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Abstract—In the era of 5G mobile communication, there has
been a significant surge in research focused on unmanned aerial
vehicles (UAVs) and mobile edge computing technology. UAVs
can serve as intelligent servers in edge computing environments,
optimizing their flight trajectories to maximize communication
system throughput. Deep reinforcement learning (DRL)-based
trajectory optimization algorithms may suffer from poor training
performance due to intricate terrain features and inadequate
training data. To overcome this limitation, some studies have
proposed leveraging federated learning (FL) to mitigate the data
isolation problem and expedite convergence. Nevertheless, the
efficacy of global FL models can be negatively impacted by the
high heterogeneity of local data, which could potentially impede
the training process and even compromise the performance of
local agents. This work proposes a novel solution to address these
challenges, namely personalized federated deep reinforcement
learning (PF-DRL), for multi-UAV trajectory optimization. PF-
DRL aims to develop individualized models for each agent to
address the data scarcity issue and mitigate the negative impact
of data heterogeneity. Simulation results demonstrate that the
proposed algorithm achieves superior training performance with
faster convergence rates, and improves service quality compared
to other DRL-based approaches.

Index Terms—Personalized federated deep reinforcement
learning (PF-DRL), multi-UAV, mobile edge computing, trajec-
tory optimization.

I. INTRODUCTION

The speedy advancement of contemporary communication
technology has brought about an intensified demand for com-
puting processing from mobile users. However, conventional
cloud computing models fall short of catering to the require-
ments of massive data processing. In recent times, mobile
edge computing has considerably enhanced the efficacy of task
processing, providing mobile users with high-quality network
services and minimal latency [1]. Nevertheless, certain remote
regions present considerable challenges in the deployment
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of edge servers. In light of their portability, flexibility, and
high mobility, UAV-assisted edge computing has emerged as
a burgeoning trend in such scenarios [2].

Trajectory optimization is a vital component in UAV edge
computing [3]. As an action-learn-based algorithm, reinforce-
ment learning (RL) shows its potential advantages in address-
ing the complex environment [4]. In [5], an improved Q-
learning-based algorithm was proposed for path planning in an
unknown antagonistic environment. Authors in [6] designed
a Monte Carlo Tree Search (MCTS)-based path planning
scheme, which can plan the flight path of a UAV in a dynamic
environment reasonably. However, the aforementioned algo-
rithms can only be applied to discrete and low-dimensional
action spaces [7]. In reality, each state of the agent contains
numerous action possibilities, and previous work [4-6] may
suffer from the curse of high-dimensional action, leading to a
slow or even non-convergence rate.

In order to solve the above problems, combining the deep
neural network with RL, a deep reinforcement learning (DRL)
algorithm is utilized to solve the dimensional disaster of
huge states and action spaces [8], [9]. Moreover, a single
UAV provides limited services, while multi-UAV can expand
the service scope and provide better service quality through
mutual cooperation. Thus, authors in [10] proposed a multi-
agent deep deterministic policy gradient (MADDPG) based
trajectory optimization algorithm to realize the fairness of user
service and the server terminal load, as well as minimizing
the UAV’s energy consumption. In [11], a collaborative multi-
agent DRL framework was proposed to obtain the joint
strategy of trajectory design, task allocation, and power man-
agement. In [12], a potential game method was proposed to
solve the service allocation problem of multi-UAV in advance
and then optimize the trajectory.

Nevertheless, multi-agent deep reinforcement learning faces
challenges like low learning efficiency and slow convergence
rates in complex dynamic environments. These issues arise
due to the fact that agents interact and learn from each
other, and changes for different clients can affect each other’s
decisions, leading to instability. As a new learning paradigm,
federated learning (FL) has become more and more popular
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in recent years. Through FL, distributed learning schemes can
be efficiently performed among multiple participants at a low
communication cost [13], and the combination of FL and
RL has become a natural solution to address the multi-UAV
trajectory optimization. Recently, the authors in [14] proposed
a federated multi-agent deep deterministic policy gradient
(F-MADDPG), in which model parameters are shared, thus
greatly reducing communication delay and overhead. Although
this algorithm has a good performance in MEC system allo-
cation scheduling problems, it is not practical that different
clients share a single model, especially when clients locate in
heterogeneous situations [15].

To address the aforementioned issues, in this paper, we
propose a UAV trajectory optimization algorithm based on
personalized federated deep reinforcement learning (PF-DRL).
In detail, each UAV no longer uses a single global model. By
improving the aggregation process of FL, the global model
and the local model are aggregated with a moderate weight
to train a personalized model. Such an approach not only
amplifies the learning efficiency but also empowers each UAV
to make personalized action decisions guided by the local
training model, thus ensuring the overall learning performance.
Specifically, the main contributions of this paper are summa-
rized as follows.

• We build a multi-UAV-assisted mobile edge computing
model for the complex and dynamic environment. While
optimizing the flight trajectory of each UAV, the overall
energy consumption is reduced as required.

• Since each UAV is trained locally based on the MAD-
DPG algorithm. We, for the first time, propose a UAV
trajectory optimization method based on personalized
federated multi-agent deep deterministic policy gradient
(PF-MADDPG).

• Finally, the proposed method is synthetically simulated.
The results show that the learning efficiency and con-
vergence rate of our algorithm is significantly improved
without degrading the overall performance.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, the system model is presented. As shown in
Fig. 1, the UAV serves as a mobile edge computing server to
provide computing migration and data storage services for a
group of users on the ground. We assume that there are M
randomly distributed ground users in a square area with a side
length Lmax, and the set of users is denoted as m ∈ M =
{1, 2, . . . ,M}. We define all of the users served by N UAVs
where n ∈ N = {1, 2, . . . , N}, which are set to fly in the
designated area.

We divide the flight time of the UAV in an episode into
T different time intervals, and a single time slot (TS) t ∈
T = {1, 2, . . . , T}. In a specific TS, all users will move to
random locations in the area. The positions of users can be
expressed as Um (t) = [xm (t), ym (t), 0], and the locations of

UAVs are denoted as Pn (t) = [xn (t), yn (t), H]. We consider
that each UAV is flying at a fixed altitude H . In addition, there
are obstacles such as buildings and trees in our environment,
therefore each UAV should keep a distance from them, as well
as other UAVs, during the execution of tasks.

The horizontal distance between the m-th user and the n-th
UAV in the t-th TS can be expressed as

dm,n(t) =

√
∥xm (t)− xn (t)∥2 + ∥ym (t)− yn (t)∥2. (1)

Our communication link between the UAV and users is line-
of-sight (LoS). The calculation of channel power gain follows
the free space path loss model, which can be expressed as

gm,n(t) =
ρ0

H2 + d2m,n(t)
, (2)

where ρ0 represents the channel’s power gain at the reference
distance. Then, the uploading data rate from the m-th user to
the n-th UAV in the t-th TS can be expressed as

Rm,n(t) = Bm log2 (1 +
Pugm,n(t)

σ2
), (3)

where Bm represents the channel bandwidth allocated by the
n-th UAV to the m-th user, so that

∑M
′

m=1Bm = B and M
′

is number of users served by UAV simultaneously. In order
to simplify the model, we assume that the UAV shares the
channel bandwidth equally with the serving users. In addition,
Pu denotes the transmission power of the m-th user and σ2 is
the power of additive white Gaussian noise.

We also consider the energy consumption generated by the
UAV during task execution, mainly including flight energy
consumption and computing energy consumption. We assume
that the UAV flies at a constant speed v(t), and in one TS, the
energy consumed by n-th UAV flight can be defined as

Ef
n(t) = κv2n(t), (4)

where κ = 0.5Mt, and M is the mass of the UAV [16].
Meanwhile, the computing energy consumption of UAV in
one TS can be described as

Ec
n(t) = γcCnRn(t)(fc)

2, (5)

where Cn expresses the number of CPU cycles needed for one
bit computing, Rn(t) represents the overall achievable sum
uploading data rate of n-th UAV in one TS, fc is the CPU
frequency, and γc denotes the effective switching capacitance.

The model aims to optimize the trajectory of the UAVs
to maximize the quality of service. Thus, the trajectory op-
timization problem of multi-UAV-assisted edge computing in
the dynamic environment can be formulated as

max

N∑
n=0

T∑
t=0

Rn(t)

NT
, (6a)

s.t. ∥ Pi(t)− Pj(t) ∥≥ ψ, ∀i, j ∈ N , ∀t ∈ T (6b)
∥ xn(t) ∥≤ Lmax, ∀n ∈ N , ∀t ∈ T (6c)
∥ yn(t) ∥≤ Lmax, ∀n ∈ N , ∀t ∈ T (6d)
∥ Pi(t)− Pb ∥≥ φ, ∀n ∈ N , ∀t ∈ T (6e)



Fig. 1. System model and learning framework of PF-MADDPG

where (6b) represents the minimum distance between UAVs,
(6c)-(6d) states UAVs should fly within the specified range, Pb

denotes the position of the obstacles and (6e) explains UAVs
should keep a safe distance from obstacles. Our objective
is to maximize the real-time information transmission rate
between users and UAVs. Note that this problem is non-
trivial to solve with traditional optimization methods since
it involves continuous state space and action space, and the
number of variables is unprecedented. Thus, in this paper,
we propose a PF-DRL solution based on the DRL algorithm,
which can achieve a fast convergence rate in a complex
dynamic environment.

III. PF-MADDPG FOR TRAJECTORY
OPTIMIZATION PROBLEM

In this section, we introduce a multi-UAV trajectory opti-
mization scheme based on the PF-MADDPG algorithm. We
first use the MADDPG algorithm to train local models. Then,
the global model is trained by aggregating local models to
improve the convergence rate of the algorithm. Finally, by
improving the aggregation process, a personalized training
solution is proposed to solve the problem that a single global
model may affect the performance of local agents.

A. Problem Transformation

We first formulate the multi-UAV trajectory optimization
problem as a multi-agent Markov decision process (MDP).
The observation, action and reward function for each agent in
t-th TS are defined as follows:

1) Observation on(t): The uploading data rate is closely
related to the distance between the UAV and the user. All
UAVs also need to obtain each other’s location information.

Thus, each UAV is equipped with a position acquisition device,
such as a camera, so that all UAVs can obtain the position
information of other UAVs and all users in real time. In
summary, the observation space on(t) can be expressed as:
on(t) = {Pn(t),P−n(t),Um,M (t)}, where Pn(t) denotes the
position of n-th UAV, P−n(t) denotes the position of other
UAVs except n-th UAV, and Um,M (t) denotes the position of
all users.

2) Action an(t): Each UAV needs to make action decisions
in real time according to the observed environment. The action
can be written as an(t) = (∆xn(t),∆yn(t),∆zn(t)) in the TS
t, where ∆zn(t) = 0 since the UAV flies at a fixed altitude.

3) Reward function rn(t): we define the reward function as:

rn(t) =
1

N

N∑
n=1

(
Rn(t)

Rmax
− 1

emax

(
Ef

n(t) + Ec
n(t)

))
−ε, (7)

where Rmax represents the maximum achievable rate, emax

represents the maximum energy consumption in one time slot,
and ε denotes the penalty for various collisions and exceeding
the boundary.

In the setting of the reward function, on the one hand, we
should ensure the maximization of service quality. We should
also ensure that the energy consumption of the UAVs is re-
duced as much as possible, so the energy consumption should
have a negative impact on the reward function. Average return
value in the random policy is given by R = 1

T0

∑T0

t=1 rn(t),
where T0 denotes the total time step of a training episode.

B. PF-MADDPG based Solution

1) Local Training: We use the MADDPG algorithm to
train the local model. MADDPG algorithm includes two main
components, actor network, and critic network. The actor



Algorithm 1 PF-MADDPG based Trajectory Optimization
Algorithm

1: Initialize: the position of UAVs Pn , users Um ;
2: Initialize: the parameters of each UAV’s actor and critic

evaluation and target networks;
3: Initialize: each UAV’s experience replay buffer;
4: for Episode=1,2,...,Nmax do
5: Initialize the environment state s0;
6: for Time step=1,2,...,T do
7: for each UAV n do
8: Obtain observation on(t);
9: Select action an(t) based on policy π(om|πm);

10: Take action an(t), obtain rn(t);
11: end for
12: obtain s and s

′
by mutual communication;

13: for each UAV n do
14: Select aall(t) and rall(t);
15: Store sample {s, aall(t), rall(t), s′} into
16: experience replay buffer;
17: Randomly select k samples;
18: Update critic evaluation network by (9)-(10);
19: Update actor evaluation network by (11);
20: end for
21: Aggregate the model parameters of the actor and
22: critic evaluation network of each UAV:
23: θglobal ←

∑
n ρnθn;

24: µglobal ←
∑

n ρnµn;
25: for each UAV n do
26: Model personalized training:
27: θ∗n ← αθn + (1− α)θglobal;
28: µ∗

n ← αµn + (1− α)µglobal;
29: Update parameters of target networks:
30: θ

′

n ← τθ∗n + (1− τ)θ′

n;
31: µ

′

n ← τµ∗
n + (1− τ)µ′

n;
32: end for
33: Update the current global status and enter s

′
;

34: end for
35: end for

network outputs actions according to the policy πn, and the
critic network evaluates the action by calculating Q-value. In
order to improve the stability of the algorithm, two target
networks with the experience replay buffer, i.e., DQN, are
further inserted.

The global state of the environment can be combined
by the observation information of each UAV, expressed as
s(t) = {on(t),∀n ∈ N}. Each UAV can acquire each other’s
observation information by communicating with each other,
so all UAVs will acquire the global state s and the next
global state s′ after one action. Then, the state transition
sample {s, a1(t), a2(t), ..., aN (t), r1(t), r2(t), ..., rN (t), s′} is
illustrated and the sample is stored in the experience replay
buffer.

Next, by taking k samples from the experience replay
buffer, {si, ai,1(t), ..., ai,N (t), ri,1(t), ..., ri,N (t), s′i}, where

i = 1, 2, ..., k, the actor target network outputs the optimal
action ai,n under each state s′i, and the critic target network
calculates the target Q-value of the k samples by

Q(si, ai,1(t), ..., ai,N (t) | µ′
n) = ri,n

+γQ(s′i, a
′
i,1(t), ..., a

′
i,N (t) | µ′

n).
(8)

The parameters of the critic evaluation network can be
updated by minimizing the loss function:

L(µn) =
1

k

k∑
i=1

[Q(si, ai,1(t), ..., ai,N (t) | µ′
n)

−Q(si, ai,1(t), ..., ai,N (t) | µn)]
2;

(9)

µn = µn − ω∇µnL(µn), (10)

where ω represents the update step. Then, the parameters of
the actor evaluation network can be updated by the policy
gradient as:

∇θnJ(θn) =
1

k

k∑
i=1

∇an
Q(·)∇θnπ(oi,n|θn)|an=π(oi,n|θn).

(11)
The parameters of the actor and critic target networks can

be softly updated as follows [17]:

θ
′

n = τθn + (1− τ)θ
′

n; (12)

µ
′

n = τµn + (1− τ)µ
′

n, (13)

where τ represents the update coefficient, generally taking a
smaller value.

2) Federated Aggregation Process: We set up an aggregation
cloud server on the ground. Each agent uploads its local model
after a round of training, and the aggregation server collects
all the models and obtains the global model through federation
averaging, and then distributes the global model to each
agent. Thus, by combining the non-independent identically
distributed data of agents, the sample utilization is improved.

After the actor and critic evaluation network are trained,
the network parameters are updated. Since the target network
parameters are obtained from the evaluation network parame-
ters training, each agent only needs to upload the local actor
and critic evaluation network parameters. The aggregation
server calculates the global parameters after collecting the
local parameters of each agent. The global parameters of the
actor and critic evaluation network can be calculated as:

θglobal =
∑
n

ρnθn; (14)

µglobal =
∑
n

ρnµn, (15)

where ρn represents the weight of the n-th agent network, and∑
n ρn = 1. Each agent updates the parameters of its target

network after obtaining the global parameters.
3) Model Personalization: FL can effectively improve learn-

ing efficiency, however, it is worth noting that a single global
model cannot be well generalized to local agents because of
the heterogeneity of various data distributions. Ideally, each



agent can use the global model to supplement the problem of
fewer local training datasets and alleviate the negative impact
of lacking personalization. Thus, the PF-MADDPG algorithm
is proposed to solve this problem. In our algorithm, taking the
actor evaluation network as an example, the optimization goal
of each agent can be described as:

minL(αθn + (1− α) θglobal), (16)

where α is mixed weight, and αθn+(1− α) θglobal is a convex
combination of the local model and the global model, namely,
the personalized model. So we need to train the personalized
model to update the two evaluation networks.

The architecture of the PF-MADDPG algorithm is shown
in Fig. 1, and each UAV trains a local model based on its
observed environment and uploads the local model to the
aggregator. After obtaining the model parameters of the global
actor and critic evaluation network, the global and local models
are aggregated according to a certain weight ratio α to obtain
the personalized model. After receiving the global model, the
server will aggregate it with the local model as:

θ∗n = αθn + (1− α)θglobal; (17)

µ∗
n = αµn + (1− α)µglobal, (18)

where θ∗n and µ∗
n are the personalized actor and critic evalu-

ation model parameters. The size of the mixed weight α will
directly affect the performance of the personalized network
model, which will be analyzed in the simulation section.
Finally, θ∗n and µ∗

n are used for updating the target network
parameters. We provide a pseudo-code of the algorithm in
Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we will comprehensively evaluate the learn-
ing performance of different algorithms. For simulations, we
consider a 200 m × 200 m square area which consists of
the random distribution of several dynamic users. Four UAVs
serve users in this area, distributed in the four top corners of
the square area. A safe distance of 10m shall be kept between
UAVs and obstacles. The maximum speed of a UAV is set to
10 m/s, and the maximum speed of users is set to 2 m/s. There
are 200 time slots in each episode of training. The average of
each ten episodes of training is recorded as the return value
of one training episode.

A. Overall Performance Comparison

Fig. 2 shows the convergence of the MADDPG algo-
rithm [10], the F-MADDPG algorithm, and the PF-MADDPG
algorithm to optimize the trajectory of 4 UAVs, and ten rounds
of experiments are conducted respectively. Four UAVs jointly
serve several ground users, and each UAV can simultaneously
serve five users, who share the bandwidth of the UAVs.The
solid line shows the average results of the ten rounds of exper-
iments, and the shaded part shows the range of fluctuations.
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Fig. 2. Performance comparison of different algorithms for 30 users and 45
users scenarios. Compared with the MADDPG algorithm and the F-MADDPG
algorithm, the PF-MADDPG algorithm has a faster convergence rate and
better average return.

TABLE I
THE PERFORMANCE GAIN

PF-MADDPG

Average Return Convergence Rate

30
users

MADDPG 14.5% 115.4%

F-MADDPG 10.5% 38.5%

45
users

MADDPG 14.3% 136.4%

F-MADDPG 7.4% 81.1%

The simulation results indicate that the PF-MADDPG al-
gorithm has a faster convergence rate than the MADDPG
algorithm and the F-MADDPG algorithm. Conversely, the
training process of the MADDPG algorithm and the MADPPG
algorithm is exceedingly unstable and subject to considerable
fluctuations when compared to the PF-MADDPG algorithm.
TABLE 1 provides a comprehensive overview of the per-
formance and convergence rate gain of the PF-MADDPG
algorithm across two distinct environments. In general, the PF-
MADDPG algorithm showcases superior average return and
faster convergence speed, coupled with notable performance
improvements.

B. Local Performance Analysis

The simulation analysis above indicates that the PF-
MADDPG algorithm significantly improves the overall conver-
gence rate of the system. However, the benefits of personalized
federated learning extend beyond just the convergence rate,
as it also enhances the local performance of each agent
through personalized model training. Thus, in this subsec-
tion, we analyze the local performance of a single agent.
Fig. 3 illustrates weighted statistics of the local return of
each agent, comparing the PF-MADDPG algorithm with the
MADDPG algorithm. The simulation analysis shows that the
PF-MADDPG algorithm yields a performance gain of up to
13%-18% for each UAV, resulting in substantial improvement
in local performance compared to the MADDPG algorithm.

C. Discussion on the Mixed Weight α

In this subsection, we analyze the weight of the global
model in the PF-MADDPG algorithm, that is, the aggregate
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Fig. 3. Comparison of local performance between PF-MADDPG algorithm
and MADDPG algorithm in 30 users scenario.

ratio of the local model to the global model. In the experiment,
we find that different weight ratios will affect the overall
performance of the personalized model. As shown in Fig. 4,
we have set several fixed weight ratios. The weight ratios
of the private model and the aggregate model are 3:7, 5:5,
7:3, and 9:1 respectively for the simulation experiments,
and are compared with the MADDPG algorithm. From the
experimental results, it can be concluded that in the UAV
trajectory optimization problem, the private model should have
more weight, and the optimal ratio should be around 7:3.
However, it is difficult to find the best-mixed weight. An
optimized α is decided by a combination of several system
factors, such as the correlation between a local distribution
and global distribution[18], which can be further explored in
the future.
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Fig. 4. Performance comparison of personalized federated reinforcement
learning algorithms with different mixed weights. The mixture weight ratio
shown in the figure is the ratio of the local model to the global model(L: G).

V. CONCLUSION

In this paper, we have proposed a personalized federated
deep reinforcement learning algorithm to solve the trajectory
optimization problem of multi-UAV in complex dynamic

scenarios. By aggregating local and global models with a
certain mixture weight, a well-trained personalized model can
be obtained by several rounds of communication. Simulation
results show that the proposed scheme can achieve a faster
convergence rate and better learning performance, compared
with the MADDPG algorithm and the F-MADDPG algorithm.
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