be learned can be expressed as

Γ (d) =
∑θ+Ng

θ̂=θ+τ̂L+1
δ
(
d− θ̂

)
, (6)

where θ̂ is the timing offset to be learned, and the τ̂L denotes
the normalized maximum multi-path delay for offline training.
Usually, τ̂L is assumed to be fixed during the training stage.

However, due to the multi-path uncertainty, the real τL is
unpredictable. For example, the root means square multi-path
delay will change with time and propagation environments [11],
making τL uncertain. Thus, it is highly possible that τL ̸= τ̂L,
resulting in an incorrect labeling. When θ is fixed, the incorrect
timing metric learned can be given by

γ (d) =
∑θ+Ng

θ̂=θ+τ̂L+1
δ
(
d− θ̂

)
⊕
∑θ+Ng

θ̂=θ+τL+1
δ
(
d− θ̂

)
=

∑θ+τ̂L

θ̂=θ+τL+1
δ
(
d− θ̂

)
.

(7)
When τ̂L = τL, the case of γ (d) = 0 can be achieved, which
means ideally labeling. Due to the multi-path uncertainty, this
case is hardly to be achieved. Hence, we relax this demand by
jointly considering these following motivations:

• Although the cases of τ̂L ≥ τL make γ (d) ̸= 0, the set
{θ̂}θ+τ̂L

θ+τL+1 still belongs to the ISI-free region.
• Since τL is difficult to be predicted, τ̂L is no exception.

Therefore, other priori information needs to be exploited
for determining the value of τ̂L.

• As NNs can compensate for deficiencies by learning from
a certain number of data set, τ̂L for (6) can be expanded
according to a set of random variables.

Given Nt-samples data set, we make {τ̂L,i}Nt
i=1 for (6) satisfy

that τ̂L,i
i.i.d∼ U [Ng/2, Ng − 1]. By this mean, the timing metrics

to be learned are expanded to increase the adaptability of NN
against multi-path uncertainty.

Remark 1. According to (7), the main deficiency in (6) is
caused by the dynamically changed τL, resulting in error
labeling and aggravating TS error. Since learning models can
compensate for deficiencies by learning from the prior inputs
and objectives, the features to be learned can be expanded to
increase the adaptability of NN against multi-path uncertainty.
To this end, the priori τ̂L

i.i.d∼ U [Ng/2, Ng − 1] is derived to
expand the features of timing metrics. Thus, the adaptability of
trained model is enhanced against the uncertain τL.

In Section III-C, the offline training and online deployment
are described.

TABLE II
ABBREVIATIONS OF DIFFERENT TS METHODS

Abbreviation Computational Complexity (CM) Example

“Prop” The proposed method

“Prop without Γ” The proposed method directly learns the received signal
without the initial feature extraction

“Prop with fixed τ̂L” The proposed method does not specially design the timing
metric for model training, i.e., fix τL = 22 for training

“Ref [5]” The joint TS and channel estimation method in [5]
“Ref [8]” The label designed-based ELM method in [8]
“Ref [13]” The classic TS method proposed in [13]

“DNN” A conventional back-propagation NN which owns two hidden
dense layers, with both neuron nodes being Ns

TABLE III
COMPUTATIONAL COMPLEXITY AMONG DIFFERENT TS METHODS

Method Computational Complexity (CM) Example

Ref [5] LNNs +
∑L

l=1 (3lNs + l3 + l2Ns) 1371536

Ref [8] 16N2
s + 4Ns + 1.5N − 4 410428

DNN 0.75N2
s + NNs + 2Ns + N − 2 40126

Proposed 1.5N2
s + 3Ns + N − 2 39006

C. Offline Training and Online Deployment

1) Offline Training: In this phase, Nt = 50, 000 is con-
sidered, which is split to the validation set and training set
by 0.25. The data set is denoted as {Mi,Γi}Nt

i=1, in which
Mi is obtained via (1)–(3) and Γi is obtained by using (6).
Therein, τ̂L,i

i.i.d∼ U [⌊Ng/2⌋, Ng − 1] is utilized to alleviate the
effect of uncertain multi-path delay. An exponentially decayed
channel model [9] with decayed exponent η is considered.
Meanwhile, ηi

i.i.d∼ U(0.01, 0.2) is employed to alleviate the
effect of uncertain multi-path gains. Besides, θi

i.i.d∼ U [0, N − 1].
For the designed NN in TABLE I, optimizer employs the

stochastic gradient descent (SGD) algorithm, and its initial
learning rate is set as α = 0.002 [12]. By respectively denoting
B and J as the batch size and the number of steps, the network
optimization is defined as [12]

Θq+1 ← Θq − α∇ 1

B

∑qB

i=(q−1)B+1

∥∥GΘq
(Mi,Θi)− Γi

∥∥2
2
,

(8)
where the subscript q denotes the qth iterative step for optimiz-
ing, and 1 ≤ q ≤ J .

2) Online Deployment: By using (1)–(3), M(d) is obtained,
forming M = [M(0),M(1), · · · ,M(Ns−1)]T . Then, with the
optimized GΘ(·), the model output, denoted as O ∈ RNs×1,
is given by O = GΘ (M). Finally, by expressing O as
[O(0), O(1), · · · , O(Ns − 1)]T , the estimated timing offset is

θ̂ = argmax
0≤d≤Ns−1

{O(d)} . (9)

In Section IV-B and Section IV-C, the effectiveness and
generalization of the proposed TS method against the multi-
path uncertainty are presented.

IV. SIMULATION RESULTS

In the simulations, we consider basic parameters as that N =
128, Ng = ⌊N/4⌋ = 32 [7], Nw = 2N + Ng = 288, and
Ns = Nw−N = 160. For simulated channel models, they have
not been utilized for offline training. For the sake of clarity,
we list the abbreviations of different timing synchronization
methods in TABLE II.



Fig. 2. Effectiveness in NLOS scenarios.

Fig. 3. Generalization in NLOS scenarios.

A. Computational Complexity

The comparison of computational complexity among dif-
ferent TS method is illustrated in TABLE III. Therein, the
total channel paths are selected as 23, i.e., L = 23, and
other parameters are adopted from Section IV-A. According to
TABLE III, “Prop” reaches the smallest CM among the given
TS methods. Therefore, “Prop” has the superiority in realizing
lightweight network.
B. Effectiveness Analysis

To analyze the effectiveness, Fig. 2 depicts the error prob-
ability of TS. Wherein, an un-trained exponential decayed
factor that η = − ln(10−

10
10 )/(L − 1) [9] is utilized and the

maximum multi-path delay changes from 22T to 27T , which
are utilized to simulate the multi-path uncertainty. In Fig. 2,
for each given value of τL, the probability of TS error for
“Prop” is smaller than those of “Ref [13]”, “Ref [5]”, and
“Ref [8]”. Meanwhile, for all given SNRs, “Prop” achieves a
lower probability of TS error than “DNN”. This is because
CNN is easier to capture data features compared with DNN
methods. It is noteworthy that, although τL increases from 22 to
27 caused by the multi-path uncertainty, “Prop” exhibits slight
generalization error than “Prop with fixed τ̂L”, due to the use of
the designed timing-metric objective. Besides, “Prop” reaches a
smaller TS error than “Prop without Γ”, which demonstrates the
benefits of learning timing-metric. In summary, the performance
improvements of “Prop” is effective against the multi-path
uncertainty.
C. Generalization Analysis

Fig. 3 plots the comparison of the error probability of TS
to analyze the generalization performance of “Prop” against
different 5G tapped-delay-line (TDL) channel models [14].

Notably, these channel models have not been used for offline
training. For each given channel model, “Prop” achieves smaller
probability of TS error among the given TS methods in the
whole SNR region. Besides, for “Prop”, the fluctuation in the
probability of TS error caused by different un-trained channel
models are not obvious. Therefore, the proposed TS method
(i.e., “Prop”) has a good generalization capability against dif-
ferent 5G TDL channel models.

V. CONCLUSION

In this paper, we investigate a lightweight timing-metric
learning-based TS in OFDM systems, which alleviates the
multi-path uncertainty by utilizing the designed timing-metric
objective. Different from [5]–[8], against the multi-path uncer-
tainty, we utilize the proposed lightweight network along with
the designed learning solution to learn the timing metric, which
improves the TS correctness and generalization performance
with less computational complexity. By simulations, numerical
results exhibit the superiority of the proposed method in reduc-
ing the error probability of TS against multi-path uncertainty,
whilst revealing its good generalization performance against
different un-trained 5G TDL channel models.
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