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Systems with selective overflow and change of
bandwidth

Villy B. Iversen
Department of Photonics Engineering, Technical University of Denmark
DK-2800 Kongens Lyngby, Denmark
Email: vbiv@fotonik.dtu.dk

Abstract—We consider a loss system with n channels and a
finite or infinite overflow group, which is offered N different
services, all having Poisson arrival processes. All calls have same
bandwidth demand and mean service time, but the mean service
time may be different on the primary group and the overflow
group, corresponding to data traffic with different bandwidth
allocation on primary (micro-cell = femto-cell) and overflow
group (macro-cell = LTE-cell). Then using a result of Wallstrom
we can calculate the Binomial moments of the total overflow
traffic. Given a certain number of busy channels on the overflow
group, we show by balance equations that the number of calls of
each service will be Multinomial distributed with probabilities
proportional with the arrival rates. Using a recent result of
Newcomer & al, we then find moments (done up to fourth order)
of individual overflow streams or any combinations of overflow
streams. Thus we can find the correlation between services and
for example the moments of some traffic streams which may
overflow to one system, whereas other traffic streams may be
blocked or overflow to another system.

Keywords: partial overflow traffic, changing mean holding times,
changing bandwidth, femto-cells, overlay-cell

I. INTRODUCTION

This paper presents a generalization of more classical
overflow problems. We derive moments and correlations of
combined overflow traffic streams from a trunk group. Further-
more, we allows the bandwidth (and thus the mean holding
time) to change from primary group to overflow group. This
appears for example for file-transfer in hierarchical cellular
systems where the allocated bandwidth may change from
femto-cell to overlaid LTE-cell.

The combination of correlated traffic streams was first dealt
with by Descloux [4] and Neal [6], resulting in the Extended
Equivalent Random Traffic method. The paper by Zhao &
Gambe [11] dealt with only two traffic streams. Recently
Schneps-Schneppe & Sedols [9] have made further contri-
butions to this field. Only two first moments are considered
and the exact solutions are very complex. The change of
mean holding time (equivalently change of bandwidth) was
first consider by Wallstrom [10] and has later been dealt with
by Schehrer [8] and Bakmaz [1] [2]. They assume Poisson
arrival processes. In Lindkvist [5] the results are generalized
to Interrupted Poisson arrival processes. In general, the authors
derive very complex solutions based on generating functions.

In this paper we deal with both correlated traffic streams and
change of bandwidth in the same model. In Section II we recall
Wallstrom’s solution from 1973 which yields the Binomial

moments of the overflow traffic in a system with Poisson
arrival process with rate A and different mean values of the
exponential service times on the primary group (1/u,) and
overflow group group (1/u,). We also summarize relationships
between ordinary moments, Binomial moments, and factorial
moments, which all are widely used in overflow theory. In
Section III we assume that the Poisson arrival process with
arrival rate \ is composed of N arrival streams with arrival
rates Aj, j = 1, N, > A; = A All streams have the same
mean holding time 1/, on the primary group and same mean
holding time 1/p, on the overflow group. We then assume
that the detailed state probabilities on the overflow group for
at fixed global state is given by the Multinomial distribution.
This is proved to be correct by showing that the node balance
equations are fulfilled. In Section IV we finally exploit recent
results on Multinomial distributions by Newcomer & al [7] to
derive moments up to the order four for a system with four
traffic streams for all combinations of these four streams. Thus
we for example are able to find the moments of overflow traffic
where two traffic streams are allowed to overflow whereas the
other two are blocked or routed to a third system.
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Fig. 1. State transition diagram for a generalized Kosten’s system, which has
a primary group with n channels and an unlimited overflow group. The states
are denoted by [z, y|, where x is the number of busy channels in the primary
group, and y is the number of busy channels in the overflow group. The service
rate is j1, on the primary group and f., on the overflow group.

II. STATE PROBABILITIES AND MOMENTS OF OVERFLOW
TRAFFIC

Wallstrom (1973 [10] consider an overflow system with a
primary group of n channels and an overflow group with ¢
channels. The holding times in the primary group are expo-
nentially distributed with mean value 1/p, and the holding
time in the overflow group is exponentially distributed with
mean value 1/u,. He derive a recursion formula for the 4’th



Binomial moment (; of the traffic offered to the overflow

group:
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In overflow theory we usually for convenience use Binomial
moments (;. Later in this paper we also consider factorial
moments ;. For discrete non-negative distributions p(z)
we have the following relationships between ordinary (raw)
moments m; and the above types of moments:
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The ¢’th factorial moment ¢; is obtained from the Binomial

moment by:
pi =il B (6)
Expressed by the raw moments m,; we also have:
1 = M (7
2 = Mg —my 3)
p3 = mg—3ma+2m 9)
g = my—6mg+ 1lmg —6my (10)
The reverse way we have:
my = ¢ (11)
mz = @2—¢¥1 (12)
m3 = 3+ 3p2 — by (13)
my = P4+ 63+ Tps — 470, (14)

III. MULTINOMIAL STATE PROBABILITIES

In this section we show, that given x channels are busy
on the primary group, all with mean service rate p,, and y
channels are busy on the overflow group, all with mean service
rate [i,, then the number of calls of each service on the the
overflow group will be Multinomial-distributed. This is simply
shown by considering node flow balance equations of the state
transition diagram shown in Fig. 1.

A. Flow balance equations

Let the global state probabilities be given by P(z,y) where
x is the number of busy channels in the primary group and y
is the number of channels on the overflow group. Let us split
the state probabilities on the overflow group into detailed state
probabilities {y} = {y1,y2,...,yn}. Then we can show that:
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Proof for states P(x,y),z < n:
For states {x,y1,¥2,...,yn | y} we have the following flow
balance equations for 0 < x < n:

0=— out(mv y)+F1,in(~73; Z/)+F2,z‘n($, Z/)+F3,m(56, y) (16)

where the following state transitions are feasible:
« Flow out due to arrival or departure:
Four(®,y) = (A2 pp+y-po) P(@,y1, 42, -, yn | y)
o Flow in due to arrival (will always be to primary group
because x < n):
Fl,in(xay) = )\P(LU - 17y17y27"'7yN ‘ y)
¢ Flow in due to departure from primary group:
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o Flow in due to departure from overflow group:
N
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By inserting (15) into (16) we show that the balance equations
are fulfilled. Inserting (15) into F3 ;,(x,y) yields:
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as we have Zfil p; = 1. Inserting this into the flow balance
equation (16) together with (15) we get after reducing all terms
with same factors:

0 = —QA+z-y+y po) Pla,y) (18)
+ X Plx—1,y)
+(x+1) pp-Plx+1,y)
+(y+1) - po- Pla,y+1)
This is the global balance equations for states P(x,y),z < n,
which thus are fulfilled. From the theory of Markov processes
we know that there is one and only one solution. Thus the
state probabilities in this case are given by (15).

Proof for states P(n,y) (x =n)
The node flow balance equation is:
0=—Fou (n7 y)+F1,in (na y)+F2,i7L(n7 y)+F3,in (n7 y) (19)

where the following state transitions are feasible:
o Flow out due to arrival or departure:

Fout(na ZU) = (A+n/’6p+yu0)P(nayla Y2,---, YN | y)
o Flow in due to arrival to primary group:
Fl,in(nay) =A- P(TL— 1;y1»y27"'7y1\7 | y)
o Flow in due to arrival to overflow group:
N
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o Flow in due to departure (will always be from overflow
group):
N
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The expression (18) is also valid for F3 ;,,(n,y+1), i.e. for
x = n. The expression (19) includes a term F ;,,(n,y) which
includes state y — 1. Inserting (15) into F5 ;,(n,y) yields:
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Inserting the obtained expressions for Fj;,(n,y) and
F ;n(n,y+1) into (19) and using (15), we get after reducing
the factors common to all terms:
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This is the global balance equations for states P(n,y), which
thus are fulfilled.

We have thus shown that (15) is a solution to the detailed
state probabilities, and as there only exists one solution this is
the unique solution. This concludes the proof.

IV. DISTRIBUTION FUNCTION AND MOMENTS OF
INDIVIDUAL OVERFLOW TRAFFIC

For a given number of busy channels on the overflow group,
we thus know that the number of connections of each service
is Multinomial-distributed. Newcomer & al. [7] derive the
moments of the compound Multinomial distribution. In the
following we consider IV = 4 traffic streams. Indexing these
as

{i, g, k, 1y, i#j#k#I

we can derive the following formulas from their results:
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From these formule we obtain moments, covariances and
correlations coefficients of order up to four dimensions for any
combination og traffic streams. For example, we have for two
streams ¢ and j:

Cov(YiYj) = E(Y:Y;) — E(Yi) E(Y;)
V. IMPLEMENTATION, CONCLUSIONS

The formulas have been implemented in [3]. The numerical
values are stable. We may thus evaluate hierarchical cellular
systems where some services are allowed to overflow to
overlay cells, whereas other services are blocked or routed
elsewhere, when the micro-cell is busy. The overflow systems
are dimensioned using well-known methods, for example
Equivalent Random Traffic method or Interrupted Poisson
Process.
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