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Abstract—Unmanned aerial vehicles (UAVs) have gained pop-
ularity due to their flexible mobility, on-demand deployment,
and the ability to establish high probability line-of-sight wireless
communication. As a result, UAVs have been extensively used
as aerial base stations (ABSs) to supplement ground-based
cellular networks for various applications. However, existing
UAV-assisted communication schemes mainly focus on trajectory
optimization and power allocation, while ignoring the issue of
collision avoidance during UAV flight. To address this issue, this
paper proposes an interpretable UAV-assisted communication
scheme that decomposes reliable UAV services into two sub-
problems. The first is the constrained UAV coordinates and
power allocation problem, which is solved using the Dueling
Double DQN (D3QN) method. The second is the constrained UAV
collision avoidance and trajectory optimization problem, which is
addressed through the Monte Carlo tree search (MCTS) method.
This approach ensures both reliable and efficient operation of
UAVs. Moreover, we propose a scalable interpretable artificial
intelligence (XAI) framework that enables more transparent and
reliable system decisions. The proposed scheme’s interpretability
generates explainable and trustworthy results, making it easier
to comprehend, validate, and control UAV-assisted communica-
tion solutions. Through extensive experiments, we demonstrate
that our proposed algorithm outperforms existing techniques in
terms of performance and generalization. The proposed model
improves the reliability, efficiency, and safety of UAV-assisted
communication systems, making it a promising solution for future
UAV-assisted communication applications.

Index Terms—UAV-assisted network, xai, trajectory optimiza-
tion, collision avoidance

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
become increasingly popular due to their maneuverability,
on-demand deployment capabilities, and ability to establish
line-of-sight (LOS) wireless communication links with high
probability [1]. Despite their advantages, the reliability and
safety of UAV-assisted networks are largely dependent on the
design of flying trajectories, power allocation, and guaranteed
collision avoidance [2]. However, dynamic environments and
unreliable wireless channels present significant challenges
to the reliability of UAV services, making the control of
UAV motion a critical issue for UAV-assisted communication
systems.

Therefore, a considerable amount of research has been
devoted to optimizing UAV trajectory. For instance, Zhan et al.
[3] have proposed an optimization method that maximizes the
energy efficiency of sensor networks by optimizing the UAV

trajectory. Similarly, in [4], the authors have optimized the
trajectory, transmission power, and connection between UAVs
and nodes to minimize the total transmission power in the
system. Baek et al. [5] have also investigated UAV trajectory
and route design, modeling the UAV using a hovering flight
model. Furthermore, researchers in [6], [7], and [8] have
proposed UAV trajectory optimization schemes that aim to
minimize energy consumption or maximize flying time. These
works primarily focus on optimizing UAV trajectory and
power allocation to reduce energy consumption or extend UAV
flying time.

While optimizing UAV trajectory and power allocation is
important, collision avoidance is equally crucial to ensure the
safety and reliability of UAV networks. Jointly optimizing
UAV trajectory, resource allocation strategy, and collision
avoidance strategy is considered a potential solution. To this
end, Yang et al. [9] have proposed a deep deterministic policy
gradient (DDPG) algorithm to jointly optimize UAV trajectory,
resource allocation strategy, and interference strategy to max-
imize energy efficiency. Zhang et al. [10] have employed the
deep Q-network (DQN) method to jointly design UAV trans-
mission scheduling, power allocation, and trajectory optimiza-
tion to maximize the system transmission rate. Liu et al. [11]
have utilized a multi-agent deep deterministic policy gradient
(MADDPG) method to extract features through convolutional
neural network (CNN) and jointly optimize UAV operational
trajectory and collision avoidance. These works employ deep
reinforcement learning methods to effectively address the
issue of collision avoidance during UAV service operations.
However, these methods lack interpretability, which can raise
concerns about UAV safety and result in unnecessary legal
disputes [12] [13]. Therefore, ensuring the interpretability and
reliability of decisions is essential in designing algorithms for
UAV operations.

To enhance the performance of UAV-assisted communi-
cation networks, this paper proposes a joint optimization
approach for trajectory and power allocation under collision
avoidance conditions. Furthermore, an architecture based on
explainable artificial intelligence (XAI) is presented to effi-
ciently address this problem. The main contributions of this
paper as follows.

1) A scalable XAI framework is proposed to aid in UAV
collision avoidance and trajectory optimization prob-
lems, which improves the credibility of decision-making
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processes.
2) To address the joint optimization problem of trajectory

and power allocation under collision avoidance con-
straints, this paper decomposes the problem into two
mutually constrained sub-problems. Firstly, a Double
Dueling DQN (D3QN)-based method is used to solve
the power allocation and service coordinate problem
under collision avoidance constraints. Secondly, a Monte
Carlo tree search (MCTS)-based method is utilized to
solve the trajectory optimization problem under collision
avoidance constraints.

3) We conduct extensive experiments to evaluate the pro-
posed joint optimization algorithm. The experimental
results indicate that our algorithm outperforms existing
algorithms in terms of both performance and general-
ization. In addition, the tree search method provides de-
cision paths during the search process, which enhances
the interpretability of our algorithm.

The following paragraphs are organized as follows. In
Section II, we provide an overview of the system model,
including its composition and function, as well as detailed
instructions on how to use each module. In Section III, we
introduce the methods for solving various sub problems. we
present a large number of experiments and discussions in
Section IV. Finally, we summarize the article in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a UAV-assisted communi-
cation network consisting of multiple users and UAVs. The
set of users served by the UAV is denoted as k ∈ K =
{1, 2, 3 . . .K}, h(t) represents the altitude of the UAV during
flight. The distance between the UAV and the k-th user at time
t is denoted as dk(t) that

dk (t) =

√
h2
u (t) + [xu (t)− xk (t)]

2
+ [yu (t)− yk (t)]

2
.
(1)

The average path loss between the UAV and the k-th user can
be expressed as

Lk(t) = PLoS · LLoS + PNLoS · LNLoS. (2)

Taking into account small-scale fading, the channel gain
between the UAV and user k at time t can be calculated as

gk(t) = Hk(t) · 10−Lk(t)/10. (3)

Hk(t) represents the channel fading coefficient between the
UAV and user k at time t, vk(t) serves as a performance
metric, where vk(t) = 1 indicates that the UAV is serving k-
th user, and vk(t) = 0 otherwise. pk(t) represents the power
allocated to user k, and the data rate between user k and the
UAV can be represented as:

R(k)(t) = B log 2
(
1 + γ(k)(t)

)
. (4)

γk(t) =
vk(t)gk(t)Pk(t)∑K

i=1,i̸=k vk(t)gk(t)Pk(t) + σk(t)2
. (5)

σk(t) represents additive Gaussian white noise, γk(t) is the
signal-to-noise ratio (SNR) of the channel between the k-th
user and the UAV, B is the communication bandwidth of the
UAV, Therefore, the overall rate of the system is given by

R(t) =

K∑
k=1

R(k)(t). (6)

The throughput of the system within time T can be given by

R =

T∑
t=0

R(t). (7)

H = {h(t), x(t), y(t), 0 ≤ t ≤ T} is the location coordi-
nates of the UAV during service time, During the service
time, The power allocated by UAV to each user is denoted
by the variable P = {pk(t), 0 ≤ t ≤ T, k ∈ K}. The vari-
able V = {vk(t), 0 ≤ t ≤ T} can be used to quantify the
connectivity between users and the UAV. St expresses the
number of steps the UAV has taken at a specific time t,
Smax is the maximum number of steps that the UAV can
fly. U = {uk(t), 0 ≤ t ≤ T} represents the specific con-
trol action executed by the UAV during flight, such as its
movement trajectory or any adjustments made to maintain a
stable position in the air, C (H,U) is the collision statistics
function. With the objective of maximizing system throughput
and minimizing collision probability, subject to constraints on
maximum power, spatial limitations, and Quality of Service
(QoS) requirements, the problem of reliable service provision
by UAVs can be formulated as follows.

max
H,V,P,U

G =

T∑
t=0

(R(t)− C(H,U)), (8)

s.t. hmin ≤ h(t) ≤ hmax,∀t ∈ [0, T ], (8a)
xmin ≤ x(t) ≤ xmax,∀t ∈ [0, T ], (8b)
ymin ≤ y(t) ≤ ymax,∀t ∈ [0, T ], (8c)∑
k∈K

vk(t)Pk ≤ Pmax,∀t ∈ [0, T ],∀k ∈ K, (8d)

St ≤ Smax,∀t ∈ [0, T ], (8e)
Rk(t) ≥ RQos,∀t ∈ [0, T ],∀k ∈ K. (8f)

It is worth noting that the optimization problem described
above is a mixed exponential non-convex problem, which is
known to be an NP hard problem. Moreover, in the scenario
under consideration, both large-scale fading and small-scale
fading are dependent on the instantaneous position of the
UAV and users, making it difficult to solve the optimization
problem using traditional optimization methods. sub-problem
decomposition and reinforcement learning have proven to be
effective methods for dealing with complex control problems
in high-dimensional continuous spaces. In the next section,
we will adopt the idea of sub-problem decomposition to
decompose the aforementioned problem and solve it using
reinforcement learning and MCTS methods. Furthermore, as
shown in Fig. 1, a corresponding XAI framework will be
designed.
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Fig. 1. Scalable and interpretable artificial intelligence framework based on UAV-assisted communication.

III. UAV-ASSISTED COMMUNICATION METHODS

Inspired by the idea of sub problem decomposition, the
original problem was decomposed into two sub problems:
power allocation and coordinate solving, as well as trajec-
tory optimization and collision avoidance to reduce problem
complexity.

A. coordinate and power allocation

UAV service coordinate solving and power allocation prob-
lems can be expressed as

max
H,V,P

R =

T∑
t=0

R(t), (9)

s.t. hmin ≤ h(t) ≤ hmax,∀t ∈ [0, T ], (9a)
xmin ≤ x(t) ≤ xmax,∀t ∈ [0, T ], (9b)
ymin ≤ y(t) ≤ ymax,∀t ∈ [0, T ], (9c)∑
k∈K

vk(t)Pk ≤ Pmax,∀t ∈ [0, T ],∀k ∈ K, (9d)

Rk(t) ≥ RQos,∀t ∈ [0, T ],∀k ∈ K. (9e)

The D3QN reinforcement learning algorithm is utilized to
solve the problem, which adopts two neural networks to fit
state and action values, and an extra layer to estimate the
advantage values of each action. Specifically, the Q-value for
each action at each time step can be calculated by leveraging
this Q-value and the difference in the average advantage
value of other actions. For a more detailed description of the
algorithm flow, please refer to Algorithm 1.

• Action Space: The action space comprises the UAV’s
moving direction and the power allocated to each user, ex-
pressed as a vector of size K × 6. UAV has seven available
movement options: move left, move right, move forward, move
backward, ascend, descend, or remain stationary. Simultane-
ously, the summation of all power allocation values must not
exceed the power constraint.
• State: The state space consists of the three-dimensional

position of the UAV and the channel gain between the drone
and the users.
• Reward: To maximize the overall throughput, we design

the reward function as follows, λ represents the penalty factor.

R =
R(t)

2λ
. (10)

In the D3QN model, the connected UAV and users first
input abstract state information into the evaluation network
to determine the optimal action. Next, the reward value is
calculated, and the corresponding action is executed in the
environment. Once a UAV-terminal user pair completes the
service, we calculate the data rate for that time period.

B. trajectory optimization and collision avoidance

The trajectory optimization and collision avoidance prob-
lems can be calculated as

min
H,U

C =

T∑
t=0

C(H,U), (11)

s.t. hmin ≤ h(t) ≤ hmax,∀t ∈ [0, T ], (11a)
xmin ≤ x(t) ≤ xmax,∀t ∈ [0, T ], (11b)



Algorithm 1 D3QN algorithm for UAV service coordinates
solution

1: for each episode do
2: Initialize initial positions of UAV and users
3: Initialize the network parameter θ
4: Update ϵ in action policy
5: for each step t0 ≤ t ≤ t0 + Tr do
6: Calculate gk(t)
7: Generate state abstraction array s
8: Choose A according to action policy and Q(s, a, θ)
9: Take action a,observe r and s

′

10: Store D = (s, s
′
, r, a)

11: Sample random mini-batch of transitions
(sj , aj , rj , sj+1) from D

12: Set yj = rj + γmaxa′ Q̂(sj+1, a
′; θ−)

13: Update the action-value function using gradient de-
scent: ∆θ = α(yj −Q(sj , aj ; θ))∇θQ(sj , aj ; θ)

14: end for
15: end for

ymin ≤ y(t) ≤ ymax,∀t ∈ [0, T ], (11c)
St ≤ Smax,∀t ∈ [0, T ], (11d)

To address this issue, we treat it as a Markov Decision
Process (MDP) problem. (p(k)x ,p(k)y ) and (v(k)x ,v(k)y ) respec-
tively represent the position coordinates and velocity of the
kth intruder. (ox, oy) and (vx, vy) are the position coordinates
and velocity of the ownership. Aψ and Aϕ is the heading angle
and tilt angle of the ownership. MCTS method is utilized to
tackle the aforementioned problem.

Action space: At the outset of each time step, the target
aircraft chooses to adjust its tilt angle and acceleration at a
certain rate. Aϕ represents the directional action space,which
consists of three actions: left turn, straight, and right turn. Aa

represents the acceleration action space,which consists of three
actions: Speed up, slow down, and constant speed.

Termination state: For safety reasons, we define the min-
imum collision distance between two UAVs as dmin. If the
distance between two UAVs is less than dmin, it can be
considered a collision. the termination state of the entire
process can be divided into three types:

1) The distance between the intruder and the ownership is
less than dmin (can be considered as a collision).

2) The ownership out of the map we defined or cannot
reach the goal within the specified steps (time out).

3) The ownership successfully reaches the goal (goal).
In MCTS, the nodes of the search tree correspond to states

in the state space. Meanwhile, the leaf nodes encompass all
possible next nodes (states) that can result from different
actions performed by the current node (state). Given that each
time step involves 9 action spaces, each node may have up to
9 leaf nodes.

The MCTS algorithm selects actions by forward searching
the search tree. Each edge (s, a) in the search tree stores an
action value Q(s, a) and its number of visits N(s, a). The tree

is traversed through simulation starting from the root node
(initial state). The MCTS algorithm can be divided into four
steps:

1) The ownership will select the leaf node with the highest
value according to Equation (12), which maximizes the
sum of the average action value and the uncertainty
reward.

UCT = X̄j + 2C

√
2 lnn

nj
. (12)

The variable X̄j approximately represents the state-
action value of the child node, UCT = 2C

√
2 lnn
nj

known as the exploration term, nj represents the number
of times child node j has been visited, and n represents
the number of times the parent node has been visited. C
is a constant that balances exploration and exploitation.
If multiple child nodes have the same maximum value,
the leaf node will be randomly selected. If a child node
has never been visited, it will be prioritized, ensuring
that each leaf node is visited at least once.

2) When the ownship enters a node (state) that it has not
yet visited, a new node is created as a child node of the
parent node (i.e., the previous state) in the search tree.
The visit count of this new node is set to 1, and the
cumulative reward value is initialized to 0.

3) Ordinarily, a large number of iterations are required
by the conventional approach to reach a termination
state by following a random policy and determine the
corresponding ultimate reward score. This leads to high
time complexity. we leverage the value function estima-
tion method to overcome this limitation. This approach
sets the iteration’s search depth and employs the value
function to compute the final reward. From a subjective
perspective, a state where the drone is approaching the
destination without any collision is considered to be
better. Based on this, we utilize the estimation function
shown in Equation (13) for non-termination states.

Ṽ (s) = 1− d(o, g)

max d(o, g)
, if s is non-terminal state

(13)
The distance between the ownship and its goal is con-
stant and equal to the diagonal length of the map. If
there are no collisions with other drones or boundaries,
the ownship receives a reward whose magnitude is
determined by the distance between itself and the goal.
Specifically, the closer the ownship gets to the goal, the
higher the reward it receives.

4) The process of updating the final reward and visit count
for all traversed edges is called backpropagation. After
reaching the termination state through the value function
estimation function described earlier, the final reward
and visit count for each traversed edge update. As the
ownship traverses each edge, the edge accumulates a
reward increment while counting the number of visits.



The reward value for each edge can be obtained by
dividing its accumulated reward by its visit count.

A single simulation consists of executing the four steps
described earlier once. To improve decision accuracy, we
perform a large number of simulations.

C. XAI Framework

In various UAV-assisted communication scenarios, in addi-
tion to meeting the key connection requirements for high-speed
and stable data transmission, strict reliability requirements
must also be imposed on UAV services. To address this, a
scalable XAI framework is proposed in this section based
on the characteristics of UAV trajectory optimization and
collision avoidance, as shown in Fig. 1. During flight, UAVs
perceive their surroundings and take control measures. Real-
time information about the UAV’s environment is transmitted
to both the XAI agent and the UAV flight controller. The XAI
agent integrates scalable XAI methods to enhance confidence
in decision-making for artificial intelligence systems. Both the
environment information and XAI methods in the framework
are scalable, with location and velocity information of UAVs
and surrounding aircraft being part of the environment infor-
mation and the MCTS method being used for XAI methods.

Fig. 1 provides examples of questions that the UAV may
raise, which can be answered by XAI. For service providers,
XAI can improve wireless network service quality for hetero-
geneous users (such as mobile phones, PCs, vehicles, etc.) and
enhance fault detection efficiency, with engineers being able
to easily detect model decision-making errors. For individual
users, XAI can provide details of flight decision-making to
increase trust. For legal regulators, XAI can explain model
decisions and establish trust in a quantifiable manner.

IV. SIMULATION RESULT

A. UAV coordinate and power allocation

To simulate UAV service coordinates and power allocation,
we randomly distribute users within the service area and
deploy the UAV near the initial height boundary of 100 meters.
The UAV’s flight range is 500 meters, with a width of 500
meters, and we employ a neural network with three layers and
40 hidden nodes. The activation function used is a rectified
linear unit. The Adam optimizer is used to train the neural
network.The greedy action strategy ϵ is set to linearly decrease
from 0.9 to 0.1.

• DQN: The traditional Q-value coupled DQN inputs state
information and outputs the action value of each action in this
state.

• Random: The random method is a traditional approach for
solving problems, which involves randomly choosing points
within a specified area and computing the corresponding
values at those points.

• D3QN: D3QN introduces double and dueling improve-
ments, where the input of D3QN is state information and the
output is the action value and advantage value of each action
in this state.

Fig. 2. Convergence performance of different algorithm with K = 10.

Fig. 2 illustrates the convergence of the proposed D3QN
algorithm. It can be observed that the D3QN algorithm
requires approximately 300 episodes to converge, which is
significantly less than the number of episodes required for
the DQN algorithm to converge. Furthermore, Fig. 2 shows
that the D3QN algorithm is able to converge to a performance
of around 17000, which is significantly greater than the con-
vergence value of approximately 14000 achieved by the DQN
algorithm. Overall, the results presented in Fig. 2 demonstrate
the superior convergence performance of the D3QN algorithm
compared to the DQN algorithm and Random algorithm.

B. trajectory optimization and collision avoidance

In this section, we use the UAV service coordinates obtained
in the previous section as the goal of the task. Intruders are
randomly distributed within an area with a length and width
of 2000 meters. reward is set according to Equation(14), dmin
= 50.

R(s) =


1, if s is goal state

0.1, if s is time-out state
0, if s is collision state

(14)

• DQN: The traditional Q-value coupled DQN is trained in
an environment with a fixed number of UAVs (using the states
of all surrounding intruders as inputs)
• Safe-DQN: A safety-aware DQN model consists of two

DQNs: one ensures the UAV reaches its goal safely, while
the other guarantees that the UAV does not collide with other
intruders [14].
•Tree-fast: A fast Monte Carlo Tree search method with

low steps per iteration [15].
•Tree-depth: Our proposed Monte Carlo Tree search

method with a large number of steps per iteration and a search
depth of 3 or 4.

We evaluated the performance of DQN, Safe-DQN, Tree-
fast, and Tree-depth in trajectory optimization and collision
avoidance under different intruder numbers, as depicted in
Fig. 3. As the number of intruders increases, the MCTS
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algorithm can consistently sustain optimal performance com-
pared to other methods. Additionally, as depicted in Fig. 4,
the MCTS algorithm maintains its overall performance while
exhibiting a lower collision probability and shorter execution
steps as compared to other algorithms. Notably, when the num-
ber of intruders increases, the algorithm’s ability to generalize
its performance is superior to other algorithms.

V. CONCLUSION

This paper proposes an interpretable and secure trajectory
optimization solution for UAV-assisted communication. It ad-
dresses the reliable UAV service problem by dividing it into
two sub-problems. The first sub-problem is the constrained
UAV coordinate and power allocation problem, which is
solved using the D3QN method to determine appropriate
UAV coordinates under spatial constraints, service quality
constraints, and power constraints. The second sub-problem
is the constrained UAV collision avoidance and trajectory
optimization problem, which is addressed using the MCTS
method to achieve reliable and secure UAV services. Addition-
ally, we propose a scalable XAI framework, which achieves
transparent and reliable decision-making during UAV collision
avoidance and trajectory optimization processes. For future
research, we aim to explore the application of interpretability

in more complex scenarios such as the Internet of Vehicles
and mobile communication.
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